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U.S. Customary Units and Their SI Equivalents

Quantity U.S. Customary Units SI Equivalent

Acceleration  ft/s2 0.3048 m/s2

 in./s2 0.0254 m/s2

Area ft2 0.0929 m2

 in2 645.2 mm2

Energy  ft ? lb 1.356 J
Force kip 4.448 kN
 lb 4.448 N
 oz 0.2780 N
Impulse  lb ? s 4.448 N ? s
Length ft 0.3048 m
 in. 25.40 mm
 mi 1.609 km
Mass oz mass 28.35 g
 lb mass 0.4536 kg
 slug 14.59 kg
 ton 907.2 kg
Moment of a force  lb ? ft 1.356 N ? m
 lb ? in. 0.1130 N ? m
Moment of inertia
 Of an area  in4 0.4162 3 106 mm4

 Of a mass  lb ? ft ? s2 1.356 kg ? m2

Power  ft ? lb/s 1.356 W
 hp 745.7 W
Pressure or stress lb/ft2 47.88 Pa
 lb/in2 (psi) 6.895 kPa
Velocity ft/s 0.3048 m/s
 in./s 0.0254 m/s
 mi/h (mph) 0.4470 m/s
 mi/h (mph) 1.609 km/h
Volume, solids ft3 0.02832 m3

 in3 16.39 cm3

 Liquids gal 3.785 L
 qt 0.9464 L
Work  ft ? lb 1.356 J

SI Prefixes

Multiplication Factor  Prefix † Symbol

  1 000 000 000 000 5 1012 tera T
  1 000 000 000 5 109 giga G
  1 000 000 5 106 mega M
  1 000 5 103 kilo k
  100 5 102 hecto‡ h
  10 5 101 deka ‡ da
  0.1 5 1021 deci ‡ d
  0.01 5 1022 centi ‡ c
  0.001 5 1023 milli m
  0.000 001 5 1026 micro  m
  0.000 000 001 5 1029 nano n
  0.000 000 000 001 5 10212 pico p
  0.000 000 000 000 001 5 10215 femto f
  0.000 000 000 000 000 001 5 10218 atto a

† The first syllable of every prefix is accented so that the prefix will retain its identity. 
Thus, the preferred pronunciation of kilometer places the accent on the first syllable, not 
the  second.

‡ The use of these prefixes should be avoided, except for the measurement of areas and vol-
umes and for the nontechnical use of centimeter, as for body and clothing measurements.

Principal SI Units Used in Mechanics

Quantity Unit Symbol Formula

Acceleration  Meter per second squared p  m/s2

Angle Radian rad  †
Angular acceleration Radian per second squared p  rad/s2

Angular velocity Radian per second p rad/s
Area Square meter p  m2

Density Kilogram per cubic meter p  kg/m3

Energy Joule J   N ? m
Force Newton N  kg ? m/s2

Frequency Hertz Hz  s21

Impulse Newton-second p kg ? m/s
Length Meter m ‡ 
Mass Kilogram kg ‡ 
Moment of a force Newton-meter p  N ? m 
Power Watt W J/s
Pressure Pascal Pa  N/m2

Stress Pascal Pa N/m2

Time Second s ‡ 
Velocity Meter per second p m/s
Volume, solids Cubic meter p m3

 Liquids Liter L 1023 m3

Work Joule J N ? m 

† Supplementary unit (1 revolution  5 2p rad 5 3608).
 ‡ Base unit.
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About the Authors

As publishers of the books written by Ferd Beer and Russ John-
ston, we are often asked how did they happen to write the books 
together, with one of them at Lehigh and the other at the University 
of Connecticut.
 The answer to this question is simple. Russ Johnston’s first teach-
ing appointment was in the Department of Civil Engineering and Me-
chanics at Lehigh University. There he met Ferd Beer, who had joined 
that department two years earlier and was in charge of the courses in 
mechanics. Born in France and educated in France and Switzerland 
(he held an M.S. degree from the Sorbonne and an Sc.D. degree in the 
field of theoretical mechanics from the University of Geneva), Ferd 
had come to the United States after serving in the French army during 
the early part of World War II and had taught for four years at Williams 
College in the Williams-MIT joint arts and engineering program. Born 
in Philadelphia, Russ had obtained a B.S. degree in civil engineering 
from the University of Delaware and an Sc.D. degree in the field of 
structural engineering from MIT.
 Ferd was delighted to discover that the young man who had 
been hired chiefly to teach graduate structural engineering courses 
was not only willing but eager to help him reorganize the mechanics 
courses. Both believed that these courses should be taught from a few 
basic principles and that the various concepts involved would be best 
understood and remembered by the students if they were presented 
to them in a graphic way. Together they wrote lecture notes in statics 
and dynamics, to which they later added problems they felt would 
appeal to future engineers, and soon they produced the manuscript 
of the first edition of Mechanics for Engineers. The second edition of 
Mechanics for Engineers and the first edition of Vector Mechanics for 
Engineers found Russ Johnston at Worcester Polytechnic Institute and 
the next editions at the University of Connecticut. In the meantime, 
both Ferd and Russ had assumed administrative responsibilities in 
their departments, and both were involved in research, consulting, 
and supervising graduate students—Ferd in the area of stochastic pro-
cesses and  random vibrations, and Russ in the area of elastic stability 
and structural analysis and design. However, their interest in improv-
ing the teaching of the basic mechanics courses had not subsided, and 
they both taught sections of these courses as they kept revising their 
texts and began writing together the manuscript of the first edition of 
Mechanics of Materials.
 Ferd and Russ’s contributions to engineering education earned 
them a number of honors and awards. They were presented with the 
Western Electric Fund Award for excellence in the instruction of en-
gineering students by their respective regional sections of the Ameri-
can Society for Engineering Education, and they both received the 
Distinguished Educator Award from the Mechanics Division of the 

v

bee80288_fm_i-xx_1.indd Page v  11/19/10  7:20:17 PM user-f499bee80288_fm_i-xx_1.indd Page v  11/19/10  7:20:17 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/fm/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/fm
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gineering degree by Lehigh University.
 John T. DeWolf, Professor of Civil Engineering at the University 
of Connecticut, joined the Beer and Johnston team as an author on 
the second edition of Mechanics of Materials. John holds a B.S. de-
gree in civil engineering from the University of Hawaii and M.E. and 
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 Engineering and a member of the Connecticut Board of Professional 
Engineers. He was selected as the University of Connecticut Teaching 
 Fellow in 2006.
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Preface

OBJECTIVES
The main objective of a basic mechanics course should be to develop 
in the engineering student the ability to analyze a given problem in 
a simple and logical manner and to apply to its solution a few fun-
damental and well-understood principles. This text is designed for 
the first course in mechanics of materials—or strength of materials—
offered to engineering students in the sophomore or junior year. The 
authors hope that it will help instructors achieve this goal in that 
particular course in the same way that their other texts may have 
helped them in statics and dynamics.

GENERAL APPROACH
In this text the study of the mechanics of materials is based on the 
understanding of a few basic concepts and on the use of simplified 
models. This approach makes it possible to develop all the necessary 
formulas in a rational and logical manner, and to clearly indicate the 
conditions under which they can be safely applied to the analysis and 
design of actual engineering structures and machine components.

Free-body Diagrams Are Used Extensively. Throughout the 
text free-body diagrams are used to determine external or internal 
forces. The use of “picture equations” will also help the students 
understand the superposition of loadings and the resulting stresses 
and deformations.

Design Concepts Are Discussed Throughout the Text When-
ever Appropriate. A discussion of the application of the factor 
of safety to design can be found in Chap. 1, where the concepts of 
both allowable stress design and load and resistance factor design are 
presented.

A Careful Balance Between SI and U.S. Customary Units Is 
Consistently Maintained. Because it is essential that students be 
able to handle effectively both SI metric units and U.S. customary 
units, half the examples, sample problems, and problems to be 
assigned have been stated in SI units and half in U.S. customary 
units. Since a large number of problems are available, instructors can 
assign problems using each system of units in whatever proportion 
they find most desirable for their class.

Optional Sections Offer Advanced or Specialty Topics. Topics 
such as residual stresses, torsion of noncircular and thin-walled mem-
bers, bending of curved beams, shearing stresses in non-symmetrical 

xii
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xiiimembers, and failure criteria, have been included in optional sec-
tions for use in courses of varying emphases. To preserve the integ-
rity of the subject, these topics are presented in the proper 
sequence, wherever they logically belong. Thus, even when not 
covered in the course, they are highly visible and can be easily 
referred to by the students if needed in a later course or in engi-
neering practice. For convenience all optional sections have been 
indicated by asterisks.

CHAPTER ORGANIZATION
It is expected that students using this text will have completed a 
course in statics. However, Chap. 1 is designed to provide them with 
an opportunity to review the concepts learned in that course, while 
shear and bending-moment diagrams are covered in detail in Secs. 
5.2 and 5.3. The properties of moments and centroids of areas are 
described in Appendix A; this material can be used to reinforce the 
discussion of the determination of normal and shearing stresses in 
beams (Chaps. 4, 5, and 6).
 The first four chapters of the text are devoted to the analysis 
of the stresses and of the corresponding deformations in various 
structural members, considering successively axial loading, torsion, 
and pure bending. Each analysis is based on a few basic concepts, 
namely, the conditions of equilibrium of the forces exerted on the 
member, the relations existing between stress and strain in the mate-
rial, and the conditions imposed by the supports and loading of the 
member. The study of each type of loading is complemented by a 
large number of examples, sample problems, and problems to be 
assigned, all designed to strengthen the students’ understanding of 
the subject.
 The concept of stress at a point is introduced in Chap. 1, where 
it is shown that an axial load can produce shearing stresses as well 
as normal stresses, depending upon the section considered. The fact 
that stresses depend upon the orientation of the surface on which 
they are computed is emphasized again in Chaps. 3 and 4 in the 
cases of torsion and pure bending. However, the discussion of com-
putational techniques—such as Mohr’s circle—used for the transfor-
mation of stress at a point is delayed until Chap. 7, after students 
have had the opportunity to solve problems involving a combination 
of the basic loadings and have discovered for themselves the need 
for such techniques.
 The discussion in Chap. 2 of the relation between stress and 
strain in various materials includes fiber-reinforced composite mate-
rials. Also, the study of beams under transverse loads is covered in 
two separate chapters. Chapter 5 is devoted to the determination of 
the normal stresses in a beam and to the design of beams based 
on the allowable normal stress in the material used (Sec. 5.4). The 
chapter begins with a discussion of the shear and bending-moment 
diagrams (Secs. 5.2 and 5.3) and includes an optional section on the 
use of singularity functions for the determination of the shear and 
bending moment in a beam (Sec. 5.5). The chapter ends with an 
optional section on nonprismatic beams (Sec. 5.6).
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 Chapter 6 is devoted to the determination of shearing stresses 
in beams and thin-walled members under transverse loadings. The 
formula for the shear flow, q 5 VQyI, is derived in the traditional 
way. More advanced aspects of the design of beams, such as the 
determination of the principal stresses at the junction of the flange 
and web of a W-beam, are in Chap. 8, an optional chapter that may 
be covered after the transformations of stresses have been discussed 
in Chap. 7. The design of transmission shafts is in that chapter for 
the same reason, as well as the determination of stresses under com-
bined loadings that can now include the determination of the prin-
cipal stresses, principal planes, and maximum shearing stress at a 
given point.
 Statically indeterminate problems are first discussed in Chap. 2 
and considered throughout the text for the various loading conditions 
encountered. Thus, students are presented at an early stage with a 
method of solution that combines the analysis of deformations with 
the conventional analysis of forces used in statics. In this way, they 
will have become thoroughly familiar with this fundamental method 
by the end of the course. In addition, this approach helps the stu-
dents realize that stresses themselves are statically indeterminate and 
can be computed only by considering the corresponding distribution 
of strains.
 The concept of plastic deformation is introduced in Chap. 2, 
where it is applied to the analysis of members under axial loading. 
Problems involving the plastic deformation of circular shafts and of 
prismatic beams are also considered in optional sections of Chaps. 3, 
4, and 6. While some of this material can be omitted at the choice 
of the instructor, its inclusion in the body of the text will help stu-
dents realize the limitations of the assumption of a linear stress-strain 
relation and serve to caution them against the inappropriate use of 
the elastic torsion and flexure formulas.
 The determination of the deflection of beams is discussed in 
Chap. 9. The first part of the chapter is devoted to the integration 
method and to the method of superposition, with an optional section 
(Sec. 9.6) based on the use of singularity functions. (This section 
should be used only if Sec. 5.5 was covered earlier.) The second part 
of Chap. 9 is optional. It presents the moment-area method in two 
lessons.
 Chapter 10 is devoted to columns and contains material on the 
design of steel, aluminum, and wood columns. Chapter 11 covers 
energy methods, including Castigliano’s theorem.

PEDAGOGICAL FEATURES
Each chapter begins with an introductory section setting the purpose 
and goals of the chapter and describing in simple terms the material 
to be covered and its application to the solution of engineering 
problems.

Chapter Lessons. The body of the text has been divided into 
units, each consisting of one or several theory sections followed by 
sample problems and a large number of problems to be assigned. 
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xvEach unit corresponds to a well-defined topic and generally can be 
covered in one lesson.

Examples and Sample Problems. The theory sections include 
many examples designed to illustrate the material being presented 
and facilitate its understanding. The sample problems are intended 
to show some of the applications of the theory to the solution of 
engineering problems. Since they have been set up in much the same 
form that students will use in solving the assigned problems, the 
sample problems serve the double purpose of amplifying the text and 
demonstrating the type of neat and orderly work that students should 
cultivate in their own solutions.

Homework Problem Sets. Most of the problems are of a practi-
cal nature and should appeal to engineering students. They are pri-
marily designed, however, to illustrate the material presented in the 
text and help the students understand the basic principles used in 
mechanics of materials. The problems have been grouped according 
to the portions of material they illustrate and have been arranged in 
order of increasing difficulty. Problems requiring special attention 
have been indicated by asterisks. Answers to problems are given at 
the end of the book, except for those with a number set in italics.

Chapter Review and Summary. Each chapter ends with a 
review and summary of the material covered in the chapter. Notes 
in the margin have been included to help the students organize their 
review work, and cross references provided to help them find the 
portions of material requiring their special attention.

Review Problems. A set of review problems is included at the end 
of each chapter. These problems provide students further opportunity 
to apply the most important concepts introduced in the chapter.

Computer Problems. Computers make it possible for engineering 
students to solve a great number of challenging problems. A group 
of six or more problems designed to be solved with a computer can 
be found at the end of each chapter. These problems can be solved 
using any computer language that provides a basis for analytical cal-
culations. Developing the algorithm required to solve a given problem 
will benefit the students in two different ways: (1) it will help them 
gain a better understanding of the mechanics principles involved; 
(2) it will provide them with an opportunity to apply the skills acquired 
in their computer programming course to the solution of a meaning-
ful engineering problem. These problems can be solved using any 
computer language that provide a basis for analytical calculations.

Fundamentals of Engineering Examination. Engineers who 
seek to be licensed as Professional Engineers must take two exams. 
The first exam, the Fundamentals of Engineering Examination, 
includes subject material from Mechanics of Materials. Appendix E 
lists the topics in Mechanics of Materials that are covered in this exam 
along with problems that can be solved to review this material.
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SUPPLEMENTAL RESOURCES
Instructor’s Solutions Manual. The Instructor’s and Solutions 
Manual that accompanies the sixth edition continues the tradition of 
exceptional accuracy and keeping solutions contained to a single page 
for easier reference. The manual also features tables designed to assist 
instructors in creating a schedule of assignments for their courses. 
The various topics covered in the text are listed in Table I, and a 
suggested number of periods to be spent on each topic is indicated. 
Table II provides a brief description of all groups of problems and a 
classification of the problems in each group according to the units 
used. Sample lesson schedules are also found within the manual.

MCGRAW-HILL CONNECT ENGINEERING
McGraw-Hill Connect EngineeringTM is a web-based assignment and 
assessment platform that gives students the means to better connect 
with their coursework, with their instructors, and with the important 
concepts that they will need to know for success now and in the 
future. With Connect Engineering, instructors can deliver assign-
ments, quizzes, and tests easily online. Students can practice impor-
tant skills at their own pace and on their own schedule. With Connect 
Engineering Plus, students also get 24/7 online access to an eBook—
an online edition of the text—to aid them in successfully completing 
their work, wherever and whenever they choose.
 Connect Engineering for Mechanics of Materials is available at 
www.mcgrawhillconnect.com

McGRAW-HILL CREATE™

Craft your teaching resources to match the way you teach! With 
McGraw-Hill CreateTM, www.mcgrawhillcreate.com, you can easily 
rearrange chapters, combine material from other content sources, and 
quickly upload content you have written like your course syllabus or 
teaching notes. Arrange your book to fit your teaching style. Create 
even allows you to personalize your book’s appearance by selecting 
the cover and adding your name, school, and course information. 
Order a Create book and you’ll receive a complimentary print review 
copy in 3–5 business days or a complimentary electronic review copy 
(eComp) via email in minutes. Go to www.mcgrawhillcreate.com 
today and register to experience how McGraw-Hill Create empowers 
you to teach your students your way.
 McGraw-Hill Higher Education and Blackboard® have 
teamed up.
 Blackboard, the Web-based course-management system, has 
partnered with McGraw-Hill to better allow students and faculty to 
use online materials and activities to complement face-to-face teach-
ing. Blackboard features exciting social learning and teaching tools 
that foster more logical, visually impactful and active learning oppor-
tunities for students. You’ll transform your closed-door classrooms 
into communities where students remain connected to their educa-
tional experience 24 hours a day.
 This partnership allows you and your students access to 
McGraw-Hill’s Connect and Create right from within your Black-
board course—all with one single sign-on.  
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xvii Not only do you get single sign-on with Connect and Create, you 
also get deep integration of McGraw-Hill content and content engines 
right in Blackboard.  Whether you’re choosing a book for your course 
or building Connect assignments, all the tools you need are right 
where you want them—inside of Blackboard.
 Gradebooks are now seamless. When a student completes an 
integrated Connect assignment, the grade for that assignment auto-
matically (and instantly) feeds your Blackboard grade center.
 McGraw-Hill and Blackboard can now offer you easy access to 
industry leading technology and content, whether your campus hosts 
it, or we do.  Be sure to ask your local McGraw-Hill representative 
for details.

ADDITIONAL ONLINE RESOURCES
Mechanics of Materials 6e also features a companion website (www.
mhhe.com/beerjohnston) for instructors. Included on the website are 
lecture PowerPoints, an image library, and animations. Via the website, 
instructors can also request access to C.O.S.M.O.S., a complete online 
solutions manual organization system that allows instructors to create 
custom homework, quizzes, and tests using end-of-chapter problems 
from the text. For access to this material, contact your sales representa-
tive for a user name and password.

Hands-On Mechanics. Hands-On Mechanics is a website 
designed for instructors who are interested in incorporating three-
dimensional, hands-on teaching aids into their lectures. Developed 
through a partnership between McGraw-Hill and the Department 
of Civil and Mechanical Engineering at the United States Military 
Academy at West Point, this website not only provides detailed 
instructions for how to build 3-D teaching tools using materials 
found in any lab or local hardware store but also provides a com-
munity where educators can share ideas, trade best practices, and 
submit their own demonstrations for posting on the site. Visit www.
handsonmechanics.com to see how you can put this to use in your 
classroom.
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 a Constant; distance
 A, B, C, . . . Forces; reactions
 A, B, C, . . . Points
 A, A Area
 b Distance; width
 c Constant; distance; radius
 C Centroid
 C1, C2, . . . Constants of integration
 CP Column stability factor
 d Distance; diameter; depth
 D Diameter
 e Distance; eccentricity; dilatation
 E Modulus of elasticity
 f Frequency; function
 F Force
 F.S. Factor of safety
 G Modulus of rigidity; shear modulus
 h Distance; height
 H Force
 H, J, K Points
 I, Ix, . . . Moment of inertia
 Ixy, . . . Product of inertia
 J Polar moment of inertia
 k Spring constant; shape factor; bulk modulus; 

constant
 K Stress concentration factor; torsional spring constant
 l Length; span
 L Length; span
 Le Effective length
 m Mass
 M Couple
 M, Mx, . . . Bending moment
 MD Bending moment, dead load (LRFD)
 ML Bending moment, live load (LRFD)
 MU Bending moment, ultimate load (LRFD)
 n Number; ratio of moduli of elasticity; normal 

direction
 p Pressure
 P Force; concentrated load
 PD Dead load (LRFD)
 PL Live load (LRFD)
 PU Ultimate load (LRFD)
 q Shearing force per unit length; shear flow
 Q Force
 Q First moment of area

List of Symbols
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xix r Radius; radius of gyration
 R Force; reaction
 R Radius; modulus of rupture
 s Length
 S Elastic section modulus
 t Thickness; distance; tangential deviation
 T Torque
 T Temperature
 u, v Rectangular coordinates
 u Strain-energy density
 U Strain energy; work
 v Velocity
 V Shearing force
 V Volume; shear
 w Width; distance; load per unit length
 W, W Weight, load
 x, y, z Rectangular coordinates; distance; displacements; 

deflections
 x, y, z Coordinates of centroid
 Z Plastic section modulus
 a, b, g Angles
 a Coefficient of thermal expansion; influence 

coefficient
 g Shearing strain; specific weight
 gD Load factor, dead load (LRFD)
 gL Load factor, live load (LRFD)
 d Deformation; displacement
 e Normal strain
 u Angle; slope
 l Direction cosine
 n Poisson’s ratio
 r Radius of curvature; distance; density
 s Normal stress
 t Shearing stress
 f Angle; angle of twist; resistance factor
 v Angular velocity

List of Symbols
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This chapter is devoted to the study of 

the stresses occurring in many of the 

elements contained in these excavators, 

such as two-force members, axles, 

bolts, and pins.

2
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Chapter 1 Introduction—Concept 
of Stress

 1.1 Introduction
 1.2 A Short Review of the Methods 

of Statics
 1.3 Stresses in the Members of a 

Structure
 1.4 Analysis and Design
 1.5 Axial Loading; Normal Stress
 1.6 Shearing Stress
 1.7 Bearing Stress in Connections
 1.8 Application to the Analysis and 

Design of Simple Structures
 1.9 Method of Problem Solution
 1.10 Numerical Accuracy
 1.11 Stress on an Oblique Plane

Under Axial Loading
 1.12 Stress Under General Loading 

Conditions; Components of Stress
 1.13 Design Considerations

1.1 INTRODUCTION
The main objective of the study of the mechanics of materials is to 
provide the future engineer with the means of analyzing and design-
ing various machines and load-bearing structures.
 Both the analysis and the design of a given structure involve 
the determination of stresses and deformations. This first chapter is 
devoted to the concept of stress.
 Section 1.2 is devoted to a short review of the basic methods of 
statics and to their application to the determination of the forces in the 
members of a simple structure consisting of pin-connected members. 
Section 1.3 will introduce you to the concept of stress in a member of 
a structure, and you will be shown how that stress can be determined 
from the force in the member. After a short discussion of engineering 
analysis and design (Sec. 1.4), you will consider successively the normal 
stresses in a member under axial loading (Sec. 1.5), the shearing stresses 
caused by the application of equal and opposite transverse forces 
(Sec. 1.6), and the bearing stresses created by bolts and pins in the 
members they connect (Sec. 1.7). These various concepts will be 
applied in Sec. 1.8 to the determination of the stresses in the members 
of the simple structure considered earlier in Sec. 1.2.
 The first part of the chapter ends with a description of the 
method you should use in the solution of an assigned problem (Sec. 
1.9) and with a discussion of the numerical accuracy appropriate in 
engineering calculations (Sec. 1.10).
 In Sec. 1.11, where a two-force member under axial loading is 
considered again, it will be observed that the stresses on an oblique 
plane include both normal and shearing stresses, while in Sec. 1.12 you 
will note that six components are required to describe the state of stress 
at a point in a body under the most general loading conditions.
 Finally, Sec. 1.13 will be devoted to the determination from 
test specimens of the ultimate strength of a given material and to 
the use of a factor of safety in the computation of the allowable load 
for a structural component made of that material.

1.2 A SHORT REVIEW OF THE METHODS OF STATICS
In this section you will review the basic methods of statics while 
determining the forces in the members of a simple structure.
 Consider the structure shown in Fig. 1.1, which was designed 
to support a 30-kN load. It consists of a boom AB with a 30 3 50-mm 
rectangular cross section and of a rod BC with a 20-mm-diameter 
circular cross section. The boom and the rod are connected by a pin 
at B and are supported by pins and brackets at A and C, respectively. 
Our first step should be to draw a free-body diagram of the structure 
by detaching it from its supports at A and C, and showing the reac-
tions that these supports exert on the structure (Fig. 1.2). Note that 
the sketch of the structure has been simplified by omitting all unnec-
essary details. Many of you may have recognized at this point that 
AB and BC are two-force members. For those of you who have not, 
we will pursue our analysis, ignoring that fact and assuming that the 
directions of the reactions at A and C are unknown. Each of these 
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5

reactions, therefore, will be represented by two components, Ax and 
Ay at A, and Cx and Cy at C. We write the following three equilib-
rium equations:

 1l o MC 5 0:  Ax10.6 m2 2 130 kN2 10.8 m2 5 0
 Ax 5 140 kN (1.1)
y
1  o Fx 5 0: Ax 1 Cx 5 0
 Cx 5 2Ax    Cx 5 240 kN (1.2)
1x o Fy 5 0: Ay 1 Cy 2 30 kN 5 0
 Ay 1 Cy 5 130 kN (1.3)

We have found two of the four unknowns, but cannot determine the 
other two from these equations, and no additional independent 
equation can be obtained from the free-body diagram of the struc-
ture. We must now dismember the structure. Considering the free-
body diagram of the boom AB (Fig. 1.3), we write the following 
equilibrium equation:

1l o MB 5 0: 2Ay10.8 m2 5 0    Ay 5 0 (1.4)

Substituting for Ay from (1.4) into (1.3), we obtain Cy 5 130 kN. 
Expressing the results obtained for the reactions at A and C in vector 
form, we have

A 5 40 kNy     Cx 5 40 kNz , Cy 5 30 kNx

We note that the reaction at A is directed along the axis of the boom 
AB and causes compression in that member. Observing that the com-
ponents Cx and Cy of the reaction at C are, respectively, proportional 
to the horizontal and vertical components of the distance from B to 
C, we conclude that the reaction at C is equal to 50 kN, is directed 
along the axis of the rod BC, and causes tension in that member.

800 mm

50 mm

30 kN

600 mm

d � 20 mm

C

A

B

Fig. 1.1 Boom used to support a 30-kN load.

Fig. 1.2

30 kN

0.8 m

0.6 m

B

Cx

Cy

Ay

C

AAx

Fig. 1.3

30 kN

0.8 m

Ay By

A BAx Bz
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 These results could have been anticipated by recognizing that 
AB and BC are two-force members, i.e., members that are sub-
jected to forces at only two points, these points being A and B for 
member AB, and B and C for member BC. Indeed, for a two-force 
member the lines of action of the resultants of the forces acting at 
each of the two points are equal and opposite and pass through 
both points. Using this property, we could have obtained a simpler 
solution by considering the free-body diagram of pin B. The forces 
on pin B are the forces FAB and FBC exerted, respectively, by mem-
bers AB and BC, and the 30-kN load (Fig. 1.4a). We can express 
that pin B is in equilibrium by drawing the corresponding force 
triangle (Fig. 1.4b).
 Since the force FBC is directed along member BC, its slope is 
the same as that of BC, namely, 3/4. We can, therefore, write the 
proportion

FAB

4
5

FBC

5
5

30 kN
3

from which we obtain

FAB 5 40 kN  FBC 5 50 kN

The forces F9AB and F9BC exerted by pin B, respectively, on boom AB 
and rod BC are equal and opposite to FAB and FBC (Fig. 1.5).

 Knowing the forces at the ends of each of the members, we 
can now determine the internal forces in these members. Passing 
a section at some arbitrary point D of rod BC, we obtain two por-
tions BD and CD (Fig. 1.6). Since 50-kN forces must be applied 
at D to both portions of the rod to keep them in equilibrium, we 
conclude that an internal force of 50 kN is produced in rod BC 
when a 30-kN load is applied at B. We further check from the 
directions of the forces FBC and F9BC in Fig. 1.6 that the rod is 
in tension. A similar procedure would enable us to determine that 
the internal force in boom AB is 40 kN and that the boom is in 
compression.

Fig. 1.4

(a) (b)

FBC
FBC

FAB FAB

30 kN

30 kN

3
5

4
B

Fig. 1.5

FAB F'AB

FBC

F'BCB

A B

C

Fig. 1.6

C

D

B

D

FBC

FBC F'BC

F'BC
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71.3 STRESSES IN THE MEMBERS OF A STRUCTURE
While the results obtained in the preceding section represent a first 
and necessary step in the analysis of the given structure, they do not 
tell us whether the given load can be safely supported. Whether rod 
BC, for example, will break or not under this loading depends not 
only upon the value found for the internal force FBC, but also upon 
the cross-sectional area of the rod and the material of which the rod 
is made. Indeed, the internal force FBC actually represents the resul-
tant of elementary forces distributed over the entire area A of the 
cross section (Fig. 1.7) and the average intensity of these distributed 
forces is equal to the force per unit area, FBCyA, in the section. 
Whether or not the rod will break under the given loading clearly 
depends upon the ability of the material to withstand the corre-
sponding value FBCyA of the intensity of the distributed internal 
forces. It thus depends upon the force FBC, the cross-sectional area 
A, and the material of the rod.
 The force per unit area, or intensity of the forces distributed 
over a given section, is called the stress on that section and is 
denoted by the Greek letter s (sigma). The stress in a member of 
cross-sectional area A subjected to an axial load P (Fig. 1.8) is 
therefore obtained by dividing the magnitude P of the load by the 
area A:

 
s 5

P
A 

(1.5)

A positive sign will be used to indicate a tensile stress (member in 
tension) and a negative sign to indicate a compressive stress (mem-
ber in compression).
 Since SI metric units are used in this discussion, with P ex-
pressed in newtons (N) and A in square meters (m2), the stress s 
will be expressed in N/m2. This unit is called a pascal (Pa). How-
ever, one finds that the pascal is an exceedingly small quantity and 
that, in practice, multiples of this unit must be used, namely, the 
kilopascal (kPa), the megapascal (MPa), and the gigapascal (GPa). 
We have

 1 kPa 5 103 Pa 5 103 N/m2

 1 MPa 5 106 Pa 5 106 N/m2

 1 GPa 5 109 Pa 5 109 N/m2

 When U.S. customary units are used, the force P is usually 
expressed in pounds (lb) or kilopounds (kip), and the cross-sectional 
area A in square inches (in2). The stress s will then be expressed in 
pounds per square inch (psi) or kilopounds per square inch (ksi).†

†The principal SI and U.S. customary units used in mechanics are listed in tables inside 
the front cover of this book. From the table on the right-hand side, we note that 1 psi is 
approximately equal to 7 kPa, and 1 ksi approximately equal to 7 MPa.

Fig. 1.7

A

FBCFBC A� �

Fig. 1.8 Member with an axial load.

(a) (b)

A

P
A

P' P'

P

� �

1.3 Stresses in the Members of a Structure
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1.4 ANALYSIS AND DESIGN
Considering again the structure of Fig. 1.1, let us assume that rod BC 
is made of a steel with a maximum allowable stress sall 5 165 MPa. 
Can rod BC safely support the load to which it will be subjected? The 
magnitude of the force FBC in the rod was found earlier to be 50 kN. 
Recalling that the diameter of the rod is 20 mm, we use Eq. (1.5) to 
determine the stress created in the rod by the given loading. We 
have

 P 5 FBC 5 150 kN 5 150 3 103 N

 A 5 pr2 5 pa20 mm
2
b2

5 p110 3 1023 m22 5 314 3 1026 m2

 s 5
P
A

5
150 3 103 N

314 3 1026 m2 5 1159 3 106 Pa 5 1159 MPa

Since the value obtained for s is smaller than the value sall of the 
allowable stress in the steel used, we conclude that rod BC can safely 
support the load to which it will be subjected. To be complete, our 
analysis of the given structure should also include the determination 
of the compressive stress in boom AB, as well as an investigation of 
the stresses produced in the pins and their bearings. This will be 
discussed later in this chapter. We should also determine whether 
the deformations produced by the given loading are acceptable. The 
study of deformations under axial loads will be the subject of Chap. 2. 
An additional consideration required for members in compression 
involves the stability of the member, i.e., its ability to support a given 
load without experiencing a sudden change in configuration. This 
will be discussed in Chap. 10.
 The engineer’s role is not limited to the analysis of existing 
structures and machines subjected to given loading conditions. Of 
even greater importance to the engineer is the design of new struc-
tures and machines, that is, the selection of appropriate components 
to perform a given task. As an example of design, let us return to 
the structure of Fig. 1.1, and assume that aluminum with an allow-
able stress sall 5 100 MPa is to be used. Since the force in rod BC 
will still be P 5 FBC 5 50 kN under the given loading, we must have, 
from Eq. (1.5),

sall 5
P
A
    A 5

P
sall

5
50 3 103 N

100 3 106 Pa
5 500 3 1026 m2

and, since A 5 pr2,

r 5 B
A
p

5 B
500 3 1026 m2

p
5 12.62 3 1023 m 5 12.62 mm

d 5 2r 5 25.2 mm

We conclude that an aluminum rod 26 mm or more in diameter will 
be adequate.

8 Introduction—Concept of Stress
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91.5 AXIAL LOADING; NORMAL STRESS
As we have already indicated, rod BC of the example considered in 
the preceding section is a two-force member and, therefore, the 
forces FBC and F9BC acting on its ends B and C (Fig. 1.5) are directed 
along the axis of the rod. We say that the rod is under axial loading. 
An actual example of structural members under axial loading is pro-
vided by the members of the bridge truss shown in Photo 1.1.

 Returning to rod BC of Fig. 1.5, we recall that the section we 
passed through the rod to determine the internal force in the rod 
and the corresponding stress was perpendicular to the axis of the 
rod; the internal force was therefore normal to the plane of the sec-
tion (Fig. 1.7) and the corresponding stress is described as a normal 
stress. Thus, formula (1.5) gives us the normal stress in a member 
under axial loading:

 
s 5

P
A 

(1.5)

 We should also note that, in formula (1.5), s is obtained by 
dividing the magnitude P of the resultant of the internal forces dis-
tributed over the cross section by the area A of the cross section; it 
represents, therefore, the average value of the stress over the cross 
section, rather than the stress at a specific point of the cross section.
 To define the stress at a given point Q of the cross section, we 
should consider a small area DA (Fig. 1.9). Dividing the magnitude 
of DF by DA, we obtain the average value of the stress over DA. 
Letting DA approach zero, we obtain the stress at point Q:

 
s 5 lim

¢Ay0
 
¢F
¢A 

(1.6)

Photo 1.1 This bridge truss consists of two-force members that may be in 
tension or in compression.

Fig. 1.9

P'

Q

�A

�F

1.5 Axial Loading; Normal Stress
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10 Introduction—Concept of Stress  In general, the value obtained for the stress s at a given point 
Q of the section is different from the value of the average stress 
given by formula (1.5), and s is found to vary across the section. 
In a slender rod subjected to equal and opposite concentrated loads 
P and P9 (Fig. 1.10a), this variation is small in a section away from 
the points of application of the concentrated loads (Fig. 1.10c), but 
it is quite noticeable in the neighborhood of these points (Fig. 
1.10b and d).
 It follows from Eq. (1.6) that the magnitude of the resultant of 
the distributed internal forces is

#dF 5 #
A

s dA

But the conditions of equilibrium of each of the portions of rod 
shown in Fig. 1.10 require that this magnitude be equal to the mag-
nitude P of the concentrated loads. We have, therefore,

 
P 5 #dF 5 #

A

s dA
 

(1.7)

which means that the volume under each of the stress surfaces in 
Fig. 1.10 must be equal to the magnitude P of the loads. This, how-
ever, is the only information that we can derive from our knowledge 
of statics, regarding the distribution of normal stresses in the various 
sections of the rod. The actual distribution of stresses in any given 
section is statically indeterminate. To learn more about this distribu-
tion, it is necessary to consider the deformations resulting from the 
particular mode of application of the loads at the ends of the rod. 
This will be discussed further in Chap. 2.
 In practice, it will be assumed that the distribution of normal 
stresses in an axially loaded member is uniform, except in the imme-
diate vicinity of the points of application of the loads. The value s 
of the stress is then equal to save and can be obtained from formula 
(1.5). However, we should realize that, when we assume a uniform 
distribution of stresses in the section, i.e., when we assume that the 
internal forces are uniformly distributed across the section, it follows 
from elementary statics† that the resultant P of the internal forces 
must be applied at the centroid C of the section (Fig. 1.11). This 
means that a uniform distribution of stress is possible only if the line 
of action of the concentrated loads P and P9 passes through the cen-
troid of the section considered (Fig. 1.12). This type of loading is 
called centric loading and will be assumed to take place in all straight 
two-force members found in trusses and pin-connected structures, 
such as the one considered in Fig. 1.1. However, if a two-force mem-
ber is loaded axially, but eccentrically as shown in Fig. 1.13a, we find 
from the conditions of equilibrium of the portion of member shown 
in Fig. 1.13b that the internal forces in a given section must be 

†See Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed., 
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers, 9th ed., McGraw-Hill, 
New York, 2010, Secs. 5.2 and 5.3.

Fig. 1.10 Stress distributions at 
different sections along axially loaded 
member.

(a) (b) (c) (d)

P' P' P' P'

P

�

�

�

Fig. 1.11

C

� P

bee80288_ch01_002-051.indd Page 10  9/4/10  5:33:26 PM user-f499bee80288_ch01_002-051.indd Page 10  9/4/10  5:33:26 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch01/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch01



11

equivalent to a force P applied at the centroid of the section and a 
couple M of moment M 5 Pd. The distribution of forces—and, thus, 
the corresponding distribution of stresses—cannot be uniform. Nor 
can the distribution of stresses be symmetric as shown in Fig. 1.10. 
This point will be discussed in detail in Chap. 4.

1.6 SHEARING STRESS
The internal forces and the corresponding stresses discussed in Secs. 
1.2 and 1.3 were normal to the section considered. A very different 
type of stress is obtained when transverse forces P and P9 are applied 
to a member AB (Fig. 1.14). Passing a section at C between the 
points of application of the two forces (Fig. 1.15a), we obtain the 
diagram of portion AC shown in Fig. 1.15b. We conclude that inter-
nal forces must exist in the plane of the section, and that their resul-
tant is equal to P. These elementary internal forces are called shearing 
forces, and the magnitude P of their resultant is the shear in the 
section. Dividing the shear P by the area A of the cross section, we 

Fig. 1.12

C

P

P'

Fig. 1.13 Eccentric axial loading.

MC
d

d

(a) (b)

P'P'

P

P

Fig. 1.14 Member with 
transverse loads.

A B

P'

P

Fig. 1.15

A C

A C

B

(a)

(b)

P

P

P�

P'

1.6 Shearing Stress
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12 Introduction—Concept of Stress obtain the average shearing stress in the section. Denoting the shear-
ing stress by the Greek letter t (tau), we write

 
tave 5

P
A 

(1.8)

 It should be emphasized that the value obtained is an average 
value of the shearing stress over the entire section. Contrary to what 
we said earlier for normal stresses, the distribution of shearing 
stresses across the section cannot be assumed uniform. As you will 
see in Chap. 6, the actual value t of the shearing stress varies from 
zero at the surface of the member to a maximum value tmax that may 
be much larger than the average value tave.

 Shearing stresses are commonly found in bolts, pins, and rivets 
used to connect various structural members and machine compo-
nents (Photo 1.2). Consider the two plates A and B, which are con-
nected by a bolt CD (Fig. 1.16). If the plates are subjected to tension 
forces of magnitude F, stresses will develop in the section of bolt 
corresponding to the plane EE9. Drawing the diagrams of the bolt 
and of the portion located above the plane EE9 (Fig. 1.17), we con-
clude that the shear P in the section is equal to F. The average 
shearing stress in the section is obtained, according to formula (1.8), 
by dividing the shear P 5 F by the area A of the cross section:

 
tave 5

P
A

5
F
A 

(1.9)

Photo 1.2 Cutaway view of a connection with a bolt in shear.

Fig. 1.16 Bolt subject to single shear.

C

D

A
F

E'B
E

F'

Fig. 1.17

C C

D

F

PE�E

(a) (b)

F

F'
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13

 The bolt we have just considered is said to be in single shear. 
Different loading situations may arise, however. For example, if 
splice plates C and D are used to connect plates A and B (Fig. 1.18), 
shear will take place in bolt HJ in each of the two planes KK9 and 
LL9 (and similarly in bolt EG). The bolts are said to be in double 
shear. To determine the average shearing stress in each plane, we 
draw free-body diagrams of bolt HJ and of the portion of bolt located 
between the two planes (Fig. 1.19). Observing that the shear P in 
each of the sections is P 5 Fy2, we conclude that the average shear-
ing stress is

 
tave 5

P
A

5
Fy2
A

5
F

2A 
(1.10)

1.7 BEARING STRESS IN CONNECTIONS
Bolts, pins, and rivets create stresses in the members they connect, 
along the bearing surface, or surface of contact. For example, con-
sider again the two plates A and B connected by a bolt CD that we 
have discussed in the preceding section (Fig. 1.16). The bolt exerts 
on plate A a force P equal and opposite to the force F exerted by 
the plate on the bolt (Fig. 1.20). The force P represents the resultant 
of elementary forces distributed on the inside surface of a half-
 cylinder of diameter d and of length t equal to the thickness of the 
plate. Since the distribution of these forces—and of the correspond-
ing stresses—is quite complicated, one uses in practice an average 
nominal value sb of the stress, called the bearing stress, obtained by 
dividing the load P by the area of the rectangle representing the 
projection of the bolt on the plate section (Fig. 1.21). Since this area 
is equal to td, where t is the plate thickness and d the diameter of 
the bolt, we have

 
sb 5

P
A

5
P
td 

(1.11)

1.8  APPLICATION TO THE ANALYSIS AND DESIGN 
OF SIMPLE STRUCTURES

We are now in a position to determine the stresses in the members 
and connections of various simple two-dimensional structures and, 
thus, to design such structures.

Fig. 1.19
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Fig. 1.18 Bolts subject to double shear.
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Fig. 1.20
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1.8 Application to the Analysis and
Design of Simple Structures
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14 Introduction—Concept of Stress  As an example, let us return to the structure of Fig. 1.1 that 
we have already considered in Sec. 1.2 and let us specify the supports 
and connections at A, B, and C. As shown in Fig. 1.22, the 20-mm-
diameter rod BC has flat ends of 20 3 40-mm rectangular cross 
section, while boom AB has a 30 3 50-mm rectangular cross section 
and is fitted with a clevis at end B. Both members are connected at 
B by a pin from which the 30-kN load is suspended by means of a 
U-shaped bracket. Boom AB is supported at A by a pin fitted into a 
double bracket, while rod BC is connected at C to a single bracket. 
All pins are 25 mm in diameter.

Fig. 1.22

800 mm

50 mm

Q � 30 kN Q � 30 kN

20 mm

20 mm

25 mm

30 mm

25 mm

d � 25 mm

d � 25 mm
d � 20 mm

d � 20 mm

d � 25 mm

40 mm

20 mm

A

A
B

B

B

C

C

B

FRONT VIEW

TOP  VIEW OF BOOM AB

END  VIEW

TOP VIEW OF ROD BCFlat end

Flat end

600 mm

a. Determination of the Normal Stress in Boom AB and 
Rod BC. As we found in Secs. 1.2 and 1.4, the force in rod BC is 
FBC 5 50 kN (tension) and the area of its circular cross section is 
A 5 314 3 1026 m2; the corresponding average normal stress is 
sBC 5 1159 MPa. However, the flat parts of the rod are also under 
tension and at the narrowest section, where a hole is located, we 
have

A 5 120 mm2 140 mm 2 25 mm2 5 300 3 1026 m2
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15The corresponding average value of the stress, therefore, is

1sBC2end 5
P
A

5
50 3 103 N

300 3 1026 m2 5 167 MPa

Note that this is an average value; close to the hole, the stress will 
actually reach a much larger value, as you will see in Sec. 2.18. It is 
clear that, under an increasing load, the rod will fail near one of the 
holes rather than in its cylindrical portion; its design, therefore, could 
be improved by increasing the width or the thickness of the flat ends 
of the rod.
 Turning now our attention to boom AB, we recall from Sec. 1.2 
that the force in the boom is FAB 5 40 kN (compression). Since the 
area of the boom’s rectangular cross section is A 5 30 mm 3 50 mm 5 
1.5 3 1023 m2, the average value of the normal stress in the main 
part of the rod, between pins A and B, is

sAB 5 2
40 3 103 N

1.5 3 1023 m2 5 226.7 3 106 Pa 5 226.7 MPa

Note that the sections of minimum area at A and B are not under 
stress, since the boom is in compression, and, therefore, pushes on 
the pins (instead of pulling on the pins as rod BC does).

b. Determination of the Shearing Stress in Various 
 Connec tions. To determine the shearing stress in a connection 
such as a bolt, pin, or rivet, we first clearly show the forces exerted 
by the various members it connects. Thus, in the case of pin C of 
our example (Fig. 1.23a), we draw Fig. 1.23b, showing the 50-kN 
force exerted by member BC on the pin, and the equal and opposite 
force exerted by the bracket. Drawing now the diagram of the  portion 
of the pin located below the plane DD9 where shearing stresses occur 
(Fig. 1.23c), we conclude that the shear in that plane is P 5 50 kN. 
Since the cross-sectional area of the pin is

A 5 pr2 5 pa25 mm
2
b2

5 p112.5 3 1023 m22 5 491 3 1026 m2

we find that the average value of the shearing stress in the pin at 
C is

tave 5
P
A

5
50 3 103 N

491 3 1026 m2 5 102 MPa

 Considering now the pin at A (Fig. 1.24), we note that it is in 
double shear. Drawing the free-body diagrams of the pin and of the 
portion of pin located between the planes DD9 and EE9 where shear-
ing stresses occur, we conclude that P 5 20 kN and that

tave 5
P
A

5
20 kN

491 3 1026 m2 5 40.7 MPa

Fig. 1.23

50 kN

50 kN

(a)

C

(b)

Fb
D'

D

d � 25 mm

50 kN

(c)

P

Fig. 1.24

(a)

(b)

40 kN

40 kN

Fb

Fb

A

D'

E'

D

E

d � 25 mm

(c)

40 kN
P

P

1.8 Application to the Analysis and 
Design of Simple Structures
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16 Introduction—Concept of Stress  Considering the pin at B (Fig. 1.25a), we note that the pin 
may be divided into five portions which are acted upon by forces 
exerted by the boom, rod, and bracket. Considering successively 
the portions DE (Fig. 1.25b) and DG (Fig. 1.25c), we conclude that 
the shear in section E is PE 5 15 kN, while the shear in section G 
is PG 5 25 kN. Since the loading of the pin is symmetric, we con-
clude that the maximum value of the shear in pin B is PG 5 25 kN, 
and that the largest shearing stresses occur in sections G and H, 
where

tave 5
PG

A
5

25 kN
491 3 1026 m2 5 50.9 MPa

c. Determination of the Bearing Stresses. To determine the 
nominal bearing stress at A in member AB, we use formula (1.11) 
of Sec. 1.7. From Fig. 1.22, we have t 5 30 mm and d 5 25 mm. 
Recalling that P 5 FAB 5 40 kN, we have

sb 5
P
td

5
40 kN

130 mm2 125 mm2 5 53.3 MPa

To obtain the bearing stress in the bracket at A, we use t 5 2(25 mm) 
5 50 mm and d 5 25 mm:

sb 5
P
td

5
40 kN

150 mm2 125 mm2 5 32.0 MPa

 The bearing stresses at B in member AB, at B and C in mem-
ber BC, and in the bracket at C are found in a similar way.

1.9 METHOD OF PROBLEM SOLUTION
You should approach a problem in mechanics of materials as you 
would approach an actual engineering situation. By drawing on your 
own experience and intuition, you will find it easier to understand 
and formulate the problem. Once the problem has been clearly 
stated, however, there is no place in its solution for your particular 
fancy. Your solution must be based on the fundamental principles of 
statics and on the principles you will learn in this course. Every step 
you take must be justified on that basis, leaving no room for your 
“intuition.” After an answer has been obtained, it should be checked. 
Here again, you may call upon your common sense and personal 
experience. If not completely satisfied with the result obtained, you 
should carefully check your formulation of the problem, the validity 
of the methods used in its solution, and the accuracy of your 
computations.
 The statement of the problem should be clear and precise. It 
should contain the given data and indicate what information is 
required. A simplified drawing showing all essential quantities 
involved should be included. The solution of most of the problems 
you will encounter will necessitate that you first determine the reac-
tions at supports and internal forces and couples. This will require 

Fig. 1.25
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(c)

1
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17the drawing of one or several free-body diagrams, as was done in 
Sec. 1.2, from which you will write equilibrium equations. These 
equations can be solved for the unknown forces, from which the 
required stresses and deformations will be computed.
 After the answer has been obtained, it should be carefully 
checked. Mistakes in reasoning can often be detected by carrying 
the units through your computations and checking the units 
obtained for the answer. For example, in the design of the rod 
discussed in Sec. 1.4, we found, after carrying the units through 
our computations, that the required diameter of the rod was 
expressed in millimeters, which is the correct unit for a dimension; 
if another unit had been found, we would have known that some 
mistake had been made.
 Errors in computation will usually be found by substituting the 
numerical values obtained into an equation which has not yet been 
used and verifying that the equation is satisfied. The importance of 
correct computations in engineering cannot be overemphasized.

1.10 NUMERICAL ACCURACY
The accuracy of the solution of a problem depends upon two items: 
(1) the accuracy of the given data and (2) the accuracy of the com-
putations performed.
 The solution cannot be more accurate than the less accurate of 
these two items. For example, if the loading of a beam is known to 
be 75,000 lb with a possible error of 100 lb either way, the relative 
error which measures the degree of accuracy of the data is

100 lb
75,000 lb

5 0.0013 5 0.13%

In computing the reaction at one of the beam supports, it would 
then be meaningless to record it as 14,322 lb. The accuracy of the 
solution cannot be greater than 0.13%, no matter how accurate the 
computations are, and the possible error in the answer may be as 
large as (0.13y100)(14,322 lb) < 20 lb. The answer should be prop-
erly recorded as 14,320 6 20 lb.
 In engineering problems, the data are seldom known with an 
accuracy greater than 0.2%. It is therefore seldom justified to write 
the answers to such problems with an accuracy greater than 0.2%. 
A practical rule is to use 4 figures to record numbers beginning with 
a “1” and 3 figures in all other cases. Unless otherwise indicated, the 
data given in a problem should be assumed known with a comparable 
degree of accuracy. A force of 40 lb, for example, should be read 
40.0 lb, and a force of 15 lb should be read 15.00 lb.
 Pocket calculators and computers are widely used by practicing 
engineers and engineering students. The speed and accuracy of these 
devices facilitate the numerical computations in the solution of many 
problems. However, students should not record more significant fig-
ures than can be justified merely because they are easily obtained. 
As noted above, an accuracy greater than 0.2% is seldom necessary 
or meaningful in the solution of practical engineering problems.

1.10 Numerical Accuracy
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SOLUTION

 Free Body: Entire Hanger. Since the link ABC is a two-force member, 
the reaction at A is vertical; the reaction at D is represented by its compo-
nents Dx and Dy. We write

1l oMD 5 0: 1500 lb2 115 in.2 2 FAC110 in.2 5 0
FAC 5 1750 lb    FAC 5 750 lb    tension

 a. Shearing Stress in Pin A.  Since this 3
8-in.-diameter pin is in single 

shear, we write

 
tA 5

FAC

A
5

750 lb
1
4p10.375 in.22 tA 5 6790 psi ◀

 b. Shearing Stress in Pin C. Since this 1
4-in.-diameter pin is in double 

shear, we write

 
tC 5

1
2 FAC

A
5

375 lb
1
4p 10.25 in.22 

tC 5 7640 psi ◀

 c. Largest Normal Stress in Link ABC. The largest stress is found 
where the area is smallest; this occurs at the cross section at A where the 3

8-in. 
hole is located. We have

sA 5
FAC

Anet
5

750 lb
1  38 in.2 11.25 in. 2 0.375 in.2 5

750 lb
0.328 in2    

sA 5 2290 psi ◀

 d. Average Shearing Stress at B. We note that bonding exists on 
both sides of the upper portion of the link and that the shear force on each 
side is F1 5 (750 lb)y2 5 375 lb. The average shearing stress on each surface 
is thus

 tB 5
F1

A
5

375 lb
11.25 in.2 11.75 in.2  tB 5 171.4 psi ◀

 e. Bearing Stress in Link at C. For each portion of the link, F1 5 
375 lb and the nominal bearing area is (0.25 in.)(0.25 in.) 5 0.0625 in2.

 
sb 5

F1

A
5

375 lb
0.0625 in2 

sb 5 6000 psi ◀

5 in.

500 lb

10 in.

A D
Dx

FAC
Dy

E
C

-in. diameter

750 lb
FAC � 750 lb FAC � 750 lb

1
4

-in. diameter3
8

FAC � 375 lb1
2

FAC � 375 lb1
2

CA

F1 � F2 �   FAC � 375 lb 1
2

FAC � 750 lb 

-in. diameter3
8

in.

1.25 in.

1.25 in.

1.75 in.

3
8

FAC

F2 F1

A
B

375 lb F1 � 375 lb 

-in. diameter1
4

1
4 in.

SAMPLE PROBLEM 1.1

In the hanger shown, the upper portion of link ABC is 3
8 in. thick and the 

lower portions are each 1
4 in. thick. Epoxy resin is used to bond the upper 

and lower portions together at B. The pin at A is of 3
8-in. diameter while a 

1
4-in.-diameter pin is used at C. Determine (a) the shearing stress in pin A, 
(b) the shearing stress in pin C, (c) the largest normal stress in link ABC, 
(d) the average shearing stress on the bonded surfaces at B, (e) the bearing 
stress in the link at C.6 in.

7 in.

1.75 in.

5 in.

1.25 in.

10 in.

500 lb

A

B

C

D

E
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SAMPLE PROBLEM 1.2

The steel tie bar shown is to be designed to carry a tension force of magnitude 
P 5 120 kN when bolted between double brackets at A and B. The bar will 
be fabricated from 20-mm-thick plate stock. For the grade of steel to be used, 
the maximum allowable stresses are: s 5 175 MPa, t 5 100 MPa, sb 5 
350 MPa. Design the tie bar by determining the required values of (a) the 
diameter d of the bolt, (b) the dimension b at each end of the bar, (c) the 
dimension h of the bar.

A B

SOLUTION

 a. Diameter of the Bolt. Since the bolt is in double shear, F1 5 1
2 P 5

60 kN.

t 5
F1

A
5

60 kN
1
4p d2     100 MPa 5

60 kN
1
4p d2     d 5 27.6 mm

We will use  d 5 28 mm ◀

At this point we check the bearing stress between the 20-mm-thick plate 
and the 28-mm-diameter bolt.

tb 5
P
td

5
120 kN

10.020 m2 10.028 m2 5 214 MPa , 350 MPa    OK

 b. Dimension b at Each End of the Bar. We consider one of the 
end portions of the bar. Recalling that the thickness of the steel plate is 
t 5 20 mm and that the average tensile stress must not exceed 175 MPa, 
we write

s 5
1
2 P

ta
    175 MPa 5

60 kN
10.02 m 2a    a 5 17.14 mm

 b 5 d 1 2a 5 28 mm 1 2(17.14 mm) b 5 62.3 mm ◀

 c. Dimension h of the Bar. Recalling that the thickness of the steel 
plate is t 5 20 mm, we have

s 5
P
th
    175 MPa 5

120 kN
10.020 m 2h    h 5 34.3 mm

We will use  h 5 35 mm ◀

d
F1 �   P

P

F1

F1

1
2

b

d

h

t � 20 mm

P

P' � 120 kN
a

t

a

db

1
2

P1
2

P � 120 kN

t � 20 mm

h
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PROBLEMS

20

 1.1 Two solid cylindrical rods AB and BC are welded together at B
and loaded as shown. Knowing that the average normal stress must 
not exceed 175 MPa in rod AB and 150 MPa in rod BC, determine 
the smallest allowable values of d1 and d2.

1.2 Two solid cylindrical rods AB and BC are welded together at B and 
loaded as shown. Knowing that d1 5 50 mm and d2 5 30 mm, 
find the average normal stress at the midsection of (a) rod AB,
(b) rod BC.

1.3 Two solid cylindrical rods AB and BC are welded together at B
and loaded as shown. Determine the magnitude of the force P for 
which the tensile stress in rod AB has the same magnitude as the 
compressive stress in rod BC.

d2

d1

40 kN

30 kN

B

C

250 mm

300 mm

A

Fig. P1.1 and P1.2

2 in.
3 in.

30 kips

30 kips

C
A

B

30 in. 40 in.

P

Fig. P1.3

1.4 In Prob. 1.3, knowing that P 5 40 kips, determine the average 
normal stress at the midsection of (a) rod AB, (b) rod BC.

1.5 Two steel plates are to be held together by means of 16-mm-diameter 
high-strength steel bolts fitting snugly inside cylindrical brass 
 spacers. Knowing that the average normal stress must not exceed 
200 MPa in the bolts and 130 MPa in the spacers, determine the 
outer diameter of the spacers that yields the most economical and 
safe design.

Fig. P1.5
100 m

15 mm

10 mm
 b

 a

 B

 C

 A

Fig. P1.6

1.6 Two brass rods AB and BC, each of uniform diameter, will be 
brazed together at B to form a nonuniform rod of total length 
100 m which will be suspended from a support at A as shown. 
Knowing that the density of brass is 8470 kg/m3, determine (a) the 
length of rod AB for which the maximum normal stress in ABC is 
minimum, (b) the corresponding value of the maximum normal 
stress.
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21Problems 1.7 Each of the four vertical links has an 8 3 36-mm uniform rectan-
gular cross section and each of the four pins has a 16-mm diameter. 
Determine the maximum value of the average normal stress in the 
links connecting (a) points B and D, (b) points C and E.

0.2 m
0.25 m

0.4 m

20 kN

C

B

A
D

E

Fig. P1.7

 1.8 Knowing that link DE is 1
8 in. thick and 1 in. wide, determine the 

normal stress in the central portion of that link when (a) u 5 0, 
(b) u 5 908.

 1.9 Link AC has a uniform rectangular cross section 1
16 in. thick and 

1
4 in. wide. Determine the normal stress in the central portion of the 
link.

60 lb

F

D

E

JC D

B

A

8 in.

2 in.

4 in. 12 in. 4 in.

6 in.

�

Fig. P1.8

B

C

A

3 in.

7 in.

30�

6 in.

240 lb

240 lb

Fig. P1.9

 1.10 Three forces, each of magnitude P 5 4 kN, are applied to the 
mechanism shown. Determine the cross-sectional area of the uni-
form portion of rod BE for which the normal stress in that portion 
is 1100 MPa.

0.100 m

0.150 m 0.300 m 0.250 m

P P P 

E

A B C 
D 

Fig. P1.10
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22 Introduction—Concept of Stress  1.11 The frame shown consists of four wooden members, ABC, DEF, 
BE, and CF. Knowing that each member has a 2 3 4-in. rectan-
gular cross section and that each pin has a 1

2-in. diameter, deter-
mine the maximum value of the average normal stress (a) in 
member BE, (b) in member CF.

 1.12 For the Pratt bridge truss and loading shown, determine the aver-
age normal stress in member BE, knowing that the cross-sectional 
area of that member is 5.87 in2.

40 in.

45 in.

15 in.

4 in.

A
B C

D E F

4 in.

30 in.

30 in.

480 lb

Fig. P1.11

9 ft

80 kips 80 kips 80 kips

9 ft 9 ft 9 ft

12 ft

B D F

H
GEC

A

Fig. P1.12

D

B

E

A

Dimensions in mm

100

450

250

850

1150

500 675 825

CG

F

Fig. P1.13

 1.13 An aircraft tow bar is positioned by means of a single hydraulic 
cylinder connected by a 25-mm-diameter steel rod to two identical 
arm-and-wheel units DEF. The mass of the entire tow bar is 200 kg, 
and its center of gravity is located at G. For the position shown, 
determine the normal stress in the rod.
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23Problems 1.14 A couple M of magnitude 1500 N ? m is applied to the crank of 
an engine. For the position shown, determine (a) the force P 
required to hold the engine system in equilibrium, (b) the average 
normal stress in the connecting rod BC, which has a 450-mm2 
uniform cross section.

 1.15 When the force P reached 8 kN, the wooden specimen shown failed 
in shear along the surface indicated by the dashed line. Determine 
the average shearing stress along that surface at the time of failure.

200 mm

80 mmM

60 mm

B

A

C

P

Fig. P1.14 1.16 The wooden members A and B are to be joined by plywood splice 
plates that will be fully glued on the surfaces in contact. As part 
of the design of the joint, and knowing that the clearance between 
the ends of the members is to be 1

4 in., determine the smallest 
allowable length L if the average shearing stress in the glue is not 
to exceed 120 psi.

 1.17 A load P is applied to a steel rod supported as shown by an alu-
minum plate into which a 0.6-in.-diameter hole has been drilled. 
Knowing that the shearing stress must not exceed 18 ksi in the 
steel rod and 10 ksi in the aluminum plate, determine the largest 
load P that can be applied to the rod.

15 mm

90 mm WoodSteel

PP'

Fig. P1.15

5.8 kips

A

L

B
4 in.

5.8 kips

in.1
4

Fig. P1.16

1.6 in.

0.25 in.

0.6 in.

P

0.4 in.

Fig. P1.17

 1.18 Two wooden planks, each 22 mm thick and 160 mm wide, are 
joined by the glued mortise joint shown. Knowing that the joint 
will fail when the average shearing stress in the glue reaches 
820 kPa, determine the smallest allowable length d of the cuts if 
the joint is to withstand an axial load of magnitude P 5 7.6 kN.

P' P
20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm0 mm0 mm0 mm0 mm0 mm0 mm20 mm

20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm20 mm22020202020202020202020

160 mm111111160 m160 m160 m160 m160 m160 m160160160160160160 mm

d

GlueueueueueGlueGlueGlueGlueGlueGlueGlueGlueGlueGlue

Fig. P1.18
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24 Introduction—Concept of Stress  1.19 The load P applied to a steel rod is distributed to a timber support 
by an annular washer. The diameter of the rod is 22 mm and the 
inner diameter of the washer is 25 mm, which is slightly larger 
than the diameter of the hole. Determine the smallest allowable 
outer diameter d of the washer, knowing that the axial normal 
stress in the steel rod is 35 MPa and that the average bearing stress 
between the washer and the timber must not exceed 5 MPa.

 1.20 The axial force in the column supporting the timber beam shown is 
P 5 20 kips. Determine the smallest allowable length L of the  bearing 
plate if the bearing stress in the timber is not to exceed 400 psi.

P

d

22 mm

Fig. P1.19

6 in.

L

P

Fig. P1.20

 1.21 An axial load P is supported by a short W8 3 40 column of cross-
sectional area A 5 11.7 in2 and is distributed to a concrete founda-
tion by a square plate as shown. Knowing that the average normal 
stress in the column must not exceed 30 ksi and that the bearing 
stress on the concrete foundation must not exceed 3.0 ksi, deter-
mine the side a of the plate that will provide the most economical 
and safe design.

 1.22 A 40-kN axial load is applied to a short wooden post that is 
 supported by a concrete footing resting on undisturbed soil. 
 Determine (a) the maximum bearing stress on the concrete foot-
ing, (b) the size of the footing for which the average bearing stress 
in the soil is 145 kPa.

 1.23 A 5
8-in.-diameter steel rod AB is fitted to a round hole near end C of 

the wooden member CD. For the loading shown, determine (a) the 
maximum average normal stress in the wood, (b) the distance b for 
which the average shearing stress is 100 psi on the surfaces indicated 
by the dashed lines, (c) the average bearing stress on the wood.

a aP

Fig. P1.21

P � 40 kN

b b

120 mm 100 mm

Fig. P1.22

D
A

C
B

b

1500 lb

750 lb

750 lb

4 in.

1 in.

Fig. P1.23
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25Problems 1.24 Knowing that u 5 408 and P 5 9 kN, determine (a) the smallest 
allowable diameter of the pin at B if the average shearing stress 
in the pin is not to exceed 120 MPa, (b) the corresponding aver-
age bearing stress in member AB at B, (c) the corresponding 
average bearing stress in each of the support brackets at B.

 1.25 Determine the largest load P that can be applied at A when u 5 608, 
knowing that the average shearing stress in the 10-mm-diameter pin 
at B must not exceed 120 MPa and that the average bearing stress 
in member AB and in the bracket at B must not exceed 90 MPa.

 1.26 Link AB, of width b 5 50 mm and thickness t 5 6 mm, is used to 
support the end of a horizontal beam. Knowing that the average 
normal stress in the link is 2140 MPa, and that the average  shearing 
stress in each of the two pins is 80 MPa, determine (a) the diameter 
d of the pins, (b) the average bearing stress in the link.

 1.27 For the assembly and loading of Prob. 1.7, determine (a) the average 
shearing stress in the pin at B, (b) the average bearing stress at B in 
member BD, (c) the average bearing stress at B in member ABC, 
knowing that this member has a 10 3 50-mm uniform rectangular 
cross section.

 1.28 The hydraulic cylinder CF, which partially controls the position of 
rod DE, has been locked in the position shown. Member BD is 
5
8 in. thick and is connected to the vertical rod by a 3

8-in.-diameter 
bolt. Determine (a) the average shearing stress in the bolt, (b) the 
bearing stress at C in member BD.

16 mm

750 mm

750 mm

12 mm

50 mm B

A

C

P

�

Fig. P1.24 and P1.25
b

d
t

B

A

d

Fig. P1.26

1.8 in.

8 in.

4 in. 7 in.

D

F

E

A

C
B

400 lb

20�
75�

Fig. P1.28
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26 Introduction—Concept of Stress 1.11  STRESS ON AN OBLIQUE PLANE
UNDER AXIAL LOADING

In the preceding sections, axial forces exerted on a two-force 
member (Fig. 1.26a) were found to cause normal stresses in that 
member (Fig. 1.26b), while transverse forces exerted on bolts and 
pins (Fig. 1.27a) were found to cause shearing stresses in those 
connections (Fig. 1.27b). The reason such a relation was observed 
between axial forces and normal stresses on one hand, and trans-
verse forces and shearing stresses on the other, was because stresses 
were being determined only on planes perpendicular to the axis 
of the member or connection. As you will see in this section, axial 
forces cause both normal and shearing stresses on planes which 
are not perpendicular to the axis of the member. Similarly, trans-
verse forces exerted on a bolt or a pin cause both normal and 
shearing stresses on planes which are not perpendicular to the axis 
of the bolt or pin.

(a)

(b)

P

P

P'

P'

P'

�

Fig. 1.26 Axial forces.

Fig. 1.28

P'

P'

P'

P

A
A0

�

P

V

F

P'

(a)

(c)

(b)

(d)

�

�

�

�

P

P'

PP

P' P'

�

(a) (b)

Fig. 1.27 Transverse forces.

 Consider the two-force member of Fig. 1.26, which is subjected 
to axial forces P and P9. If we pass a section forming an angle u with 
a normal plane (Fig. 1.28a) and draw the free-body diagram of the 
portion of member located to the left of that section (Fig. 1.28b), 
we find from the equilibrium conditions of the free body that the 
distributed forces acting on the section must be equivalent to the 
force P.
 Resolving P into components F and V, respectively normal and 
tangential to the section (Fig. 1.28c), we have

 F 5 P cos u    V 5 P sin u (1.12)

The force F represents the resultant of normal forces distributed 
over the section, and the force V the resultant of shearing forces 
(Fig. 1.28d). The average values of the corresponding normal and 
shearing stresses are obtained by dividing, respectively, F and V by 
the area Au of the section:

 
s 5

F
Au

    t 5
V
Au

 (1.13)

Substituting for F and V from (1.12) into (1.13), and observing from 
Fig. 1.28c that A0 5 Au cos u, or Au 5 A0ycos u, where A0 denotes 

bee80288_ch01_002-051.indd Page 26  9/4/10  5:35:14 PM user-f499bee80288_ch01_002-051.indd Page 26  9/4/10  5:35:14 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch01/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch01



27the area of a section perpendicular to the axis of the member, we 
obtain

 s 5
P cos u

A0ycos u
    t 5

P sin u
A0ycos u

or

 
 s 5

P
A0

 cos2 u    t 5
P
A0

 sin u cos u  (1.14)

 We note from the first of Eqs. (1.14) that the normal stress s 
is maximum when u 5 0, i.e., when the plane of the section is per-
pendicular to the axis of the member, and that it approaches zero as 
u approaches 908. We check that the value of s when u 5 0 is

 
sm 5

P
A0

 (1.15)

as we found earlier in Sec. 1.3. The second of Eqs. (1.14) shows that 
the shearing stress t is zero for u 5 0 and u 5 908, and that for 
u 5 458 it reaches its maximum value

 
tm 5

P
A0

 sin 45° cos 45° 5
P

2A0
 (1.16)

The first of Eqs. (1.14) indicates that, when u 5 458, the normal 
stress s9 is also equal to Py2A0:

 
s ¿ 5

P
A0

 cos2 45° 5
P

2A0
 (1.17)

 The results obtained in Eqs. (1.15), (1.16), and (1.17) are 
shown graphically in Fig. 1.29. We note that the same loading may 
produce either a normal stress sm 5 PyA0 and no shearing stress 
(Fig. 1.29b), or a normal and a shearing stress of the same magni-
tude s9 5 tm 5 Py2A0 (Fig. 1.29 c and d), depending upon the 
orientation of the section.

1.12  STRESS UNDER GENERAL LOADING 
CONDITIONS; COMPONENTS OF STRESS

The examples of the previous sections were limited to members 
under axial loading and connections under transverse loading. Most 
structural members and machine components are under more 
involved loading conditions.
 Consider a body subjected to several loads P1, P2, etc. (Fig. 
1.30). To understand the stress condition created by these loads at 
some point Q within the body, we shall first pass a section through 
Q, using a plane parallel to the yz plane. The portion of the body to 
the left of the section is subjected to some of the original loads, and 
to normal and shearing forces distributed over the section. We shall 
denote by DFx and DVx, respectively, the normal and the shearing 

P'

(a) Axial loading

(b) Stresses for    � 0

m � P/A0

� 

(c) Stresses for    � 45°�

(d) Stresses for    � –45°�

�
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'� P/2A0�
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m � P/2A0�

P

Fig. 1.29

Fig. 1.30

P1
P4

P3

P2y

z

x

1.12 Stress Under General Loading Conditions; 
Components of Stress

bee80288_ch01_002-051.indd Page 27  9/4/10  5:35:20 PM user-f499bee80288_ch01_002-051.indd Page 27  9/4/10  5:35:20 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch01/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch01



28 Introduction—Concept of Stress

forces acting on a small area DA surrounding point Q (Fig. 1.31a). 
Note that the superscript x is used to indicate that the forces DFx 
and DVx act on a surface perpendicular to the x axis. While the nor-
mal force DFx has a well-defined direction, the shearing force DVx 
may have any direction in the plane of the section. We therefore 
resolve DVx into two component forces, DVx

y and DVx
z, in directions 

parallel to the y and z axes, respectively (Fig. 1.31b). Dividing now 
the magnitude of each force by the area DA, and letting DA approach 
zero, we define the three stress components shown in Fig. 1.32:

sx 5 lim
¢AS0

 
¢Fx

¢A

 
txy 5 lim

¢AS0
 
¢Vy

x

¢A
    txz 5 lim

¢AS0
 
¢Vz

x

¢A

 (1.18)

We note that the first subscript in sx, txy, and txz is used to indicate 
that the stresses under consideration are exerted on a surface per-
pendicular to the x axis. The second subscript in txy and txz identifies 
the direction of the component. The normal stress sx is positive if 
the corresponding arrow points in the positive x direction, i.e., if the 
body is in tension, and negative otherwise. Similarly, the shearing 
stress components txy and txz are positive if the corresponding arrows 
point, respectively, in the positive y and z directions.
 The above analysis may also be carried out by considering the 
portion of body located to the right of the vertical plane through Q 
(Fig. 1.33). The same magnitudes, but opposite directions, are 
obtained for the normal and shearing forces DFx, DVy

x, and DV z
x. 

Therefore, the same values are also obtained for the corresponding 
stress components, but since the section in Fig. 1.33 now faces the 
negative x axis, a positive sign for sx will indicate that the corre-
sponding arrow points in the negative x direction. Similarly, positive 
signs for txy and txz will indicate that the corresponding arrows 
point, respectively, in the negative y and z directions, as shown in 
Fig. 1.33.
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29 Passing a section through Q parallel to the zx plane, we define 
in the same manner the stress components, sy, tyz, and tyx. Finally, 
a section through Q parallel to the xy plane yields the components 
sz, tzx, and tzy.
 To facilitate the visualization of the stress condition at point 
Q, we shall consider a small cube of side a centered at Q and the 
stresses exerted on each of the six faces of the cube (Fig. 1.34). 
The stress components shown in the figure are sx, sy, and sz, 
which represent the normal stress on faces respectively perpen-
dicular to the x, y, and z axes, and the six shearing stress compo-
nents txy, txz, etc. We recall that, according to the definition of the 
shearing stress components, txy represents the y component of the 
shearing stress exerted on the face perpendicular to the x axis, 
while tyx represents the x component of the shearing stress exerted 
on the face perpendicular to the y axis. Note that only three faces 
of the cube are actually visible in Fig. 1.34, and that equal and 
opposite stress components act on the hidden faces. While the 
stresses acting on the faces of the cube differ slightly from the 
stresses at Q, the error involved is small and vanishes as side a of 
the cube approaches zero.
 Important relations among the shearing stress components will 
now be derived. Let us consider the free-body diagram of the small 
cube centered at point Q (Fig. 1.35). The normal and shearing 
forces acting on the various faces of the cube are obtained 
by multiplying the corresponding stress components by the area DA 
of each face. We first write the following three equilibrium 
equations:

 oFx 5 0    oFy 5 0    oFz 5 0 (1.19)

Since forces equal and opposite to the forces actually shown in Fig. 
1.35 are acting on the hidden faces of the cube, it is clear that Eqs. 
(1.19) are satisfied. Considering now the moments of the forces 
about axes x9, y9, and z9 drawn from Q in directions respectively 
parallel to the x, y, and z axes, we write the three additional 
equations

 oMx¿ 5 0    oMy¿ 5 0    oMz¿ 5 0 (1.20)

Using a projection on the x9y9 plane (Fig. 1.36), we note that the 
only forces with moments about the z axis different from zero are 
the shearing forces. These forces form two couples, one of counter-
clockwise (positive) moment (txy DA)a, the other of clockwise (nega-
tive) moment 2(tyx DA)a. The last of the three Eqs. (1.20) yields, 
therefore,

 1loMz 5 0: (txy DA)a 2 (tyx DA)a 5 0

from which we conclude that

 txy 5 tyx (1.21)

The relation obtained shows that the y component of the shearing 
stress exerted on a face perpendicular to the x axis is equal to the x 

1.12 Stress Under General Loading Conditions; 
Components of Stress

�yz
�yx

�xy

�xz�zx

�zy

�y

�z

�x

a

Qa

a

z

y

x

Fig. 1.34

�x�A
�z�A

�y�A

Q

z

y

x

�zy�A

�yx�A
�yz�A

�xy�A

�zx�A  
�xz�A

Fig. 1.35

�yx�A

�yx�A

�xy�A

�xy�A �x�A

�x�A

�y�A

�y �A

x'

a
z'

y'

Fig. 1.36

bee80288_ch01_002-051.indd Page 29  9/4/10  5:35:32 PM user-f499bee80288_ch01_002-051.indd Page 29  9/4/10  5:35:32 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch01/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch01



30 Introduction—Concept of Stress component of the shearing stress exerted on a face perpendicular to 
the y axis. From the remaining two equations (1.20), we derive in a 
similar manner the relations

 tyz 5 tzy    tzx 5 txz (1.22)

 We conclude from Eqs. (1.21) and (1.22) that only six stress 
components are required to define the condition of stress at a given 
point Q, instead of nine as originally assumed. These six components 
are sx, sy, sz, txy, tyz, and tzx. We also note that, at a given point, 
shear cannot take place in one plane only; an equal shearing stress 
must be exerted on another plane perpendicular to the first one. For 
example, considering again the bolt of Fig. 1.27 and a small cube at 
the center Q of the bolt (Fig. 1.37a), we find that shearing stresses 
of equal magnitude must be exerted on the two horizontal faces of 
the cube and on the two faces that are perpendicular to the forces 
P and P9 (Fig. 1.37b).
 Before concluding our discussion of stress components, let us 
consider again the case of a member under axial loading. If we con-
sider a small cube with faces respectively parallel to the faces of the 
member and recall the results obtained in Sec. 1.11, we find that the 
conditions of stress in the member may be described as shown in Fig. 
1.38a; the only stresses are normal stresses sx exerted on the faces of 
the cube which are perpendicular to the x axis. However, if the small 
cube is rotated by 458 about the z axis so that its new orientation 
matches the orientation of the sections considered in Fig. 1.29c and 
d, we conclude that normal and shearing stresses of equal magnitude 
are exerted on four faces of the cube (Fig. 1.38b). We thus observe 
that the same loading condition may lead to different interpretations 
of the stress situation at a given point, depending upon the orientation 
of the element considered. More will be said about this in Chap 7.

1.13 DESIGN CONSIDERATIONS
In the preceding sections you learned to determine the stresses in 
rods, bolts, and pins under simple loading conditions. In later chap-
ters you will learn to determine stresses in more complex situations. 
In engineering applications, however, the determination of stresses 
is seldom an end in itself. Rather, the knowledge of stresses is used 
by engineers to assist in their most important task, namely, the design 
of structures and machines that will safely and economically perform 
a specified function.

a. Determination of the Ultimate Strength of a Material. An 
important element to be considered by a designer is how the material 
that has been selected will behave under a load. For a given material, 
this is determined by performing specific tests on prepared samples 
of the material. For example, a test specimen of steel may be pre-
pared and placed in a laboratory testing machine to be subjected to 
a known centric axial tensile force, as described in Sec. 2.3. As the 
magnitude of the force is increased, various changes in the specimen 
are measured, for example, changes in its length and its diameter. 
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31Eventually the largest force which may be applied to the specimen is 
reached, and the specimen either breaks or begins to carry less load. 
This largest force is called the ultimate load for the test specimen and 
is denoted by PU. Since the applied load is centric, we may divide the 
ultimate load by the original cross-sectional area of the rod to obtain 
the ultimate normal stress of the material used. This stress, also known 
as the ultimate strength in tension of the material, is

 
sU 5

PU

A
 (1.23)

 Several test procedures are available to determine the ultimate 
shearing stress, or ultimate strength in shear, of a material. The one 
most commonly used involves the twisting of a circular tube (Sec. 
3.5). A more direct, if less accurate, procedure consists in clamping 
a rectangular or round bar in a shear tool (Fig. 1.39) and applying 
an increasing load P until the ultimate load PU for single shear is 
obtained. If the free end of the specimen rests on both of the hard-
ened dies (Fig. 1.40), the ultimate load for double shear is obtained. 
In either case, the ultimate shearing stress tU is obtained by dividing 
the ultimate load by the total area over which shear has taken place. 
We recall that, in the case of single shear, this area is the cross-
 sectional area A of the specimen, while in double shear it is equal 
to twice the cross-sectional area.

b. Allowable Load and Allowable Stress; Factor of Safety. The 
maximum load that a structural member or a machine component will 
be allowed to carry under normal conditions of utilization is consider-
ably smaller than the ultimate load. This smaller load is referred to as 
the allowable load and, sometimes, as the working load or design load. 
Thus, only a fraction of the ultimate-load capacity of the member is 
utilized when the allowable load is applied. The remaining portion of 
the load-carrying capacity of the member is kept in reserve to assure 
its safe performance. The ratio of the ultimate load to the allowable 
load is used to define the factor of safety.† We have

 
Factor of safety 5 F.S. 5

ultimate load
allowable load

 (1.24)

An alternative definition of the factor of safety is based on the use 
of stresses:

 
Factor of safety 5 F.S. 5

ultimate stress
allowable stress

 (1.25)

The two expressions given for the factor of safety in Eqs. (1.24) and 
(1.25) are identical when a linear relationship exists between the load 
and the stress. In most engineering applications, however, this rela-
tionship ceases to be linear as the load approaches its ultimate value, 
and the factor of safety obtained from Eq. (1.25) does not provide a 

1.13 Design Considerations

†In some fields of engineering, notably aeronautical engineering, the margin of safety is 
used in place of the factor of safety. The margin of safety is defined as the factor of safety 
minus one; that is, margin of safety 5 F.S. 2 1.00.

P

Fig. 1.39 Single shear test.

P

Fig. 1.40 Double shear test.
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32 Introduction—Concept of Stress true assessment of the safety of a given design. Nevertheless, the 
allowable-stress method of design, based on the use of Eq. (1.25), is 
widely used.

c. Selection of an Appropriate Factor of Safety. The selec-
tion of the factor of safety to be used for various applications is one 
of the most important engineering tasks. On the one hand, if a factor 
of safety is chosen too small, the possibility of failure becomes unac-
ceptably large; on the other hand, if a factor of safety is chosen 
unnecessarily large, the result is an uneconomical or nonfunctional 
design. The choice of the factor of safety that is appropriate for a 
given design application requires engineering judgment based on 
many considerations, such as the following:

 1. Variations that may occur in the properties of the member 
under consideration. The composition, strength, and dimen-
sions of the member are all subject to small variations during 
manufacture. In addition, material properties may be altered 
and residual stresses introduced through heating or deforma-
tion that may occur during manufacture, storage, transporta-
tion, or construction.

 2. The number of loadings that may be expected during the life of 
the structure or machine. For most materials the ultimate stress 
decreases as the number of load applications is increased. This 
phenomenon is known as fatigue and, if ignored, may result in 
sudden failure (see Sec. 2.7).

 3. The type of loadings that are planned for in the design, or that 
may occur in the future. Very few loadings are known with 
complete accuracy—most design loadings are engineering esti-
mates. In addition, future alterations or changes in usage may 
introduce changes in the actual loading. Larger factors of safety 
are also required for dynamic, cyclic, or impulsive loadings.

 4. The type of failure that may occur. Brittle materials fail sud-
denly, usually with no prior indication that collapse is immi-
nent. On the other hand, ductile materials, such as structural 
steel, normally undergo a substantial deformation called yield-
ing before failing, thus providing a warning that overloading 
exists. However, most buckling or stability failures are sudden, 
whether the material is brittle or not. When the possibility of 
sudden failure exists, a larger factor of safety should be used 
than when failure is preceded by obvious warning signs.

 5. Uncertainty due to methods of analysis. All design methods are 
based on certain simplifying assumptions which result in calcu-
lated stresses being approximations of actual stresses.

 6. Deterioration that may occur in the future because of poor main-
tenance or because of unpreventable natural causes. A larger fac-
tor of safety is necessary in locations where conditions such as 
corrosion and decay are difficult to control or even to discover.

 7. The importance of a given member to the integrity of the whole 
structure. Bracing and secondary members may in many cases 
be designed with a factor of safety lower than that used for 
primary members.
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33 In addition to the these considerations, there is the additional 
consideration concerning the risk to life and property that a failure 
would produce. Where a failure would produce no risk to life and 
only minimal risk to property, the use of a smaller factor of safety 
can be considered. Finally, there is the practical consideration that, 
unless a careful design with a nonexcessive factor of safety is used, 
a structure or machine might not perform its design function. For 
example, high factors of safety may have an unacceptable effect on 
the weight of an aircraft.
 For the majority of structural and machine applications, factors 
of safety are specified by design specifications or building codes writ-
ten by committees of experienced engineers working with profes-
sional societies, with industries, or with federal, state, or city agencies. 
Examples of such design specifications and building codes are

 1. Steel: American Institute of Steel Construction, Specification 
for Structural Steel Buildings

 2. Concrete: American Concrete Institute, Building Code Require-
ment for Structural Concrete

 3. Timber: American Forest and Paper Association, National 
Design Specification for Wood Construction

 4. Highway bridges: American Association of State Highway Offi-
cials, Standard Specifications for Highway Bridges

*d. Load and Resistance Factor Design. As we saw previously, 
the allowable-stress method requires that all the uncertainties associ-
ated with the design of a structure or machine element be grouped 
into a single factor of safety. An alternative method of design, which 
is gaining acceptance chiefly among structural engineers, makes it pos-
sible through the use of three different factors to distinguish between 
the uncertainties associated with the structure itself and those associ-
ated with the load it is designed to support. This method, referred 
to as Load and Resistance Factor Design (LRFD), further allows the 
designer to distinguish between uncertainties associated with the live 
load, PL, that is, with the load to be supported by the structure, and 
the dead load, PD, that is, with the weight of the portion of structure 
contributing to the total load.
 When this method of design is used, the ultimate load, PU, of 
the structure, that is, the load at which the structure ceases to be 
useful, should first be determined. The proposed design is then 
acceptable if the following inequality is satisfied:

 gDPD 1 gLPL # fPU (1.26)

The coefficient f is referred to as the resistance factor; it accounts 
for the uncertainties associated with the structure itself and will 
normally be less than 1. The coefficients gD and gL are referred to 
as the load factors; they account for the uncertainties associated, 
respectively, with the dead and live load and will normally be greater 
than 1, with gL generally larger than gD. While a few examples or 
assigned problems using LRFD are included in this chapter and in 
Chaps. 5 and 10, the allowable-stress method of design will be used 
in this text.

1.13 Design Considerations
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34

SOLUTION

 Free Body: Entire Bracket. The reaction at C is represented by its com-
ponents Cx and Cy.

  1 l oMC 5 0: P(0.6 m) 2 (50 kN)(0.3 m) 2 (15 kN)(0.6 m) 5 0 P 5 40 kN
oFx 5 0: Cx 5 40 k 

C 5 2C2
x 1 C2

y 5 76.3 kNoFy 5 0: Cy 5 65 kN

 a. Control Rod AB. Since the factor of safety is to be 3.3, the allow-
able stress is

sall 5
sU

F.S.
5

600 MPa
3.3

5 181.8 MPa

For P 5 40 kN the cross-sectional area required is

 
 Areq 5

P
sall

5
40 kN

181.8 MPa
5 220 3 1026 m2

 
 Areq 5

p

4
 dAB

2 5 220 3 1026 m2 dAB 5 16.74 mm ◀

 b. Shear in Pin C. For a factor of safety of 3.3, we have

tall 5
tU

F.S.
5

350 MPa
3.3

5 106.1 MPa

Since the pin is in double shear, we write

 Areq 5
Cy2
tall

5
176.3 kN2y2

106.1 MPa
5 360 mm2

 Areq 5
p

4
 dC

2 5 360 mm2   dC 5 21.4 mm  Use: dC 5 22 mm ◀

The next larger size pin available is of 22-mm diameter and should be used.

 c. Bearing at C.  Using d 5 22 mm, the nominal bearing area of each 
bracket is 22t. Since the force carried by each bracket is Cy2 and the allow-
able bearing stress is 300 MPa, we write

Areq 5
Cy2
sall

5
176.3 kN2y2

300 MPa
5 127.2 mm2

Thus 22t 5 127.2  t 5 5.78 mm  Use: t 5 6 mm ◀

SAMPLE PROBLEM 1.3

Two forces are applied to the bracket BCD as shown. (a) Knowing that the 
control rod AB is to be made of a steel having an ultimate normal stress of 
600 MPa, determine the diameter of the rod for which the factor of safety 
with respect to failure will be 3.3. (b) The pin at C is to be made of a steel 
having an ultimate shearing stress of 350 MPa. Determine the diameter of 
the pin C for which the factor of safety with respect to shear will also be 
3.3. (c) Determine the required thickness of the bracket supports at C 
knowing that the allowable bearing stress of the steel used is 300 MPa.

t t

A

D 

B

dAB

C

0.6 m

0.3 m 0.3 m

50 kN 15 kN

P

50 kN 15 kN0.6 m

0.3 m 0.3 m

D

B

C

P

Cx

Cy

C

C

dC

F2

F1
F1 � F2 � 

1
2

d � 22 mm

t C1
2

C1
2
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35

SOLUTION

The factor of safety with respect to failure must be 3.0 or more in each of 
the three bolts and in the control rod. These four independent criteria will 
be considered separately.

 Free Body: Beam BCD. We first determine the force at C in terms 
of the force at B and in terms of the force at D.

1l oMD 5 0:  B 114 in.2 2 C 18 in.2 5 0  C 5 1.750B (1)
1l oMB 5 0:   2D 114 in.2 1 C 16 in.2 5 0   C 5 2.33D (2)

 Control Rod. For a factor of safety of 3.0 we have

sall 5
sU

F.S.
5

60 ksi
3.0

5 20 ksi

The allowable force in the control rod is

B 5 sall1A2 5 120 ksi2  14p 1 7
16 in.22 5 3.01 kips

Using Eq. (1) we find the largest permitted value of C:

 C 5 1.750B 5 1.750 13.01 kips2 C 5 5.27 kips ◀

 Bolt at B. tall 5 tUyF.S. 5 (40 ksi)y3 5 13.33 ksi. Since the bolt is in 
double shear, the allowable magnitude of the force B exerted on the bolt is

B 5 2F1 5 2 1tall A 2 5 2 113.33 ksi2 114p 2 138 in.22 5 2.94 kips

From Eq. (1): C 5 1.750B 5 1.750 12.94 kips2 C 5 5.15 kips ◀

 Bolt at D. Since this bolt is the same as bolt B, the allowable force is 
D 5 B 5 2.94 kips. From Eq. (2):

 C 5 2.33D 5 2.33 12.94 kips2 C 5 6.85 kips ◀

 Bolt at C. We again have tall 5 13.33 ksi and write

 C 5 2F2 5 2 1tall A 2 5 2 113.33 ksi2 114 p 2 112 in.22  C 5 5.23 kips ◀

 Summary.  We have found separately four maximum allowable values 
of the force C. In order to satisfy all these criteria we must choose the 
smallest value, namely: C 5 5.15 kips ◀

SAMPLE PROBLEM 1.4

The rigid beam BCD is attached by bolts to a control rod at B, to a hydraulic 
cylinder at C, and to a fixed support at D. The diameters of the bolts used 
are: dB 5 dD 5 3

8 in., dC 5 1
2 in. Each bolt acts in double shear and is made 

from a steel for which the ultimate shearing stress is tU 5 40 ksi. The con-
trol rod AB has a diameter dA 5 7

16 in. and is made of a steel for which the 
ultimate tensile stress is sU 5 60 ksi. If the minimum factor of safety is to 
be 3.0 for the entire unit, determine the largest upward force which may 
be applied by the hydraulic cylinder at C.

DC

B

A

6 in.

8 in.

D

DB

C

B C

6 in. 8 in.

F1

F1

B

3
8

in.

B � 2F1

C

F2

F2

1
2 in.

C � 2F2
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PROBLEMS

36

1.29 The 1.4-kip load P is supported by two wooden members of uni-
form cross section that are joined by the simple glued scarf splice 
shown. Determine the normal and shearing stresses in the glued 
splice.

 1.30 Two wooden members of uniform cross section are joined by the 
simple scarf splice shown. Knowing that the maximum allowable 
tensile stress in the glued splice is 75 psi, determine (a) the largest 
load P that can be safely supported, (b) the corresponding shearing 
stress in the splice.

 1.31 Two wooden members of uniform rectangular cross section are 
joined by the simple glued scarf splice shown. Knowing that 
P 5 11 kN, determine the normal and shearing stresses in the 
glued splice.

60�

5.0 in.
3.0 in.

P'

P

Fig. P1.29 and P1.30

75 mm

150 mm

45454545454545454545454545454545454545454545454545�������������

P'

P

Fig. P1.31 and P1.32

 1.32 Two wooden members of uniform rectangular cross section are 
joined by the simple glued scarf splice shown. Knowing that 
the maximum allowable shearing stress in the glued splice is 
620 kPa, determine (a) the largest load P that can be safely applied, 
(b) the corresponding tensile stress in the splice.

 1.33 A steel pipe of 12-in. outer diameter is fabricated from 1
4-in.-thick 

plate by welding along a helix that forms an angle of 258 with a 
plane perpendicular to the axis of the pipe. Knowing that the maxi-
mum allowable normal and shearing stresses in the directions 
respectively normal and tangential to the weld are s 5 12 ksi and 
t 5 7.2 ksi, determine the magnitude P of the largest axial force 
that can be applied to the pipe.

 1.34 A steel pipe of 12-in. outer diameter is fabricated from 1
4-in.-thick 

plate by welding along a helix that forms an angle of 258 with a 
plane perpendicular to the axis of the pipe. Knowing that a 66 kip 
axial force P is applied to the pipe, determine the normal and 
shearing stresses in directions respectively normal and tangential 
to the weld.

25�

P

Weld

in.1
4

Fig. P1.33 and P1.34 
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37Problems 1.35 A 1060-kN load P is applied to the granite block shown. Determine 
the resulting maximum value of (a) the normal stress, (b) the shear-
ing stress. Specify the orientation of that plane on which each of 
these maximum values occurs.

 1.36 A centric load P is applied to the granite block shown. Knowing 
that the resulting maximum value of the shearing stress in the 
block is 18 MPa, determine (a) the magnitude of P, (b) the orienta-
tion of the surface on which the maximum shearing stress occurs, 
(c) the normal stress exerted on that surface, (d) the maximum 
value of the normal stress in the block.

 1.37 Link BC is 6 mm thick, has a width w 5 25 mm, and is made of 
a steel with a 480-MPa ultimate strength in tension. What is the 
safety factor used if the structure shown was designed to support 
a 16-kN load P?

 1.38 Link BC is 6 mm thick and is made of a steel with a 450-MPa 
ultimate strength in tension. What should be its width w if the 
structure shown is being designed to support a 20-kN load P with 
a factor of safety of 3?

 1.39 A 3
4-in.-diameter rod made of the same material as rods AC and 

AD in the truss shown was tested to failure and an ultimate load 
of 29 kips was recorded. Using a factor of safety of 3.0, determine 
the required diameter (a) of rod AC, (b) of rod AD.

140 mm

140 mm

P

Fig. P1.35 and P1.36

A B

C
D

480 mm

600 mm

90�

w

P

Fig. P1.37 and P1.38

 1.40 In the truss shown, members AC and AD consist of rods made of 
the same metal alloy. Knowing that AC is of 1-in. diameter and 
that the ultimate load for that rod is 75 kips, determine (a) the 
factor of safety for AC, (b) the required diameter of AD if it is 
desired that both rods have the same factor of safety.

 1.41 Link AB is to be made of a steel for which the ultimate normal 
stress is 450 MPa. Determine the cross-sectional area of AB for 
which the factor of safety will be 3.50. Assume that the link will 
be adequately reinforced around the pins at A and B.

10 kips 10 kips

10 ft 10 ft

5 ft

A

B C

D

Fig. P1.39 and P1.40

0.4 m

35�

B

A

C D
E

0.4 m 0.4 m

8 kN/m

20 kN

Fig. P1.41
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38 Introduction—Concept of Stress  1.42 A steel loop ABCD of length 1.2 m and of 10-mm diameter is 
placed as shown around a 24-mm-diameter aluminum rod AC. 
Cables BE and DF, each of 12-mm diameter, are used to apply the 
load Q. Knowing that the ultimate strength of the steel used for 
the loop and the cables is 480 MPa and that the ultimate strength 
of the aluminum used for the rod is 260 MPa, determine the larg-
est load Q that can be applied if an overall factor of safety of 3 is 
desired.

 1.43 Two wooden members shown, which support a 3.6-kip load, are 
joined by plywood splices fully glued on the surfaces in contact. The 
ultimate shearing stress in the glue is 360 psi and the clearance 
between the members is 1

4 in. Determine the required length L of 
each splice if a factor of safety of 2.75 is to be achieved.

240 mm

180 mm
24 mm

C

D

Q

A

10 mm

180 mm

240 mm

F

Q'

12 mm

B
E

Fig. P1.42

 1.44 Two plates, each 1
8-in. thick, are used to splice a plastic strip as 

shown. Knowing that the ultimate shearing stress of the bonding 
between the surfaces is 130 psi, determine the factor of safety with 
respect to shear when P 5 325 lb.

 1.45 A load P is supported as shown by a steel pin that has been inserted 
in a short wooden member hanging from the ceiling. The ultimate 
strength of the wood used is 60 MPa in tension and 7.5 MPa in 
shear, while the ultimate strength of the steel is 145 MPa in shear. 
Knowing that b 5 40 mm, c 5 55 mm, and d 5 12 mm, determine 
the load P if an overall factor of safety of 3.2 is desired.

Fig. P1.43

3.6 kips

3.6 kips

L

5.0 in.

in.1
4

P'

P

in.5
8 in.3

4

in.1
4

in.2 1
4

Fig. P1.44

1
2

40 mm

d

c

b

P

1
2 P

Fig. P1.45
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39Problems 1.46 For the support of Prob. 1.45, knowing that the diameter of 
the pin is d 5 16 mm and that the magnitude of the load is 
P 5 20 kN, determine (a) the factor of safety for the pin, (b) the 
required values of b and c if the factor of safety for the wooden 
member is the same as that found in part a for the pin.

 1.47 Three steel bolts are to be used to attach the steel plate shown to 
a wooden beam. Knowing that the plate will support a 110-kN 
load, that the ultimate shearing stress for the steel used is 360 MPa, 
and that a factor of safety of 3.35 is desired, determine the required 
diameter of the bolts.

 1.48 Three 18-mm-diameter steel bolts are to be used to attach the steel 
plate shown to a wooden beam. Knowing that the plate will support 
a 110-kN load and that the ultimate shearing stress for the steel 
used is 360 MPa, determine the factor of safety for this design.

 1.49 A steel plate 5
16 in. thick is embedded in a horizontal concrete slab 

and is used to anchor a high-strength vertical cable as shown. The 
diameter of the hole in the plate is 3

4 in., the ultimate strength of 
the steel used is 36 ksi, and the ultimate bonding stress between 
plate and concrete is 300 psi. Knowing that a factor of safety of 
3.60 is desired when P 5 2.5 kips, determine (a) the required 
width a of the plate, (b) the minimum depth b to which a plate of 
that width should be embedded in the concrete slab. (Neglect the 
normal stresses between the concrete and the bottom edge of the 
plate.)

110 kN

Fig. P1.47 and P1.48

a

b

P

3
4

in.

5
16

in.

Fig. P1.49

 1.50 Determine the factor of safety for the cable anchor in Prob. 1.49 
when P 5 3 kips, knowing that a 5 2 in. and b 5 7.5 in.
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40 Introduction—Concept of Stress  1.51 In the steel structure shown, a 6-mm-diameter pin is used at C 
and 10-mm-diameter pins are used at B and D. The ultimate 
 shearing stress is 150 MPa at all connections, and the ultimate 
normal stress is 400 MPa in link BD. Knowing that a factor 
of safety of 3.0 is desired, determine the largest load P that can 
be applied at A. Note that link BD is not reinforced around the 
pin holes.

18 mm

Top view

Side view

Front view

160 mm 120 mm

6 mm

A

A

B
C 

B

D

C

B

D

P

Fig. P1.51

 1.52 Solve Prob. 1.51, assuming that the structure has been redesigned 
to use 12-mm-diameter pins at B and D and no other change has 
been made.

 1.53 Each of the two vertical links CF connecting the two horizontal mem-
bers AD and EG has a uniform rectangular cross section 1

4 in. thick 
and 1 in. wide, and is made of a steel with an ultimate strength in 
tension of 60 ksi. The pins at C and F each have a 1

2-in. diameter and 
are made of a steel with an ultimate strength in shear of 25 ksi. 
Determine the overall factor of safety for the links CF and the pins 
connecting them to the horizontal members.

2 kips

10 in.

10 in.

16 in.

C

A
B

E
D

F G

Fig. P1.53
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41Problems 1.54 Solve Prob. 1.53, assuming that the pins at C and F have been 
replaced by pins with a 3

4-in. diameter.

 1.55 In the structure shown, an 8-mm-diameter pin is used at A, and 
12-mm-diameter pins are used at B and D. Knowing that the ulti-
mate shearing stress is 100 MPa at all connections and that the 
ultimate normal stress is 250 MPa in each of the two links joining 
B and D, determine the allowable load P if an overall factor of 
safety of 3.0 is desired.

180 mm200 mm

Top view

Side view
Front view

8 mm

20 mm
8 mm

8 mm

12 mm

12 mm

B C
B

D D

A

B CA

P

Fig. P1.55

 1.56 In an alternative design for the structure of Prob. 1.55, a pin of 
10-mm diameter is to be used at A. Assuming that all other speci-
fications remain unchanged, determine the allowable load P if an 
overall factor of safety of 3.0 is desired.

 *1.57 The Load and Resistance Factor Design method is to be used to 
select the two cables that will raise and lower a platform support-
ing two window washers. The platform weighs 160 lb and each 
of the window washers is assumed to weigh 195 lb with equip-
ment. Since these workers are free to move on the platform, 75% 
of their total weight and the weight of their equipment will be 
used as the design live load of each cable. (a) Assuming a resis-
tance factor f 5 0.85 and load factors gD 5 1.2 and gL 5 1.5, 
determine the required minimum ultimate load of one cable. 
(b) What is the conventional factor of safety for the selected 
cables?

 *1.58 A 40-kg platform is attached to the end B of a 50-kg wooden 
beam AB, which is supported as shown by a pin at A and by a 
slender steel rod BC with a 12-kN ultimate load. (a) Using the 
Load and Resistance Factor Design method with a resistance 
factor f 5 0.90 and load factors gD 5 1.25 and gL 5 1.6, deter-
mine the largest load that can be safely placed on the platform. 
(b) What is the corresponding conventional factor of safety for 
rod BC?

P P

Fig. P1.57

1.8 m

2.4 m

A B

C

Fig. P1.58
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42

REVIEW AND SUMMARY

This chapter was devoted to the concept of stress and to an introduc-
tion to the methods used for the analysis and design of machines and 
load-bearing structures.
 Section 1.2 presented a short review of the methods of statics 
and of their application to the determination of the reactions exerted 
by its supports on a simple structure consisting of pin-connected 
members. Emphasis was placed on the use of a free-body diagram
to obtain equilibrium equations which were solved for the unknown 
reactions. Free-body diagrams were also used to find the internal 
forces in the various members of the structure.

The concept of stress was first introduced in Sec. 1.3 by consider-
ing a two-force member under an axial loading. The normal stress
in that member was obtained by dividing the magnitude P of the 
load by the cross-sectional area A of the member (Fig. 1.41). We 
wrote

s 5
P
A  

(1.5)

 Section 1.4 was devoted to a short discussion of the two prin-
cipal tasks of an engineer, namely, the analysis and the design of 
structures and machines.
 As noted in Sec. 1.5, the value of s obtained from Eq. (1.5) 
represents the average stress over the section rather than the stress 
at a specific point Q of the section. Considering a small area DA
surrounding Q and the magnitude DF of the force exerted on DA,
we defined the stress at point Q as

s 5 lim
¢Ay0

 
¢F
¢A  

(1.6)

 In general, the value obtained for the stress s at point Q is 
different from the value of the average stress given by formula 
(1.5) and is found to vary across the section. However, this varia-
tion is small in any section away from the points of application of 
the loads. In practice, therefore, the distribution of the normal 
stresses in an axially loaded member is assumed to be uniform,
except in the immediate vicinity of the points of application of the 
loads.
 However, for the distribution of stresses to be uniform in a 
given section, it is necessary that the line of action of the loads P
and P9 pass through the centroid C of the section. Such a loading is 
called a centric axial loading. In the case of an eccentric axial loading, 
the distribution of stresses is not uniform. Stresses in members sub-
jected to an eccentric axial loading will be discussed in Chap 4.

Axial loading. Normal stressAxial loading. Normal stress

A

P'

P

Fig. 1.41
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43When equal and opposite transverse forces P and P9 of magnitude 
P are applied to a member AB (Fig. 1.42), shearing stresses t are 
created over any section located between the points of application 
of the two forces [Sec 1.6]. These stresses vary greatly across the 
section and their distribution cannot be assumed uniform.  However, 
dividing the magnitude P—referred to as the shear in the section—
by the cross-sectional area A, we defined the average shearing stress 
over the section:

 
tave 5

P
A 

(1.8)

Shearing stresses are found in bolts, pins, or rivets connecting two 
structural members or machine components. For example, in the 
case of bolt CD (Fig. 1.43), which is in single shear, we wrote

 
tave 5

P
A

5
F
A  

(1.9)

while, in the case of bolts EG and HJ (Fig. 1.44), which are both in 
double shear, we had

 
tave 5

P
A

5
Fy2
A

 5
F

2A 
(1.10)

Bolts, pins, and rivets also create stresses in the members they con-
nect, along the bearing surface, or surface of contact [Sec. 1.7]. The 
bolt CD of Fig. 1.43, for example, creates stresses on the semicylin-
drical surface of plate A with which it is in contact (Fig. 1.45). Since 
the distribution of these stresses is quite complicated, one uses in 
practice an average nominal value sb of the stress, called bearing 
stress, obtained by dividing the load P by the area of the rectangle 
representing the projection of the bolt on the plate section. Denoting 
by t the thickness of the plate and by d the diameter of the bolt, we 
wrote

 
sb 5

P
A

5
P
td 

(1.11)

 In Sec. 1.8, we applied the concept introduced in the previous 
sections to the analysis of a simple structure consisting of two pin-
connected members supporting a given load. We determined succes-
sively the normal stresses in the two members, paying special 
attention to their narrowest sections, the shearing stresses in the 
various pins, and the bearing stress at each connection.

The method you should use in solving a problem in mechanics of 
materials was described in Sec. 1.9. Your solution should begin with 
a clear and precise statement of the problem. You will then draw 
one or several free-body diagrams that you will use to write equi-
librium equations. These equations will be solved for unknown 
forces, from which the required stresses and deformations can be 
computed. Once the answer has been obtained, it should be care-
fully checked.

Transverse forces. Shearing stressTransverse forces. Shearing stress

Single and double shearSingle and double shear

Review and Summary

Bearing stress

Method of Solution

A C B

P

P�

Fig. 1.42

Fig. 1.43

C

D

A
F

E'B
E

F'

K
AB

L

E H

G J

C

D 

K'

L'

FF'

Fig. 1.44

A

C

D

d

t

F

P

F'

Fig. 1.45
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44 Introduction—Concept of Stress  The first part of the chapter ended with a discussion of numeri-
cal accuracy in engineering, which stressed the fact that the accuracy 
of an answer can never be greater than the accuracy of the given 
data [Sec. 1.10].

In Sec. 1.11, we considered the stresses created on an oblique section 
in a two-force member under axial loading. We found that both nor-
mal and shearing stresses occurred in such a situation. Denoting by 
u the angle formed by the section with a normal plane (Fig. 1.46) 
and by A0 the area of a section perpendicular to the axis of the 
member, we derived the following expressions for the normal stress 
s and the shearing stress t on the oblique section:

 
s 5

P
A0

 cos2 u   t 5
P
A0

 sin u cos u
 

(1.14)

We observed from these formulas that the normal stress is maximum 
and equal to sm 5 PyA0 for u 5 0, while the shearing stress is maxi-
mum and equal to tm 5 Py2A0 for u 5 458. We also noted that t 5 0 
when u 5 0, while s 5 Py2A0 when u 5 458.

Next, we discussed the state of stress at a point Q in a body under 
the most general loading condition [Sec. 1.12]. Considering a small 
cube centered at Q (Fig. 1.47), we denoted by sx the normal stress 
exerted on a face of the cube perpendicular to the x axis, and by txy 
and txz, respectively, the y and z components of the shearing stress 
exerted on the same face of the cube. Repeating this procedure for 
the other two faces of the cube and observing that txy 5 tyx, tyz 5 
tzy, and tzx 5 txz, we concluded that six stress components are 
required to define the state of stress at a given point Q, namely, sx, 
sy, sz, txy, tyz, and tzx.
 Section 1.13 was devoted to a discussion of the various concepts 
used in the design of engineering structures. The ultimate load of a 
given structural member or machine component is the load at which 
the member or component is expected to fail; it is computed from 
the ultimate stress or ultimate strength of the material used, as deter-
mined by a laboratory test on a specimen of that material. The ulti-
mate load should be considerably larger than the allowable load, i.e., 
the load that the member or component will be allowed to carry 
under normal conditions. The ratio of the ultimate load to the allow-
able load is defined as the factor of safety:

 
Factor of safety 5 F.S. 5

ultimate load
allowable load 

(1.24)

The determination of the factor of safety that should be used in the 
design of a given structure depends upon a number of consider-
ations, some of which were listed in this section.

Section 1.13 ended with the discussion of an alternative approach to 
design, known as Load and Resistance Factor Design, which allows 
the engineer to distinguish between the uncertainties associated with 
the structure and those associated with the load.

Stresses on an oblique section

Stress under general loading

Factor of safety

Load and Resistance Factor Design

P'
�

P

Fig. 1.46

�yz
�yx

�xy

�xz�zx

�zy

�y

�z

�x

a

Qa

a

z

y

x

Fig. 1.47
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45

REVIEW PROBLEMS

 1.59 A strain gage located at C on the surface of bone AB indicates that 
the average normal stress in the bone is 3.80 MPa when the bone 
is subjected to two 1200-N forces as shown. Assuming the cross 
section of the bone at C to be annular and knowing that its outer 
diameter is 25 mm, determine the inner diameter of the bone’s 
cross section at C.

1200 N

1200 N

C

A

B

Fig. P1.59

B

A

C

0.5 in.

0.5 in.

1.8 in.

1.8 in.

45�

60�

5 kips
5 kips

Fig. P1.60

1.60 Two horizontal 5-kip forces are applied to pin B of the assembly 
shown. Knowing that a pin of 0.8-in. diameter is used at each 
connection, determine the maximum value of the average normal 
stress (a) in link AB, (b) in link BC.

 1.61 For the assembly and loading of Prob. 1.60, determine (a) the  average 
shearing stress in the pin at C, (b) the average bearing stress at C in 
member BC, (c) the average bearing stress at B in member BC.
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46 Introduction—Concept of Stress  1.62 In the marine crane shown, link CD is known to have a uniform 
cross section of 50 3 150 mm. For the loading shown, determine 
the normal stress in the central portion of that link.

A
D

C

B

3 m25 m15 m

35 m

80 Mg

15 m

Fig. P1.62

 1.63 Two wooden planks, each 1
2 in. thick and 9 in. wide, are joined by 

the dry mortise joint shown. Knowing that the wood used shears 
off along its grain when the average shearing stress reaches 1.20 ksi, 
determine the magnitude P of the axial load that will cause the 
joint to fail.

P'

P

�

a

b

Fig. P1.64

 1.64 Two wooden members of uniform rectangular cross section of 
sides a 5 100 mm and b 5 60 mm are joined by a simple glued 
joint as shown. Knowing that the ultimate stresses for the joint 
are sU 5 1.26 MPa in tension and tU 5 1.50 MPa in shear and 
that P 5 6 kN, determine the factor of safety for the joint when 
(a) a 5 208, (b) a 5 358, (c) a 5 458. For each of these values of 
a, also determine whether the joint will fail in tension or in shear 
if P is increased until rupture occurs.

2 in.
1 in.P'

2 in.
1 in. 9 in.

P

in.5
8

in.5
8

Fig. P1.63
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47Review Problems 1.65 Member ABC, which is supported by a pin and bracket at C and 
a cable BD, was designed to support the 16-kN load P as shown. 
Knowing that the ultimate load for cable BD is 100 kN, determine 
the factor of safety with respect to cable failure.

A

D 

B

C

0.4 m

30�

40�

0.8 m

0.6 m

P

Fig. P1.65

 1.67 Knowing that a force P of magnitude 750 N is applied to the pedal 
shown, determine (a) the diameter of the pin at C for which the 
average shearing stress in the pin is 40 MPa, (b) the correspond-
ing bearing stress in the pedal at C, (c) the corresponding bearing 
stress in each support bracket at C.

diameterdiameter

x

B
E F

D

CA

xE

xF

60 in.

-in.5
8-in.1

2

2000 lb

Fig. P1.66

9 mm

125 mm

75 mm
300 mm

5 mm

A B

C
C

D

P

Fig. P1.67

 1.66 The 2000-lb load may be moved along the beam BD to any posi-
tion between stops at E and F. Knowing that sall 5 6 ksi for the 
steel used in rods AB and CD, determine where the stops should 
be placed if the permitted motion of the load is to be as large as 
possible.
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48 Introduction—Concept of Stress  1.68 A force P is applied as shown to a steel reinforcing bar that has 
been embedded in a block of concrete. Determine the smallest 
length L for which the full allowable normal stress in the bar can 
be developed. Express the result in terms of the diameter d of the 
bar, the allowable normal stress sall in the steel, and the average 
allowable bond stress tall between the concrete and the cylindri-
cal surface of the bar. (Neglect the normal stresses between the 
concrete and the end of the bar.)

A

1.25 in.

2.4 kips

2.0 in.

B

�

Fig. P1.69 and P1.70

 1.69 The two portions of member AB are glued together along a plane 
forming an angle u with the horizontal. Knowing that the ultimate 
stress for the glued joint is 2.5 ksi in tension and 1.3 ksi in shear, 
determine the range of values of u for which the factor of safety 
of the members is at least 3.0.

P
L d

Fig. P1.68

 1.70 The two portions of member AB are glued together along a plane 
forming an angle u with the horizontal. Knowing that the ultimate 
stress for the glued joint is 2.5 ksi in tension and 1.3 ksi in shear, 
determine (a) the value of u for which the factor of safety of the 
member is maximum, (b) the corresponding value of the factor of 
safety. (Hint: Equate the expressions obtained for the factors of 
safety with respect to normal stress and shear.)
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COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

 1.C1 A solid steel rod consisting of n cylindrical elements welded 
together is subjected to the loading shown. The diameter of element i is 
denoted by di and the load applied to its lower end by Pi, with the magni-
tude Pi of this load being assumed positive if Pi is directed downward as 
shown and negative otherwise. (a) Write a computer program that can used 
with either SI or U.S. customary units to determine the average stress in 
each element of the rod. (b) Use this program to solve Probs. 1.2 and 1.4.

 1.C2 A 20-kN load is applied as shown to the horizontal member ABC. 
Member ABC has a 10 3 50-mm uniform rectangular cross section and 
is supported by four vertical links, each of 8 3 36-mm uniform rectangular 
cross section. Each of the four pins at A, B, C, and D has the same diam-
eter d and is in double shear. (a) Write a computer program to calculate 
for values of d from 10 to 30 mm, using 1-mm increments, (1) the maxi-
mum value of the average normal stress in the links connecting pins B
and D, (2) the average normal stress in the links connecting pins C and 
E, (3) the average shearing stress in pin B, (4) the average shearing stress 
in pin C, (5) the average bearing stress at B in member ABC, (6) the 
average bearing stress at C in member ABC. (b) Check your program by 
comparing the values obtained for d 5 16 mm with the answers given for 
Probs. 1.7 and 1.27. (c) Use this program to find the permissible values 
of the diameter d of the pins, knowing that the allowable values of the 
normal, shearing, and bearing stresses for the steel used are, respectively, 
150 MPa, 90 MPa, and 230 MPa. (d) Solve part c, assuming that the thick-
ness of member ABC has been reduced from 10 to 8 mm.

Element n

Element 1

Pn

P1

Fig. P1.C1

0.2 m
0.25 m

0.4 m

20 kN

C

B

A
D

E

Fig. P1.C2

 1.C3 Two horizontal 5-kip forces are applied to pin B of the assembly 
shown. Each of the three pins at A, B, and C has the same diameter d and 
is in double shear. (a) Write a computer program to calculate for values of 
d from 0.50 to 1.50 in., using 0.05-in. increments, (1) the maximum value 
of the average normal stress in member AB, (2) the average normal stress 

B

A

C

0.5 in.

0.5 in.

1.8 in.

1.8 in.

45�

60�

5 kips
5 kips

Fig. P1.C3
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50 Introduction—Concept of Stress in member BC, (3) the average shearing stress in pin A, (4) the average 
shearing stress in pin C, (5) the average bearing stress at A in member AB, 
(6) the average bearing stress at C in member BC, (7) the average bearing 
stress at B in member BC. (b) Check your program by comparing the values 
obtained for d 5 0.8 in. with the answers given for Probs. 1.60 and 1.61. 
(c) Use this program to find the permissible values of the diameter d of the 
pins, knowing that the allowable values of the normal, shearing, and bearing 
stresses for the steel used are, respectively, 22 ksi, 13 ksi, and 36 ksi. (d) Solve 
part c, assuming that a new design is being investigated in which the thick-
ness and width of the two members are changed, respectively, from 0.5 to 
0.3 in. and from 1.8 to 2.4 in.

 1.C4 A 4-kip force P forming an angle a with the vertical is applied 
as shown to member ABC, which is supported by a pin and bracket at C 
and by a cable BD forming an angle b with the horizontal. (a) Knowing 
that the ultimate load of the cable is 25 kips, write a computer program 
to construct a table of the values of the factor of safety of the cable for 
values of a and b from 0 to 458, using increments in a and b correspond-
ing to 0.1 increments in tan a and tan b. (b) Check that for any given 
value of a, the maximum value of the factor of safety is obtained for b 5 
38.668 and explain why. (c) Determine the smallest possible value of the 
factor of safety for b 5 38.668, as well as the corresponding value of a, 
and explain the result obtained.

�

�A

D 

B

C

12 in.18 in.

15 in.

P

Fig. P1.C4
P

a
b

P'

�

Fig. P1.C5

 1.C5 A load P is supported as shown by two wooden members of uni-
form rectangular cross section that are joined by a simple glued scarf splice. 
(a) Denoting by sU and tU, respectively, the ultimate strength of the joint 
in tension and in shear, write a computer program which, for given values 
of a, b, P, sU and tU, expressed in either SI or U.S. customary units, and 
for values of a from 5 to 858 at 58 intervals, can calculate (1) the normal 
stress in the joint, (2) the shearing stress in the joint, (3) the factor of safety 
relative to failure in tension, (4) the factor of safety relative to failure in 
shear, (5) the overall factor of safety for the glued joint. (b) Apply this pro-
gram, using the dimensions and loading of the members of Probs. 1.29 and 
1.31, knowing that sU 5 150 psi and tU 5 214 psi for the glue used in 
Prob. 1.29, and that sU 5 1.26 MPa and tU 5 1.50 MPa for the glue used 
in Prob. 1.31. (c) Verify in each of these two cases that the shearing stress 
is maximum for a 5 458.
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51Computer Problems 1.C6 Member ABC is supported by a pin and bracket at A, and by two 
links that are pin-connected to the member at B and to a fixed support at 
D. (a) Write a computer program to calculate the allowable load Pall for 
any given values of (1) the diameter d1 of the pin at A, (2) the common 
diameter d2 of the pins at B and D, (3) the ultimate normal stress sU in 
each of the two links, (4) the ultimate shearing stress tU in each of the 
three pins, (5) the desired overall factor of safety F.S. Your program should 
also indicate which of the following three stresses is critical: the normal 
stress in the links, the shearing stress in the pin at A, or the shearing stress 
in the pins at B and D (b and c). Check your program by using the data 
of Probs. 1.55 and 1.56, respectively, and comparing the answers obtained 
for Pall with those given in the text. (d) Use your program to determine the 
allowable load Pall, as well as which of the stresses is critical, when d1 5 
d2 5 15 mm, sU 5 110 MPa for aluminum links, tU 5 100 MPa for steel 
pins, and F.S. 5 3.2.

180 mm200 mm

Top view

Side view
Front view

8 mm

20 mm
8 mm

8 mm

12 mm

12 mm

B C
B

D D

A

B CA

P

Fig. P1.C6
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This chapter is devoted to the study of 

deformations occurring in structural 

components subjected to axial loading. 

The change in length of the diagonal 

stays was carefully accounted for in the 

design of this cable-stayed bridge.
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Stress and Strain—Axial 
Loading
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Chapter 2 Stress and Strain—
Axial Loading

 2.1 Introduction
 2.2 Normal Strain Under Axial 

Loading
 2.3 Stress-Strain Diagram
 *2.4 True Stress and True Strain
 2.5 Hooke’s Law; Modulus of 

Elasticity
 2.6 Elastic versus Plastic Behavior of 

a Material
 2.7 Repeated Loadings; Fatigue
 2.8 Deformations of Members Under 

Axial Loading
 2.9 Statically Indeterminate Problems
 2.10  Problems Involving Temperature 

Changes
 2.11 Poisson’s Ratio
 2.12 Multiaxial Loading; Generalized 

Hooke’s Law
 *2.13 Dilatation; Bulk Modulus
 2.14 Shearing Strain
 2.15 Further Discussions of 

Deformations Under Axial 
Loading; Relation Among E, n, 
and G

 *2.16 Stress-Strain Relationships for 
Fiber-Reinforced Composite 
Materials

 2.17 Stress and Strain Distribution 
Under Axial Loading; Saint-
Venant’s Principle

 2.18 Stress Concentrations
 2.19 Plastic Deformations
 *2.20 Residual Stresses

2.1 INTRODUCTION
In Chap. 1 we analyzed the stresses created in various members and 
connections by the loads applied to a structure or machine. We also 
learned to design simple members and connections so that they 
would not fail under specified loading conditions. Another important 
aspect of the analysis and design of structures relates to the deforma-
tions caused by the loads applied to a structure. Clearly, it is impor-
tant to avoid deformations so large that they may prevent the structure 
from fulfilling the purpose for which it was intended. But the analysis 
of deformations may also help us in the determination of stresses. 
Indeed, it is not always possible to determine the forces in the mem-
bers of a structure by applying only the principles of statics. This is 
because statics is based on the assumption of undeformable, rigid 
structures. By considering engineering structures as deformable and 
analyzing the deformations in their various members, it will be pos-
sible for us to compute forces that are statically indeterminate, i.e., 
indeterminate within the framework of statics. Also, as we indicated 
in Sec. 1.5, the distribution of stresses in a given member is statically 
indeterminate, even when the force in that member is known. To 
determine the actual distribution of stresses within a member, it is 
thus necessary to analyze the deformations that take place in that 
member. In this chapter, you will consider the deformations of a 
structural member such as a rod, bar, or plate under axial loading.
 First, the normal strain P in a member will be defined as the 
deformation of the member per unit length. Plotting the stress s 
versus the strain P as the load applied to the member is increased 
will yield a stress-strain diagram for the material used. From such a 
diagram we can determine some important properties of the mate-
rial, such as its modulus of elasticity, and whether the material is 
ductile or brittle (Secs. 2.2 to 2.5). You will also see in Sec. 2.5 that, 
while the behavior of most materials is independent of the direction 
in which the load is applied, the response of fiber-reinforced com-
posite materials depends upon the direction of the load.
 From the stress-strain diagram, we can also determine whether 
the strains in the specimen will disappear after the load has been 
removed—in which case the material is said to behave elastically—or 
whether a permanent set or plastic deformation will result (Sec. 2.6).
 Section 2.7 is devoted to the phenomenon of fatigue, which 
causes structural or machine components to fail after a very large 
number of repeated loadings, even though the stresses remain in the 
elastic range.
 The first part of the chapter ends with Sec. 2.8, which is devoted 
to the determination of the deformation of various types of members 
under various conditions of axial loading.
 In Secs. 2.9 and 2.10, statically indeterminate problems will 
be considered, i.e., problems in which the reactions and the inter-
nal forces cannot be determined from statics alone. The equilib-
rium equations derived from the free-body diagram of the member 
under consideration must be complemented by relations involving 
deformations; these relations will be obtained from the geometry 
of the problem.

bee80288_ch02_052-139.indd Page 54  11/2/10  2:59:48 PM user-f499bee80288_ch02_052-139.indd Page 54  11/2/10  2:59:48 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch02/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch02



55 In Secs. 2.11 to 2.15, additional constants associated with  isotropic 
materials—i.e., materials with mechanical characteristics independent 
of direction—will be introduced. They include Poisson’s ratio, which 
relates lateral and axial strain, the bulk modulus, which characterizes 
the change in volume of a material under hydrostatic pressure, and 
the modulus of rigidity, which relates the components of the shearing 
stress and shearing strain. Stress-strain relationships for an isotropic 
material under a multiaxial loading will also be derived.
 In Sec. 2.16, stress-strain relationships involving several distinct 
values of the modulus of elasticity, Poisson’s ratio, and the modulus 
of rigidity, will be developed for fiber-reinforced composite materials 
under a multiaxial loading. While these materials are not isotropic, 
they usually display special properties, known as orthotropic proper-
ties, which facilitate their study.
 In the text material described so far, stresses are assumed uni-
formly distributed in any given cross section; they are also assumed 
to remain within the elastic range. The validity of the first assump-
tion is discussed in Sec. 2.17, while stress concentrations near circu-
lar holes and fillets in flat bars are considered in Sec. 2.18. Sections 
2.19 and 2.20 are devoted to the discussion of stresses and deforma-
tions in members made of a ductile material when the yield point of 
the material is exceeded. As you will see, permanent plastic deforma-
tions and residual stresses result from such loading conditions.

2.2 NORMAL STRAIN UNDER AXIAL LOADING
Let us consider a rod BC, of length L and uniform cross-sectional 
area A, which is suspended from B (Fig. 2.1a). If we apply a load P 
to end C, the rod elongates (Fig. 2.1b). Plotting the magnitude P of 
the load against the deformation d (Greek letter delta), we obtain a 
certain load-deformation diagram (Fig. 2.2). While this diagram con-
tains information useful to the analysis of the rod under consider-
ation, it cannot be used directly to predict the deformation of a rod 
of the same material but of different dimensions. Indeed, we observe 
that, if a deformation d is produced in rod BC by a load P, a load 
2P is required to cause the same deformation in a rod B9C9 of the 
same length L, but of cross-sectional area 2A (Fig. 2.3). We note 
that, in both cases, the value of the stress is the same: s 5 PyA. 
On the other hand, a load P applied to a rod B0C0, of the same 

B B

C
C

L

A

P

�

(a) (b)

Fig. 2.1 Deformation 
of axially-loaded rod.

P

�

Fig. 2.2 Load-deformation diagram.

2.2 Normal Strain under Axial Loading

2P

B'B'

C'
C'

L

2A

�

Fig. 2.3
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56 Stress and Strain—Axial Loading cross-sectional area A, but of length 2L, causes a deformation 2d in 
that rod (Fig. 2.4), i.e., a deformation twice as large as the deforma-
tion d it produces in rod BC. But in both cases the ratio of the 
deformation over the length of the rod is the same; it is equal to 
dyL. This observation brings us to introduce the concept of strain: 
We define the normal strain in a rod under axial loading as the 
deformation per unit length of that rod. Denoting the normal strain 
by P (Greek letter epsilon), we write

 
P 5

d

L 
(2.1)

 Plotting the stress s 5 PyA against the strain P 5 dyL, we 
obtain a curve that is characteristic of the properties of the material 
and does not depend upon the dimensions of the particular specimen 
used. This curve is called a stress-strain diagram and will be dis-
cussed in detail in Sec. 2.3.
 Since the rod BC considered in the preceding discussion had 
a uniform cross section of area A, the normal stress s could be 
assumed to have a constant value PyA throughout the rod. Thus, 
it was appropriate to define the strain P as the ratio of the total 
deformation d over the total length L of the rod. In the case of a 
member of variable cross-sectional area A, however, the normal 
stress s 5 PyA varies along the member, and it is necessary to 
define the strain at a given point Q by considering a small element 
of undeformed length Dx (Fig. 2.5). Denoting by Dd the deforma-
tion of the element under the given loading, we define the normal 
strain at point Q as

 
P 5 lim

¢xy0

¢d
¢x

5
dd
dx

 (2.2)

 Since deformation and length are expressed in the same units, 
the normal strain P obtained by dividing d by L (or dd by dx) is a 
dimensionless quantity. Thus, the same numerical value is obtained 
for the normal strain in a given member, whether SI metric units or 
U.S. customary units are used. Consider, for instance, a bar of length 
L 5 0.600 m and uniform cross section, which undergoes a deforma-
tion d 5 150 3 1026 m. The corresponding strain is

P 5
d

L
5

150 3 1026 m
0.600 m

5 250 3 1026 m/m 5 250 3 1026

Note that the deformation could have been expressed in microme-
ters: d 5 150 mm. We would then have written

P 5
d

L
5

150 mm
0.600 m

5 250 mm/m 5 250 m

and read the answer as “250 micros.” If U.S. customary units are 
used, the length and deformation of the same bar are, respectively, 

 P

B� B�

C�

C�

2L

A
2�

Fig. 2.4

� ��x+ x +

Q

Q

�x x 

�

P

Fig. 2.5 Deformation of axially-
loaded member of variable cross-
sectional area.
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57L 5 23.6 in. and d 5 5.91 3 1023 in. The corresponding strain is

P 5
d

L
5

5.91 3 1023  in.
23.6 in.

5 250 3 1026 in./in.

which is the same value that we found using SI units. It is customary, 
however, when lengths and deformations are expressed in inches or 
microinches (min.), to keep the original units in the expression obtained 
for the strain. Thus, in our example, the strain would be recorded as 
P 5 250 3 1026 in./in. or, alternatively, as P 5 250 min./in.

2.3 STRESS-STRAIN DIAGRAM
We saw in Sec. 2.2 that the diagram representing the relation between 
stress and strain in a given material is an important characteristic of 
the material. To obtain the stress-strain diagram of a material, one 
usually conducts a tensile test on a specimen of the material. One 
type of specimen commonly used is shown in Photo 2.1. The cross-
sectional area of the cylindrical central portion of the specimen has 
been accurately determined and two gage marks have been inscribed 
on that portion at a distance L0 from each other. The distance L0 is 
known as the gage length of the specimen.
 The test specimen is then placed in a testing machine (Photo 2.2), 
which is used to apply a centric load P. As the load P increases, the 

2.3 Stress-Strain Diagram

Photo 2.1 Typical 
tensile-test specimen.

Photo 2.2 This machine is used to test tensile test specimens, 
such as those shown in this chapter.
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58 Stress and Strain—Axial Loading distance L between the two gage marks also increases (Photo 2.3). The 
distance L is measured with a dial gage, and the elongation d 5 L 2 
L0 is recorded for each value of P. A second dial gage is often used 
simultaneously to measure and record the change in diameter of the 
specimen. From each pair of readings P and d, the stress s is computed 
by dividing P by the original cross-sectional area A0 of the specimen, 
and the strain P by dividing the elongation d by the original distance 
L0 between the two gage marks. The stress-strain diagram may then 
be obtained by plotting P as an abscissa and s as an ordinate.
 Stress-strain diagrams of various materials vary widely, and dif-
ferent tensile tests conducted on the same material may yield differ-
ent results, depending upon the temperature of the specimen and 
the speed of loading. It is possible, however, to distinguish some 
common characteristics among the stress-strain diagrams of various 
groups of materials and to divide materials into two broad categories 
on the basis of these characteristics, namely, the ductile materials 
and the brittle materials.
 Ductile materials, which comprise structural steel, as well as 
many alloys of other metals, are characterized by their ability to yield 
at normal temperatures. As the specimen is subjected to an increas-
ing load, its length first increases linearly with the load and at a very 
slow rate. Thus, the initial portion of the stress-strain diagram is a 
straight line with a steep slope (Fig. 2.6). However, after a critical 
value sY of the stress has been reached, the specimen undergoes a 
large deformation with a relatively small increase in the applied load. 
This deformation is caused by slippage of the material along oblique 
surfaces and is due, therefore, primarily to shearing stresses. As we 
can note from the stress-strain diagrams of two typical ductile mate-
rials (Fig. 2.6), the elongation of the specimen after it has started to 
yield can be 200 times as large as its deformation before yield. After 
a certain maximum value of the load has been reached, the diameter 
of a portion of the specimen begins to decrease, because of local 
instability (Photo 2.4a). This phenomenon is known as necking. After 
necking has begun, somewhat lower loads are sufficient to keep the 
specimen elongating further, until it finally ruptures (Photo 2.4b). 
We note that rupture occurs along a cone-shaped surface that forms 
an angle of approximately 458 with the original surface of the speci-
men. This indicates that shear is primarily responsible for the failure 
of ductile materials, and confirms the fact that, under an axial load, 

P

P�

Photo 2.3 Test specimen with
tensile load.

Yield Strain-hardening
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Fig. 2.6 Stress-strain diagrams of two typical ductile materials.
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59

shearing stresses are largest on surfaces forming an angle of 458 with 
the load (cf. Sec. 1.11). The stress sY at which yield is initiated is 
called the yield strength of the material, the stress sU corresponding 
to the maximum load applied to the specimen is known as the ulti-
mate strength, and the stress sB corresponding to rupture is called 
the breaking strength.
 Brittle materials, which comprise cast iron, glass, and stone, are 
characterized by the fact that rupture occurs without any noticeable 
prior change in the rate of elongation (Fig. 2.7). Thus, for brittle 
materials, there is no difference between the ultimate strength and 
the breaking strength. Also, the strain at the time of rupture is much 
smaller for brittle than for ductile materials. From Photo 2.5, we 
note the absence of any necking of the specimen in the case of a 
brittle material, and observe that rupture occurs along a surface per-
pendicular to the load. We conclude from this observation that nor-
mal stresses are primarily responsible for the failure of brittle 
materials.†
 The stress-strain diagrams of Fig. 2.6 show that structural steel 
and aluminum, while both ductile, have different yield characteris-
tics. In the case of structural steel (Fig. 2.6a), the stress remains 
constant over a large range of values of the strain after the onset of 
yield. Later the stress must be increased to keep elongating the 
specimen, until the maximum value sU has been reached. This is 
due to a property of the material known as strain-hardening. The 

Photo 2.4 Tested specimen of a 
ductile material.

†The tensile tests described in this section were assumed to be conducted at normal 
temperatures. However, a material that is ductile at normal temperatures may display the 
characteristics of a brittle material at very low temperatures, while a normally brittle mate-
rial may behave in a ductile fashion at very high temperatures. At temperatures other than 
normal, therefore, one should refer to a material in a ductile state or to a material in a 
brittle state, rather than to a ductile or brittle material.

Rupture

�

B�U ��

�

Fig. 2.7 Stress-strain diagram for a 
typical brittle material.

2.3 Stress-Strain Diagram

Photo 2.5 Tested 
specimen of a 
brittle material.
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60 Stress and Strain—Axial Loading yield strength of structural steel can be determined during the ten-
sile test by watching the load shown on the display of the testing 
machine. After increasing steadily, the load is observed to suddenly 
drop to a slightly lower value, which is maintained for a certain 
period while the specimen keeps elongating. In a very carefully con-
ducted test, one may be able to distinguish between the upper yield 
point, which corresponds to the load reached just before yield starts, 
and the lower yield point, which corresponds to the load required to 
maintain yield. Since the upper yield point is transient, the lower 
yield point should be used to determine the yield strength of the 
material.
 In the case of aluminum (Fig. 2.6b) and of many other ductile 
materials, the onset of yield is not characterized by a horizontal por-
tion of the stress-strain curve. Instead, the stress keeps increasing—
although not linearly—until the ultimate strength is reached. Necking 
then begins, leading eventually to rupture. For such materials, the 
yield strength sY can be defined by the offset method. The yield 
strength at 0.2% offset, for example, is obtained by drawing through 
the point of the horizontal axis of abscissa P 5 0.2% (or P 5 0.002), 
a line parallel to the initial straight-line portion of the stress-strain 
diagram (Fig. 2.8). The stress sY corresponding to the point Y 
obtained in this fashion is defined as the yield strength at 0.2% 
offset.
 A standard measure of the ductility of a material is its percent 
elongation, which is defined as

Percent elongation 5 100 
LB 2 L0

L0

where L0 and LB denote, respectively, the initial length of the tensile 
test specimen and its final length at rupture. The specified minimum 
elongation for a 2-in. gage length for commonly used steels with yield 
strengths up to 50 ksi is 21 percent. We note that this means that 
the average strain at rupture should be at least 0.21 in./in.
 Another measure of ductility which is sometimes used is the 
percent reduction in area, defined as

Percent reduction in area 5 100 
A0 2 AB

A0

where A0 and AB denote, respectively, the initial cross-sectional area 
of the specimen and its minimum cross-sectional area at rupture. For 
structural steel, percent reductions in area of 60 to 70 percent are 
common.
 Thus far, we have discussed only tensile tests. If a specimen 
made of a ductile material were loaded in compression instead of 
tension, the stress-strain curve obtained would be essentially the 
same through its initial straight-line portion and through the begin-
ning of the portion corresponding to yield and strain-hardening. Par-
ticularly noteworthy is the fact that for a given steel, the yield strength 
is the same in both tension and compression. For larger values of 
the strain, the tension and compression stress-strain curves diverge, 
and it should be noted that necking cannot occur in compression. 

Rupture

0.2% offset
�

Y

Y
�

�

Fig. 2.8 Determination of yield 
strength by offset method.
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61

For most brittle materials, one finds that the ultimate strength in 
compression is much larger than the ultimate strength in tension. 
This is due to the presence of flaws, such as microscopic cracks or 
cavities, which tend to weaken the material in tension, while not 
appreciably affecting its resistance to compressive failure.
 An example of brittle material with different properties in ten-
sion and compression is provided by concrete, whose stress-strain 
diagram is shown in Fig. 2.9. On the tension side of the diagram, we 
first observe a linear elastic range in which the strain is proportional 
to the stress. After the yield point has been reached, the strain 
increases faster than the stress until rupture occurs. The behavior of 
the material in compression is different. First, the linear elastic range 
is significantly larger. Second, rupture does not occur as the stress 
reaches its maximum value. Instead, the stress decreases in magni-
tude while the strain keeps increasing until rupture occurs. Note that 
the modulus of elasticity, which is represented by the slope of the 
stress-strain curve in its linear portion, is the same in tension and 
compression. This is true of most brittle materials.

*2.4 TRUE STRESS AND TRUE STRAIN
We recall that the stress plotted in the diagrams of Figs. 2.6 and 2.7 
was obtained by dividing the load P by the cross-sectional area 
A0 of the specimen measured before any deformation had taken 
place. Since the cross-sectional area of the specimen decreases as P 
increases, the stress plotted in our diagrams does not represent the 
actual stress in the specimen. The difference between the engineer-
ing stress s 5 PyA0 that we have computed and the true stress 
st 5 PyA obtained by dividing P by the cross-sectional area A of 
the deformed specimen becomes apparent in ductile materials after 
yield has started. While the engineering stress s, which is directly 
proportional to the load P, decreases with P during the necking 
phase, the true stress st, which is proportional to P but also inversely 
proportional to A, is observed to keep increasing until rupture of 
the specimen occurs.

Linear elastic range

Rupture, compression

Rupture, tension

�

   U, tension

�

   U, compression�

�

Fig. 2.9 Stress-strain diagram for concrete.

*2.4 True Stress and True Strain
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62 Stress and Strain—Axial Loading  Many scientists also use a definition of strain different from 
that of the engineering strain P 5 dyL0. Instead of using the total 
elongation d and the original value L0 of the gage length, they use 
all the successive values of L that they have recorded. Dividing each 
increment DL of the distance between the gage marks, by the cor-
responding value of L, they obtain the elementary strain DP 5 DLyL. 
Adding the successive values of DP, they define the true strain Pt:

Pt 5 o¢P 5 o1¢LyL2
With the summation replaced by an integral, they can also express 
the true strain as follows:

 
Pt 5 #

L

L0

 
dL
L

5 ln 
L
L0  

(2.3)

 The diagram obtained by plotting true stress versus true strain 
(Fig. 2.10) reflects more accurately the behavior of the material. As we 
have already noted, there is no decrease in true stress during the neck-
ing phase. Also, the results obtained from tensile and from compressive 
tests will yield essentially the same plot when true stress and true strain 
are used. This is not the case for large values of the strain when the 
engineering stress is plotted versus the engineering strain. However, 
engineers, whose responsibility is to determine whether a load P will 
produce an acceptable stress and an acceptable deformation in a given 
member, will want to use a diagram based on the engineering stress 
s 5 PyA0 and the engineering strain P 5 dyL0, since these expressions 
involve data that are available to them, namely the cross-sectional area 
A0 and the length L0 of the member in its undeformed state.

2.5 HOOKE’S LAW; MODULUS OF ELASTICITY
Most engineering structures are designed to undergo relatively small 
deformations, involving only the straight-line portion of the corre-
sponding stress-strain diagram. For that initial portion of the diagram 
(Fig. 2.6), the stress s is directly proportional to the strain P, and 
we can write

 s 5 EP (2.4)

This relation is known as Hooke’s law, after Robert Hooke (1635–1703), 
an English scientist and one of the early founders of applied mechan-
ics. The coefficient E is called the modulus of elasticity of the material 
involved, or also Young’s modulus, after the English scientist Thomas 
Young (1773–1829). Since the strain P is a dimensionless quantity, the 
modulus E is expressed in the same units as the stress s, namely in 
pascals or one of its multiples if SI units are used, and in psi or ksi if 
U.S. customary units are used.
 The largest value of the stress for which Hooke’s law can be used 
for a given material is known as the proportional limit of that material. 
In the case of ductile materials possessing a well-defined yield point, 
as in Fig. 2.6a, the proportional limit almost coincides with the yield 
point. For other materials, the proportional limit cannot be defined as 

�t

� t

Yield

Rupture

Fig. 2.10 True stress versus true 
strain for a typical ductile material.
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63easily, since it is difficult to determine with accuracy the value of the 
stress s for which the relation between s and P ceases to be linear. 
But from this very difficulty we can conclude for such materials that 
using Hooke’s law for values of the stress slightly larger than the actual 
proportional limit will not result in any significant error.
 Some of the physical properties of structural metals, such as 
strength, ductility, and corrosion resistance, can be greatly affected by 
alloying, heat treatment, and the manufacturing process used. For 
example, we note from the stress-strain diagrams of pure iron and of 
three different grades of steel (Fig. 2.11) that large variations in the 
yield strength, ultimate strength, and final strain (ductility) exist among 
these four metals. All of them, however, possess the same modulus of 
elasticity; in other words, their “stiffness,” or ability to resist a deforma-
tion within the linear range, is the same. Therefore, if a high-strength 
steel is substituted for a lower-strength steel in a given structure, and 
if all dimensions are kept the same, the structure will have an increased 
load-carrying capacity, but its stiffness will remain unchanged.
 For each of the materials considered so far, the relation between 
normal stress and normal strain, s 5 EP, is independent of the 
direction of loading. This is because the mechanical properties of 
each material, including its modulus of elasticity E, are independent 
of the direction considered. Such materials are said to be isotropic. 
Materials whose properties depend upon the direction considered 
are said to be anisotropic. 
 An important class of anisotropic materials consists of fiber-
 reinforced composite materials. These composite materials are obtained 
by embedding fibers of a strong, stiff material into a weaker, softer 
material, referred to as a matrix. Typical materials used as fibers are 
graphite, glass, and polymers, while various types of resins are used as 
a matrix. Figure 2.12 shows a layer, or lamina, of a composite material 
consisting of a large number of parallel fibers embedded in a matrix. 
An axial load applied to the lamina along the x axis, that is, in a direc-
tion parallel to the fibers, will create a normal stress sx in the lamina 
and a corresponding normal strain Px which will satisfy Hooke’s law as 
the load is increased and as long as the elastic limit of the lamina is 
not exceeded. Similarly, an axial load applied along the y axis, that is, 
in a direction perpendicular to the lamina, will create a normal stress 
sy and a normal strain Py satisfying Hooke’s law, and an axial load 
applied along the z axis will create a normal stress sz and a normal 
strain Pz which again satisfy Hooke’s law. However, the moduli of elas-
ticity Ex, Ey, and Ez corresponding, respectively, to each of the above 
loadings will be different. Because the fibers are parallel to the x axis, 
the lamina will offer a much stronger resistance to a loading directed 
along the x axis than to a loading directed along the y or z axis, and 
Ex will be much larger than either Ey or Ez.
 A flat laminate is obtained by superposing a number of layers 
or laminas. If the laminate is to be subjected only to an axial load 
causing tension, the fibers in all layers should have the same orienta-
tion as the load in order to obtain the greatest possible strength. But 
if the laminate may be in compression, the matrix material may not 
be sufficiently strong to prevent the fibers from kinking or buckling. The 
lateral stability of the laminate may then be increased by  positioning 

Quenched, tempered
alloy steel (A709)

High-strength, low-alloy
steel (A992)

Carbon steel (A36)

Pure iron

�

�

Fig. 2.11 Stress-strain diagrams for 
iron and different grades of steel.

2.5 Hooke’s Law; Modulus of Elasticity

Layer of
material

Fibers

y

z
x

Fig. 2.12 Layer of fiber-reinforced 
composite material.
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64 Stress and Strain—Axial Loading some of the layers so that their fibers will be perpendicular to the 
load. Positioning some layers so that their fibers are oriented at 308, 
458, or 608 to the load may also be used to increase the resistance 
of the laminate to in-plane shear. Fiber-reinforced composite materi-
als will be further discussed in Sec. 2.16, where their behavior under 
multiaxial loadings will be considered.

2.6  ELASTIC VERSUS PLASTIC BEHAVIOR OF
A MATERIAL

If the strains caused in a test specimen by the application of a given 
load disappear when the load is removed, the material is said to 
behave elastically. The largest value of the stress for which the mate-
rial behaves elastically is called the elastic limit of the material.
 If the material has a well-defined yield point as in Fig. 2.6a, 
the elastic limit, the proportional limit (Sec. 2.5), and the yield point 
are essentially equal. In other words, the material behaves elastically 
and linearly as long as the stress is kept below the yield point. If the 
yield point is reached, however, yield takes place as described in Sec. 
2.3 and, when the load is removed, the stress and strain decrease in 
a linear fashion, along a line CD parallel to the straight-line portion 
AB of the loading curve (Fig. 2.13). The fact that P does not return 
to zero after the load has been removed indicates that a permanent 
set or plastic deformation of the material has taken place. For most 
materials, the plastic deformation depends not only upon the maxi-
mum value reached by the stress, but also upon the time elapsed 
before the load is removed. The stress-dependent part of the plastic 
deformation is referred to as slip, and the time-dependent part—
which is also influenced by the temperature—as creep.
 When a material does not possess a well-defined yield point, 
the elastic limit cannot be determined with precision. However, 
assuming the elastic limit equal to the yield strength as defined by 
the offset method (Sec. 2.3) results in only a small error. Indeed, 
referring to Fig. 2.8, we note that the straight line used to determine 
point Y also represents the unloading curve after a maximum stress 
sY has been reached. While the material does not behave truly elasti-
cally, the resulting plastic strain is as small as the selected offset.
 If, after being loaded and unloaded (Fig. 2.14), the test speci-
men is loaded again, the new loading curve will closely follow the 
earlier unloading curve until it almost reaches point C; it will then 
bend to the right and connect with the curved portion of the original 
stress-strain diagram. We note that the straight-line portion of the 
new loading curve is longer than the corresponding portion of the initial 
one. Thus, the proportional limit and the elastic limit have increased 
as a result of the strain-hardening that occurred during the earlier 
loading of the specimen. However, since the point of rupture R 
remains unchanged, the ductility of the specimen, which should now 
be measured from point D, has decreased.
 We have assumed in our discussion that the specimen was 
loaded twice in the same direction, i.e., that both loads were tensile 
loads. Let us now consider the case when the second load is applied 
in a direction opposite to that of the first one. We assume that the 
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A D

Rupture
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�

Fig. 2.13  Stress-strain characteristics 
of ductile material loaded beyond 
yield and unloaded.

C
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Rupture

B

�

�

Fig. 2.14 Stress-strain characteristics 
of ductile material reloaded after prior 
yielding.

bee80288_ch02_052-139.indd Page 64  9/4/10  5:15:15 PM user-f499bee80288_ch02_052-139.indd Page 64  9/4/10  5:15:15 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch02/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch02



65

material is mild steel, for which the yield strength is the same in 
tension and in compression. The initial load is tensile and is applied 
until point C has been reached on the stress-strain diagram (Fig. 2.15). 
After unloading (point D), a compressive load is applied, causing the 
material to reach point H, where the stress is equal to 2sY. We note 
that portion DH of the stress-strain diagram is curved and does not 
show any clearly defined yield point. This is referred to as the 
Bauschinger effect. As the compressive load is maintained, the material 
yields along line HJ.
 If the load is removed after point J has been reached, the stress 
returns to zero along line JK, and we note that the slope of JK is 
equal to the modulus of elasticity E. The resulting permanent set AK 
may be positive, negative, or zero, depending upon the lengths of 
the segments BC and HJ. If a tensile load is applied again to the test 
specimen, the portion of the stress-strain diagram beginning at K 
(dashed line) will curve up and to the right until the yield stress sY 
has been reached.
 If the initial loading is large enough to cause strain-hardening 
of the material (point C9), unloading takes place along line C9D9. As 
the reverse load is applied, the stress becomes compressive, reaching 
its maximum value at H9 and maintaining it as the material yields 
along line H9J9. We note that while the maximum value of the com-
pressive stress is less than sY, the total change in stress between C9 
and H9 is still equal to 2sY.
 If point K or K9 coincides with the origin A of the diagram, the 
permanent set is equal to zero, and the specimen may appear to have 
returned to its original condition. However, internal changes will have 
taken place and, while the same loading sequence may be repeated, 
the specimen will rupture without any warning after relatively few 
repetitions. This indicates that the excessive plastic deformations to 
which the specimen was subjected have caused a radical change in 
the characteristics of the material. Reverse loadings into the plastic 
range, therefore, are seldom allowed, and only under carefully con-
trolled conditions. Such situations occur in the straightening of dam-
aged material and in the final alignment of a structure or machine.

K A D K' D'
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H'J'

J H

B C

�

�

�

�Y

�

– Y

Y

Fig. 2.15 Stress-strain characteristics for mild steel subjected 
to reverse loading.

2.6 Elastic versus Plastic Behavior
of a Material
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66 Stress and Strain—Axial Loading 2.7 REPEATED LOADINGS; FATIGUE
In the preceding sections we have considered the behavior of a test 
specimen subjected to an axial loading. We recall that, if the maxi-
mum stress in the specimen does not exceed the elastic limit of the 
material, the specimen returns to its initial condition when the load 
is removed. You might conclude that a given loading may be 
repeated many times, provided that the stresses remain in the elas-
tic range. Such a conclusion is correct for loadings repeated a few 
dozen or even a few hundred times. However, as you will see, it is 
not correct when loadings are repeated thousands or millions of 
times. In such cases, rupture will occur at a stress much lower than 
the static breaking strength; this phenomenon is known as fatigue. 
A fatigue failure is of a brittle nature, even for materials that are 
normally ductile.
 Fatigue must be considered in the design of all structural and 
machine components that are subjected to repeated or to fluctuating 
loads. The number of loading cycles that may be expected during 
the useful life of a component varies greatly. For example, a beam 
supporting an industrial crane may be loaded as many as two million 
times in 25 years (about 300 loadings per working day), an automo-
bile crankshaft will be loaded about half a billion times if the auto-
mobile is driven 200,000 miles, and an individual turbine blade may 
be loaded several hundred billion times during its lifetime.
 Some loadings are of a fluctuating nature. For example, the 
passage of traffic over a bridge will cause stress levels that will fluctu-
ate about the stress level due to the weight of the bridge. A more 
severe condition occurs when a complete reversal of the load occurs 
during the loading cycle. The stresses in the axle of a railroad car, 
for example, are completely reversed after each half-revolution of 
the wheel.
 The number of loading cycles required to cause the failure of 
a specimen through repeated successive loadings and reverse load-
ings may be determined experimentally for any given maximum 
stress level. If a series of tests is conducted, using different maxi-
mum stress levels, the resulting data may be plotted as a s-n curve. 
For each test, the maximum stress s is plotted as an ordinate and 
the number of cycles n as an abscissa; because of the large number 
of cycles required for rupture, the cycles n are plotted on a loga-
rithmic scale.
 A typical s-n curve for steel is shown in Fig. 2.16. We note 
that, if the applied maximum stress is high, relatively few cycles are 
required to cause rupture. As the magnitude of the maximum stress 
is reduced, the number of cycles required to cause rupture increases, 
until a stress, known as the endurance limit, is reached. The endur-
ance limit is the stress for which failure does not occur, even for an 
indefinitely large number of loading cycles. For a low-carbon steel, 
such as structural steel, the endurance limit is about one-half of the 
ultimate strength of the steel.
 For nonferrous metals, such as aluminum and copper, a typical 
s-n curve (Fig. 2.16) shows that the stress at failure continues to 

bee80288_ch02_052-139.indd Page 66  9/4/10  5:15:22 PM user-f499bee80288_ch02_052-139.indd Page 66  9/4/10  5:15:22 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch02/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch02



672.8 Deformations of Members under
Axial Loading
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Fig. 2.17 Deformation 
of axially loaded rod.

decrease as the number of loading cycles is increased. For such met-
als, one defines the fatigue limit as the stress corresponding to failure 
after a specified number of loading cycles, such as 500 million.
 Examination of test specimens, of shafts, of springs, and of 
other components that have failed in fatigue shows that the failure 
was initiated at a microscopic crack or at some similar imperfection. 
At each loading, the crack was very slightly enlarged. During suc-
cessive loading cycles, the crack propagated through the material 
until the amount of undamaged material was insufficient to carry 
the maximum load, and an abrupt, brittle failure occurred. Because 
fatigue failure may be initiated at any crack or imperfection, the 
surface condition of a specimen has an important effect on the 
value of the endurance limit obtained in testing. The endurance 
limit for machined and polished specimens is higher than for rolled 
or forged components, or for components that are corroded. In 
applications in or near seawater, or in other applications where 
corrosion is expected, a reduction of up to 50% in the endurance 
limit can be expected.

2.8  DEFORMATIONS OF MEMBERS UNDER
AXIAL LOADING

Consider a homogeneous rod BC of length L and uniform cross sec-
tion of area A subjected to a centric axial load P (Fig. 2.17). If the 
resulting axial stress s 5 PyA does not exceed the proportional limit 
of the material, we may apply Hooke’s law and write

 s 5 EP (2.4)

from which it follows that

 
P 5

s

E
5

P
AE

 (2.5)

Recalling that the strain P was defined in Sec. 2.2 as P 5 dyL, we 
have

 d 5 PL  (2.6)
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Fig. 2.16 Typical s-n curves.
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68 Stress and Strain—Axial Loading and, substituting for P from (2.5) into (2.6):

 
d 5

PL
AE

 (2.7)

 Equation (2.7) may be used only if the rod is homogeneous 
(constant E), has a uniform cross section of area A, and is loaded at 
its ends. If the rod is loaded at other points, or if it consists of several 
portions of various cross sections and possibly of different materials, 
we must divide it into component parts that satisfy individually the 
required conditions for the application of formula (2.7). Denoting, 
respectively, by Pi, Li, Ai, and Ei the internal force, length, cross-
sectional area, and modulus of elasticity corresponding to part i, we 
express the deformation of the entire rod as

 
d 5 a

i

PiLi

AiEi
 (2.8)

 We recall from Sec. 2.2 that, in the case of a member of vari-
able cross section (Fig. 2.18), the strain P depends upon the position 
of the point Q where it is computed and is defined as P 5 ddydx. 
Solving for dd and substituting for P from Eq. (2.5), we express the 
deformation of an element of length dx as

dd 5 P dx 5
P dx
AE

� ��x+ x +

Q

Q

�x x 

�

P

Fig. 2.18 Deformation of axially 
loaded member of variable cross-
sectional area.

The total deformation d of the member is obtained by integrating 
this expression over the length L of the member:

 
d 5 #

L

0

 
P dx
AE

 (2.9)

Formula (2.9) should be used in place of (2.7), not only when the 
cross-sectional area A is a function of x, but also when the internal 
force P depends upon x, as is the case for a rod hanging under its 
own weight.
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 The rod BC of Fig. 2.17, which was used to derive formula 
(2.7), and the rod AD of Fig. 2.19, which has just been discussed 
in Example 2.01, both had one end attached to a fixed support. In 
each case, therefore, the deformation d of the rod was equal to the 
displacement of its free end. When both ends of a rod move, how-
ever, the deformation of the rod is measured by the relative dis-
placement of one end of the rod with respect to the other. Consider, 
for instance, the assembly shown in Fig. 2.20a, which consists of 
three elastic bars of length L connected by a rigid pin at A. If a load 
P is applied at B (Fig. 2.20b), each of the three bars will deform. 
Since the bars AC and AC9 are attached to fixed supports at C and 
C9, their common deformation is measured by the displacement dA 
of point A. On the other hand, since both ends of bar AB move, the 
deformation of AB is measured by the difference between the dis-
placements dA and dB of points A and B, i.e., by the relative displace-
ment of B with respect to A. Denoting this relative displacement by 
dByA, we write

 
dByA 5 dB 2 dA 5

PL
AE  

 (2.10)

where A is the cross-sectional area of AB and E is its modulus of 
elasticity.

A�

B�

A
A

B

B

P

C' CC

L

C'

(a) (b)

Fig. 2.20 Example of relative end 
displacement, as exhibited by the middle bar.

EXAMPLE 2.01Determine the deformation of the steel rod shown in Fig. 2.19a under 
the given loads (E 5 29 3 106 psi).

We divide the rod into three component parts shown in Fig. 2.19b 
and write

 L1 5 L2 5 12 in.      L3 5 16 in.
 A1 5 A2 5 0.9 in2     A3 5 0.3 in2

To find the internal forces P1, P2, and P3, we must pass sections through 
each of the component parts, drawing each time the free-body diagram 
of the portion of rod located to the right of the section (Fig. 2.19c). 
Expressing that each of the free bodies is in equilibrium, we obtain 
successively

 P1 5 60 kips 5 60 3 103 lb
 P2 5 215 kips 5 215 3 103 lb
 P3 5 30 kips 5 30 3 103 lb

Carrying the values obtained into Eq. (2.8), we have

 d 5 a
i

PiLi

AiEi
5

1
E

 aP1L1

A1
1

P2L2

A2
1

P3L3

A3
b

 5
1

29 3 106 c 160 3 1032 1122
0.9

 
 1
1215 3 1032 1122

0.9
1
130 3 1032 1162

0.3
d

 
 d 5

2.20 3 106

29 3 106 5 75.9 3 1023 in.

69

C D

30 kips

12 in. 12 in.
16 in.

75 kips 45 kips

A

A � 0.9 in2 A � 0.3 in2

B

(a)

(b)

(c)

C
D

C
D

30 kips

30 kips

30 kips

30 kips

75 kips 45 kips

45 kips

A

P3

P2

P1

B

C
D

B

75 kips 45 kips

321

Fig. 2.19
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SAMPLE PROBLEM 2.1

The rigid bar BDE is supported by two links AB and CD. Link AB is made 
of aluminum (E 5 70 GPa) and has a cross-sectional area of 500 mm2; link 
CD is made of steel (E 5 200 GPa) and has a cross-sectional area of 
600 mm2. For the 30-kN force shown, determine the deflection (a) of B, 
(b) of D, (c) of E.

SOLUTION

 Free Body: Bar BDE

 1lo MB 5 0: 2130 kN2 10.6 m2 1 FCD10.2 m2 5 0
 FCD 5 190 kN     FCD 5 90 kN  tension
1lo MD 5 0: 2130 kN2 10.4 m2 2 FAB10.2 m2 5 0
 FAB 5 260 kN      FAB 5 60 kN  compression

 a. Deflection of B. Since the internal force in link AB is compressive, 
we have P 5 260 kN

dB 5
PL
AE

5
1260 3 103 N2 10.3 m2

1500 3 1026 m22 170 3 109 Pa2 5 2514 3 1026 m

 The negative sign indicates a contraction of member AB, and, thus, an 
upward deflection of end B:

 dB 5 0.514 mmx ◀

 b. Deflection of D. Since in rod CD, P 5 90 kN, we write

 dD 5
PL
AE

5
190 3 103 N2 10.4 m2

1600 3 1026 m22 1200 3 109 Pa2
  5 300 3 1026 m dD 5 0.300 mmw ◀

 c. Deflection of E. We denote by B9 and D9 the displaced positions 
of points B and  D. Since the bar BDE is rigid, points B9, D9, and E9 lie in 
a straight line and we write

 
BB¿
DD¿

5
BH
HD

     
0.514 mm
0.300 mm

5
1200 mm2 2 x

x
    x 5 73.7 mm

 
EE¿
DD¿

5
HE
HD

     
dE

0.300 mm
5
1400 mm2 1 173.7 mm2

73.7 mm

dE 5 1.928 mmw ◀

30 kN

30 kN

0.4 m
0.3 m

0.3 m

0.2 m
0.4 m

0.2 m
0.4 m

C

A

B

A

B

D

B D

E

FAB

F'AB � 60 kN

FAB � 60 kN

A � 500 mm2

E � 70 GPa

FCD

E

0.4 m

C

D

FCD � 90 kN

FCD � 90 kN

A � 600 mm2

E � 200 GPa

400 mm

(200 mm – x)

 D � 0.300 mm

200 mm

B'

E'

D'
B

H D E

� E

 B � 0.514 mm�
�

x
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SAMPLE PROBLEM 2.2

The rigid castings A and B are connected by two 3
4-in.-diameter steel bolts 

CD and GH and are in contact with the ends of a 1.5-in.-diameter aluminum 
rod EF. Each bolt is single-threaded with a pitch of 0.1 in., and after being 
snugly fitted, the nuts at D and H are both tightened one-quarter of a turn. 
Knowing that E is 29 3 106 psi for steel and 10.6 3 106 psi for aluminum, 
determine the normal stress in the rod.

SOLUTION

 Deformations
 Bolts CD and GH. Tightening the nuts causes tension in the bolts. 
Because of symmetry, both are subjected to the same internal force Pb and 
undergo the same deformation db. We have

db 5 1
PbLb

AbEb
5 1

Pb118 in.2
1
4 p10.75 in.22129 3 106 psi2 5 11.405 3 1026 Pb (1)

 Rod EF. The rod is in compression. Denoting by Pr the magnitude 
of the force in the rod and by dr the deformation of the rod, we write

dr 5 2
PrLr

ArEr
5 2

Pr112 in.2
1
4 
p11.5 in.22110.6 3 106 psi2 5 20.6406 3 1026 Pr (2)

 Displacement of D Relative to B. Tightening the nuts one-quarter 
of a turn causes ends D and H of the bolts to undergo a displacement of 
1
4(0.1 in.) relative to casting B. Considering end D, we write

 dDyB 5 1
4 10.1 in.2 5 0.025 in. (3)

But dDyB 5 dD 2 dB, where dD and dB represent the displacements of D 
and B. If we assume that casting A is held in a fixed position while the nuts 
at D and H are being tightened, these displacements are equal to the defor-
mations of the bolts and of the rod, respectively. We have, therefore,

 dDyB 5 db 2 dr  (4)

Substituting from (1), (2), and (3) into (4), we obtain

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 1026 Pr  (5)

 Free Body: Casting B

y
1  oF 5 0: Pr 2 2Pb 5 0    Pr 5 2Pb (6)

 Forces in Bolts and Rod Substituting for Pr from (6) into (5), we have

 0.025 in. 5 1.405 3 1026 Pb 1 0.6406 3 102612Pb2
 Pb 5 9.307 3 103 lb 5 9.307 kips
 Pr 5 2Pb 5 2 19.307 kips2 5 18.61 kips

 Stress in Rod

 
sr 5

Pr

Ar
5

18.61 kips
1
4 p11.5 in.22 

sr 5 10.53 ksi ◀

C

G

D

H

18 in.

E
A B

F

12 in.

C

E F

G

D

P'b

P'rPr

P'b

Pb

Pb

H

Pb

Pb

BPr
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PROBLEMS

72

 2.1 An 80-m-long wire of 5-mm diameter is made of a steel with 
E 5 200 GPa and an ultimate tensile strength of 400 MPa. If a 
factor of safety of 3.2 is desired, determine (a) the largest allow-
able tension in the wire, (b) the corresponding elongation of the 
wire.

 2.2 A steel control rod is 5.5 ft long and must not stretch more than 
0.04 in. when a 2-kip tensile load is applied to it. Knowing that 
E 5 29 3 106 psi, determine (a) the smallest diameter rod that 
should be used, (b) the corresponding normal stress caused by the 
load.

 2.3 Two gage marks are placed exactly 10 in. apart on a 1
2-in.-diameter 

aluminum rod with E 5 10.1 3 106 psi and an ultimate strength 
of 16 ksi. Knowing that the distance between the gage marks is 
10.009 in. after a load is applied, determine (a) the stress in the 
rod, (b) the factor of safety.

 2.4 An 18-m-long steel wire of 5-mm diameter is to be used in the 
manufacture of a prestressed concrete beam. It is observed that 
the wire stretches 45 mm when a tensile force P is applied. Know-
ing that E 5 200 GPa, determine (a) the magnitude of the force 
P, (b) the corresponding normal stress in the wire.

 2.5 A polystyrene rod of length 12 in. and diameter 0.5 in. is subjected 
to an 800-lb tensile load. Knowing that E 5 0.45 3 106 psi, deter-
mine (a) the elongation of the rod, (b) the normal stress in the 
rod.

 2.6 A nylon thread is subjected to a 8.5-N tension force. Knowing that 
E 5 3.3 GPa and that the length of the thread increases by 1.1%, 
determine (a) the diameter of the thread, (b) the stress in the 
thread.

 2.7 Two gage marks are placed exactly 250 mm apart on a 12-mm-
diameter aluminum rod. Knowing that, with an axial load of 
6000 N acting on the rod, the distance between the gage marks is 
250.18 mm, determine the modulus of elasticity of the aluminum 
used in the rod.

 2.8 An aluminum pipe must not stretch more than 0.05 in. when it 
is subjected to a tensile load. Knowing that E 5 10.1 3 106 psi 
and that the maximum allowable normal stress is 14 ksi, deter-
mine (a) the maximum allowable length of the pipe, (b) the 
required area of the pipe if the tensile load is 127.5 kips.

 2.9 An aluminum control rod must stretch 0.08 in. when a 500-lb 
 tensile load is applied to it. Knowing that sall 5 22 ksi and E 5 
10.1 3 106 psi, determine the smallest diameter and shortest length 
that can be selected for the rod.
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73Problems 2.10 A square yellow-brass bar must not stretch more than 2.5 mm when 
it is subjected to a tensile load. Knowing that E 5 105 GPa and that 
the allowable tensile strength is 180 MPa, determine (a) the maxi-
mum allowable length of the bar, (b) the required dimensions of the 
cross section if the tensile load is 40 kN.

 2.11 A 4-m-long steel rod must not stretch more than 3 mm and the 
normal stress must not exceed 150 MPa when the rod is subjected 
to a 10-kN axial load. Knowing that E 5 200 GPa, determine the 
required diameter of the rod.

 2.12 A nylon thread is to be subjected to a 10-N tension. Knowing that 
E 5 3.2 GPa, that the maximum allowable normal stress is 40 MPa, 
and that the length of the thread must not increase by more than 
1%, determine the required diameter of the thread.

 2.13 The 4-mm-diameter cable BC is made of a steel with E 5 
200 GPa. Knowing that the maximum stress in the cable must not 
exceed 190 MPa and that the elongation of the cable must not 
exceed 6 mm, find the maximum load P that can be applied as 
shown.

 2.14 The aluminum rod ABC (E 5 10.1 3 106 psi), which consists of 
two cylindrical portions AB and BC, is to be replaced with a cylin-
drical steel rod DE (E 5 29 3 106 psi) of the same overall length. 
Determine the minimum required diameter d of the steel rod if 
its vertical deformation is not to exceed the deformation of the 
aluminum rod under the same load and if the allowable stress in 
the steel rod is not to exceed 24 ksi.

3.5 m

4.0 m

2.5 m

B

A C

P

Fig. P2.13

B

d

C

A

12 in.

18 in.

1.5 in.

2.25 in.

28 kips

E

D

28 kips

Fig. P2.14

P

C

B

A

4 ft

3 ft

Fig. P2.15

 2.15 A 4-ft section of aluminum pipe of cross-sectional area 1.75 in2 
rests on a fixed support at A. The 58-in.-diameter steel rod BC hangs 
from a rigid bar that rests on the top of the pipe at B. Knowing that 
the modulus of elasticity is 29 3 106 psi for steel and 10.4 3 106 psi 
for aluminum, determine the deflection of point C when a 15-kip 
force is applied at C.
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74 Stress and Strain—Axial Loading  2.16 The brass tube AB (E 5 105 GPa) has a cross-sectional area of 
140 mm2 and is fitted with a plug at A. The tube is attached at B 
to a rigid plate that is itself attached at C to the bottom of an 
 aluminum cylinder (E 5 72 GPa) with a cross-sectional area of 
250 mm2. The cylinder is then hung from a support at D. In order 
to close the cylinder, the plug must move down through 1 mm. 
Determine the force P that must be applied to the cylinder.

 2.17 A 250-mm-long aluminum tube (E 5 70 GPa) of 36-mm outer 
diameter and 28-mm inner diameter can be closed at both ends 
by means of single-threaded screw-on covers of 1.5-mm pitch. 
With one cover screwed on tight, a solid brass rod (E 5 105 GPa) 
of 25-mm diameter is placed inside the tube and the second cover 
is screwed on. Since the rod is slightly longer than the tube, it is 
observed that the cover must be forced against the rod by rotating 
it one-quarter of a turn before it can be tightly closed. Determine 
(a) the average normal stress in the tube and in the rod, (b) the 
deformations of the tube and of the rod.

Fig. P2.16

375 mm

1 mm

C

D A

B

P

 2.18 The specimen shown is made from a 1-in.-diameter cylindrical 
steel rod with two 1.5-in.-outer-diameter sleeves bonded to the rod 
as shown. Knowing that E 5 29 3 106 psi, determine (a) the load 
P so that the total deformation is 0.002 in., (b) the corresponding 
deformation of the central portion BC.

36 mm 28 mm

25 mm

250 mm

Fig. P2.17

2 in.

2 in.

3 in.

C

D

A

B

P'

P

1  -in. diameter

1-in. diameter

1
2

1  -in. diameter1
2

Fig. P2.18

 2.19 Both portions of the rod ABC are made of an aluminum for which 
E 5 70 GPa. Knowing that the magnitude of P is 4 kN, determine 
(a) the value of Q so that the deflection at A is zero, (b) the cor-
responding deflection of B.

 2.20 The rod ABC is made of an aluminum for which E 5 70 GPa. 
Knowing that P 5 6 kN and Q 5 42 kN, determine the deflection 
of (a) point A, (b) point B.

0.4 m

0.5 m

P

Q

20-mm diameter

60-mm diameter

A

B

C

Fig. P2.19 and P2.20
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75Problems 2.21 Members AB and BC are made of steel (E 5 29 3 106 psi) with 
cross-sectional areas of 0.80 in2 and 0.64 in2, respectively. For the 
loading shown, determine the elongation of (a) member AB, 
(b) member BC.

6 ft 6 ft

5 ft

C

D E
A

B

28 kips 54 kips

Fig. P2.21

6 m

5 m

C

DA

B

P

Fig. P2.22

 2.22 The steel frame (E 5 200 GPa) shown has a diagonal brace BD with 
an area of 1920 mm2. Determine the largest allowable load P if the 
change in length of member BD is not to exceed 1.6 mm.

 2.23 For the steel truss (E 5 200 GPa) and loading shown, determine 
the deformations of members AB and AD, knowing that their 
cross-sectional areas are 2400 mm2 and 1800 mm2, respectively.

4.0 m 4.0 m

2.5 m
D CA

B

228 kN

Fig. P2.23

15 ft

8 ft

8 ft

8 ft

D

C

F

E

G

A

B

30 kips

30 kips

30 kips

Fig. P2.24

 2.24 For the steel truss (E 5 29 3 106 psi) and loading shown, deter-
mine the deformations of members BD and DE, knowing that their 
cross-sectional areas are 2 in2 and 3 in2, respectively.
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76 Stress and Strain—Axial Loading  2.25 Each of the links AB and CD is made of aluminum (E 5 10.9 3 
106 psi) and has a cross-sectional area of 0.2 in2. Knowing that 
they support the rigid member BC, determine the deflection of 
point E.

12.5 in.

D

C
A

x

B50 lb 

16 in.
4 in.

E
1
16 in.

Fig. P2.26

 2.26 The length of the 3
32-in.-diameter steel wire CD has been adjusted 

so that with no load applied, a gap of 1
16 in. exists between the end 

B of the rigid beam ACB and a contact point E. Knowing that E 5 
29 3 106 psi, determine where a 50-lb block should be placed on 
the beam in order to cause contact between B and E.

P

125 mm
225 mm

225 mm

150 mm

E

D

A B

C

Fig. P2.27

P = 1 kip

10 in.
22 in.

18 in.

A

E

D

B C

Fig. P2.25

 2.27 Link BD is made of brass (E 5 105 GPa) and has a cross-sectional 
area of 240 mm2. Link CE is made of aluminum (E 5 72 GPa) and 
has a cross-sectional area of 300 mm2. Knowing that they support 
rigid member ABC, determine the maximum force P that can be 
applied vertically at point A if the deflection of A is not to exceed 
0.35 mm.
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77Problems 2.28 Each of the four vertical links connecting the two rigid horizontal 
members is made of aluminum (E 5 70 GPa) and has a uniform 
rectangular cross section of 10 3 40 mm. For the loading shown, 
determine the deflection of (a) point E, (b) point F, (c) point G.

24 kN

F

E

A
B

C

D

300 mm

250 mm

400 mm

250 mm

40 mm

G

Fig. P2.28

h

A a

b

P

Fig. P2.29

 2.29 The vertical load P is applied at the center A of the upper section 
of a homogeneous frustum of a circular cone of height h, minimum 
radius a, and maximum radius b. Denoting by E the modulus of 
elasticity of the material and neglecting the effect of its weight, 
determine the deflection of point A.

 2.30 A homogenous cable of length L and uniform cross section is sus-
pended from one end. (a) Denoting by r the density (mass per unit 
volume) of the cable and by E its modulus of elasticity, determine 
the elongation of the cable due to its own weight. (b) Show that the 
same elongation would be obtained if the cable were horizontal and 
if a force equal to half of its weight were applied at each end.

 2.31 The volume of a tensile specimen is essentially constant while 
 plastic deformation occurs. If the initial diameter of the specimen 
is d1, show that when the diameter is d, the true strain is 
Pt 5 2 ln(d1yd).

 2.32 Denoting by P the “engineering strain” in a tensile specimen, show 
that the true strain is Pt 5 ln(1 1 P).
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78 Stress and Strain—Axial Loading 2.9 STATICALLY INDETERMINATE PROBLEMS
In the problems considered in the preceding section, we could always 
use free-body diagrams and equilibrium equations to determine the 
internal forces produced in the various portions of a member under 
given loading conditions. The values obtained for the internal forces 
were then entered into Eq. (2.8) or (2.9) to obtain the deformation 
of the member.
 There are many problems, however, in which the internal forces 
cannot be determined from statics alone. In fact, in most of these 
problems the reactions themselves—which are external forces—
 cannot be determined by simply drawing a free-body diagram of the 
member and writing the corresponding equilibrium equations. The 
equilibrium equations must be complemented by relations involving 
deformations obtained by considering the geometry of the problem. 
Because statics is not sufficient to determine either the reactions or 
the internal forces, problems of this type are said to be statically 
indeterminate. The following examples will show how to handle this 
type of problem.

A rod of length L, cross-sectional area A1, and modulus of elasticity E1, 
has been placed inside a tube of the same length L, but of cross-sectional 
area A2 and modulus of elasticity E2 (Fig. 2.21a). What is the deformation 
of the rod and tube when a force P is exerted on a rigid end plate as 
shown?

Denoting by P1 and P2, respectively, the axial forces in the rod and 
in the tube, we draw free-body diagrams of all three elements (Fig. 2.21b, 
c, d). Only the last of the diagrams yields any significant information, 
namely:

 P1 1 P2 5 P (2.11)

Clearly, one equation is not sufficient to determine the two unknown 
internal forces P1 and P2. The problem is statically indeterminate.

However, the geometry of the problem shows that the deformations 
d1 and d2 of the rod and tube must be equal. Recalling Eq. (2.7), we 
write

 
d1 5

P1L
A1E1

     d2 5
P2L
A2E2 

(2.12)

Equating the deformations d1 and d2, we obtain:

 
P1

A1E1
5

P2

A2E2 
(2.13)

Equations (2.11) and (2.13) can be solved simultaneously for P1 and P2:

P1 5
A1E1P

A1E1 1 A2E2
    P2 5

A2E2P
A1E1 1 A2E2

Either of Eqs. (2.12) can then be used to determine the common defor-
mation of the rod and tube.

EXAMPLE 2.02

P

P1 P'1

Tube (A2, E2)

Rod (A1, E1)

End plate 

(a)

(b)

(c)

(d)

L

P'2P2

P
P1

P2

Fig. 2.21
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Superposition Method. We observe that a structure is statically 
indeterminate whenever it is held by more supports than are required 
to maintain its equilibrium. This results in more unknown reactions 
than available equilibrium equations. It is often found convenient to 
designate one of the reactions as redundant and to eliminate the 
corresponding support. Since the stated conditions of the problem 
cannot be arbitrarily changed, the redundant reaction must be main-
tained in the solution. But it will be treated as an unknown load that, 
together with the other loads, must produce deformations that are 
compatible with the original constraints. The actual solution of the 
problem is carried out by considering separately the deformations 
caused by the given loads and by the redundant reaction, and by 
adding—or superposing—the results obtained.†

79

EXAMPLE 2.03A bar AB of length L and uniform cross section is attached to rigid sup-
ports at A and B before being loaded. What are the stresses in portions 
AC and BC due to the application of a load P at point C (Fig. 2.22a)?

Drawing the free-body diagram of the bar (Fig. 2.22b), we obtain 
the equilibrium equation

 RA 1 RB 5 P (2.14)

Since this equation is not sufficient to determine the two unknown reac-
tions RA and RB, the problem is statically indeterminate.

However, the reactions may be determined if we observe from the 
geometry that the total elongation d of the bar must be zero. Denoting 
by d1 and d2, respectively, the elongations of the portions AC and BC, we 
write

d 5 d1 1 d2 5 0

or, expressing d1 and d2 in terms of the corresponding internal forces P1 
and P2:

 
d 5

P1L1

AE
1

P2L2

AE
5 0

 
(2.15)

But we note from the free-body diagrams shown respectively in parts b 
and c of Fig. 2.23 that P1 5 RA and P2 5 2RB. Carrying these values into 
(2.15), we write

 RAL1 2 RBL2 5 0 (2.16)

Equations (2.14) and (2.16) can be solved simultaneously for RA and RB; 
we obtain RA 5 PL2yL and RB 5 PL1yL. The desired stresses s1 in AC 
and s2 in BC are obtained by dividing, respectively, P1 5 RA and P2 5 
2RB by the cross-sectional area of the bar:

s1 5
PL2

AL
    s2 5 2 

PL1

AL

†The general conditions under which the combined effect of several loads can be obtained 
in this way are discussed in Sec. 2.12.

P

L1

L2

RA

RB

(a) (b)

L

A

B

A

B

C C

P

Fig. 2.22

RA

P

RA

RB RB

(a)

(b)

(c)

A

B

C P1

P2

Fig. 2.23
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EXAMPLE 2.04 Determine the reactions at A and B for the steel bar and loading shown 
in Fig. 2.24, assuming a close fit at both supports before the loads are 
applied.

We consider the reaction at B as redundant and release the bar 
from that support. The reaction RB is now considered as an unknown 
load (Fig. 2.25a) and will be determined from the condition that the 
deformation d of the rod must be equal to zero. The solution is carried 
out by considering separately the deformation dL caused by the given 
loads (Fig. 2.25b) and the deformation dR due to the redundant reaction 
RB (Fig. 2.25c).

C

A

D

K

B

A � 250 mm2 

A � 400 mm2 

300 kN 

600 kN 150 mm

150 mm

150 mm

150 mm

Fig. 2.24 A

300 kN 

600 kN 

A

300 kN 

600 kN 

A

L�� R�

(a) (b) (c)

  � 0

RB RB 

Fig. 2.25

C

K

D
3

4

2

1

A

B

300 kN 

600 kN 150 mm

150 mm

150 mm

150 mm

Fig. 2.26

The deformation dL is obtained from Eq. (2.8) after the bar has 
been divided into four portions, as shown in Fig. 2.26. Following the same 
procedure as in Example 2.01, we write

 P1 5 0    P2 5 P3 5 600 3 103 N    P4 5 900 3 103 N
 A1 5 A2 5 400 3 1026 m2    A3 5 A4 5 250 3 1026 m2

L1 5 L2 5 L3 5 L4 5 0.150 m

Substituting these values into Eq. (2.8), we obtain

 
 dL 5 a

4

i51

PiLi

AiE
5 a0 1

600 3 103 N
400 3 1026 m2

 
 1

600 3 103 N
250 3 1026 m2 1

900 3 103 N
250 3 1026 m2b 0.150 m

E

 
 dL 5

1.125 3 109

E  
(2.17)

Considering now the deformation dR due to the redundant reaction 
RB, we divide the bar into two portions, as shown in Fig. 2.27, and 
write

P1 5 P2 5 2RB

A1 5 400 3 1026 m2  A2 5 250 3 1026 m2

L1 5 L2 5 0.300 m

80

C

1

2

A

B

RB

300 mm

300 mm

Fig. 2.27
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Substituting these values into Eq. (2.8), we obtain

 
dR 5

P1L1

A1E
1

P2L2

A2E
5 2 

11.95 3 1032RB

E  
(2.18)

Expressing that the total deformation d of the bar must be zero, we 
write

 d 5 dL 1 dR 5 0 (2.19)

and, substituting for dL and dR from (2.17) and (2.18) into (2.19),

d 5
1.125 3 109

E
2
11.95 3 1032RB

E
5 0

Solving for RB, we have

RB 5 577 3 103 N 5 577 kN

The reaction RA at the upper support is obtained from the free-
body diagram of the bar (Fig. 2.28). We write

 1 c o Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0
 RA 5 900 kN 2 RB 5 900 kN 2 577 kN 5 323 kN

Once the reactions have been determined, the stresses and strains 
in the bar can easily be obtained. It should be noted that, while the total 
deformation of the bar is zero, each of its component parts does deform 
under the given loading and restraining conditions.

C

A

300 kN 

600 kN 

B

RB

RA

Fig. 2.28

EXAMPLE 2.05Determine the reactions at A and B for the steel bar and loading of 
Example 2.04, assuming now that a 4.50-mm clearance exists between the 
bar and the ground before the loads are applied (Fig. 2.29). Assume E 5 
200 GPa.

We follow the same procedure as in Example 2.04. Considering the 
reaction at B as redundant, we compute the deformations dL and dR 
caused, respectively, by the given loads and by the redundant reaction RB. 
However, in this case the total deformation is not zero, but d 5 4.5 mm. 
We write therefore

 d 5 dL 1 dR 5 4.5 3 1023 m (2.20)

Substituting for dL and dR from (2.17) and (2.18) into (2.20), and recalling 
that E 5 200 GPa 5 200 3 109 Pa, we have

d 5
1.125 3 109

200 3 109 2
11.95 3 1032RB

200 3 109 5 4.5 3 1023 m

Solving for RB, we obtain

RB 5 115.4 3 103 N 5 115.4 kN

The reaction at A is obtained from the free-body diagram of the bar 
(Fig. 2.28):

 1 c o Fy 5 0:    RA 2 300 kN 2 600 kN 1 RB 5 0
 RA 5 900 kN 2 RB 5 900 kN 2 115.4 kN 5 785 kN

CC

AA

B B

300 kN

600 kN

300 mm

4.5 mm

300 mm

A � 250 mm2 

A � 400 mm2 

�

Fig. 2.29
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82 Stress and Strain—Axial Loading 2.10  PROBLEMS INVOLVING TEMPERATURE CHANGES
All of the members and structures that we have considered so far 
were assumed to remain at the same temperature while they were 
being loaded. We are now going to consider various situations involv-
ing changes in temperature.
 Let us first consider a homogeneous rod AB of uniform cross 
section, which rests freely on a smooth horizontal surface (Fig. 
2.30a). If the temperature of the rod is raised by DT, we observe 
that the rod elongates by an amount dT which is proportional to both 
the temperature change DT and the length L of the rod (Fig. 2.30b). 
We have

 dT 5 a(DT)L (2.21)

where a is a constant characteristic of the material, called the coef-
ficient of thermal expansion. Since dT and L are both expressed in 
units of length, a represents a quantity per degree C, or per degree 
F, depending whether the temperature change is expressed in degrees 
Celsius or in degrees Fahrenheit.

A

L

L

B

B

(b)

A

(a)

T�

Fig. 2.30 Elongation of rod due to 
temperature increase.

 With the deformation dT must be associated a strain PT 5 dTyL. 
Recalling Eq. (2.21), we conclude that

 PT 5 aDT (2.22)

The strain PT is referred to as a thermal strain, since it is caused by 
the change in temperature of the rod. In the case we are considering 
here, there is no stress associated with the strain PT.
 Let us now assume that the same rod AB of length L is placed 
between two fixed supports at a distance L from each other (Fig. 
2.31a). Again, there is neither stress nor strain in this initial condi-
tion. If we raise the temperature by DT, the rod cannot elongate 
because of the restraints imposed on its ends; the elongation dT of 
the rod is thus zero. Since the rod is homogeneous and of uniform 
cross section, the strain PT at any point is PT 5 dTyL and, thus, also 
zero. However, the supports will exert equal and opposite forces P 
and P9 on the rod after the temperature has been raised, to keep it 
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from elongating (Fig. 2.31b). It thus follows that a state of stress 
(with no corresponding strain) is created in the rod.
 As we prepare to determine the stress s created by the tem-
perature change DT, we observe that the problem we have to solve 
is statically indeterminate. Therefore, we should first compute the 
magnitude P of the reactions at the supports from the condition that 
the elongation of the rod is zero. Using the superposition method 
described in Sec. 2.9, we detach the rod from its support B (Fig. 
2.32a) and let it elongate freely as it undergoes the temperature 
change DT (Fig. 2.32b). According to formula (2.21), the correspond-
ing elongation is

dT 5 a(DT)L

Applying now to end B the force P representing the redundant reac-
tion, and recalling formula (2.7), we obtain a second deformation 
(Fig. 2.32c)

dP 5
PL
AE

Expressing that the total deformation d must be zero, we have

d 5 dT 1 dP 5 a1¢T2L 1
PL
AE

5 0

from which we conclude that

P 5 2AEa(DT)

and that the stress in the rod due to the temperature change DT is

 
s 5

P
A

5 2Ea1¢T2 (2.23)

 It should be kept in mind that the result we have obtained here 
and our earlier remark regarding the absence of any strain in the rod 
apply only in the case of a homogeneous rod of uniform cross section. 
Any other problem involving a restrained structure undergoing a 
change in temperature must be analyzed on its own merits. However, 
the same general approach can be used, i.e., we can consider separately 
the deformation due to the temperature change and the deformation 
due to the redundant reaction and superpose the solutions obtained.

2.10 Problems Involving Temperature ChangesL

(b)

A B

A B

P' P

(a)

Fig. 2.31 Rod with ends restrained 
against thermal expansion.

L

(b)

(c)

L

A

A B

B

P

(a)
T�

A B

P�

Fig. 2.32 Superposition method 
applied to rod restrained against 
thermal expansion.
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EXAMPLE 2.06 Determine the values of the stress in portions AC and CB of the steel 
bar shown (Fig. 2.33) when the temperature of the bar is 2508F, knowing 
that a close fit exists at both of the rigid supports when the temperature 
is 1758F. Use the values E 5 29 3 106 psi and a 5 6.5 3 106/8F for 
steel.

We first determine the reactions at the supports. Since the problem 
is statically indeterminate, we detach the bar from its support at B and 
let it undergo the temperature change

¢T 5 1250°F 2 2 175°F 2 5 2125°F

The corresponding deformation (Fig. 2.34b) is

 dT 5 a1¢T2L 5 16.5 3 1026/°F2 12125°F2 124 in.2
 5 219.50 3 1023 in.

C
A

A � 0.6 in2 A � 1.2 in2

12 in.12 in.

B

Fig. 2.33

(b)

(c)

RB

(a)
T�

R�

C
A

B

C

L1 L2

A
B

C

1 2

1 2

A
B

Fig. 2.34

Applying now the unknown force RB at end B (Fig. 2.34c), we use Eq. (2.8) 
to express the corresponding deformation dR. Substituting

L1 5 L2 5 12 in.
A1 5 0.6 in2    A2 5 1.2 in2

P1 5 P2 5 RB    E 5 29 3 106 psi

into Eq. (2.8), we write

 dR 5
P1L1

A1E
1

P2L2

A2E

 5
RB

29 3 106 psi
 a 12 in.

0.6 in2 1
12 in.
1.2 in2b

 5 11.0345 3 1026 in./lb2RB

Expressing that the total deformation of the bar must be zero as a result 
of the imposed constraints, we write

 d 5 dT 1 dR 5 0
 5 219.50 3 1023 in. 1 11.0345 3 1026 in./lb2RB 5 0
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from which we obtain

RB 5 18.85 3 103 lb 5 18.85 kips

The reaction at A is equal and opposite.
Noting that the forces in the two portions of the bar are P1 5 P2 5 

18.85 kips, we obtain the following values of the stress in portions AC 
and CB of the bar:

 s1 5
P1

A1
5

18.85 kips

0.6 in2 5 131.42 ksi

s2 5
P2

A2
5

18.85 kips

1.2 in2 5 115.71 ksi

We cannot emphasize too strongly the fact that, while the total 
deformation of the bar must be zero, the deformations of the portions AC 
and CB are not zero. A solution of the problem based on the assumption 
that these deformations are zero would therefore be wrong. Neither can 
the values of the strain in AC or CB be assumed equal to zero. To amplify 
this point, let us determine the strain PAC in portion AC of the bar. The 
strain PAC can be divided into two component parts; one is the thermal 
strain PT produced in the unrestrained bar by the temperature change DT 
(Fig. 2.34b). From Eq. (2.22) we write

 PT 5 a ¢T 5 16.5 3 1026/°F2 12125°F2
 5 2812.5 3 1026 in./in.

The other component of PAC is associated with the stress s1 due to the 
force RB applied to the bar (Fig. 2.34c). From Hooke’s law, we express 
this component of the strain as

s1

E
5

131.42 3 103 psi

29 3 106 psi
5 11083.4 3 1026 in./in.

Adding the two components of the strain in AC, we obtain

 PAC 5 PT 1
s1

E
5 2812.5 3 1026 1 1083.4 3 1026

 5 1271 3 1026 in./in.

A similar computation yields the strain in portion CB of the bar:

 PCB 5 PT 1
s2

E
5 2812.5 3 1026 1 541.7 3 1026

 5 2271 3 1026 in./in.

The deformations dAC and dCB of the two portions of the bar are 
expressed respectively as

 dAC 5 PAC 1AC 2 5 11271 3 10262 112 in.2
 5 13.25 3 1023 in.

 dCB 5 PCB 1CB 2 5 12271 3 10262 112 in.2
 5 23.25 3 1023 in.

We thus check that, while the sum d 5 dAC 1 dCB of the two deforma-
tions is zero, neither of the deformations is zero.
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SAMPLE PROBLEM 2.3

The 1
2-in.-diameter rod CE and the 3

4-in.-diameter rod DF are attached to 
the rigid bar ABCD as shown. Knowing that the rods are made of aluminum 
and using E 5 10.6 3 106 psi, determine (a) the force in each rod caused 
by the loading shown, (b) the corresponding deflection of point A.

SOLUTION

 Statics. Considering the free body of bar ABCD, we note that the 
reaction at B and the forces exerted by the rods are indeterminate. However, 
using statics, we may write

1 l o MB 5 0:  110 kips2 118 in.2 2 FCE 112 in.2 2 FDF 120 in.2 5 0
 12FCE 1 20FDF 5 180 (1)

 Geometry. After application of the 10-kip load, the position of the bar 
is A9BC9D9. From the similar triangles BAA9, BCC9, and BDD9 we have

 
dC

12 in.
5
dD

20 in.
    dC 5 0.6dD 

(2)

 
dA

18 in.
5
dD

20 in.
    dA 5 0.9dD 

(3)

 Deformations. Using Eq. (2.7), we have

dC 5
FCELCE

ACEE
    dD 5

FDFLDF

ADFE

Substituting for dC and dD into (2), we write

dC 5 0.6dD    FCELCE

ACEE
5 0.6 

FDFLDF

ADFE

FCE 5 0.6 
LDF

LCE
 
ACE

ADF
 FDF 5 0.6 a30 in.

24 in.
b c

1
4p112 in.22
1
4p134 in.22 d  FDF  FCE 5 0.333FDF

 Force in Each Rod. Substituting for FCE into (1) and recalling that all 
forces have been expressed in kips, we have

 1210.333FDF2 1 20FDF 5 180 FDF 5 7.50 kips ◀

 FCE 5 0.333FDF 5 0.333 17.50 kips2 FCE 5 2.50 kips ◀

 Deflections. The deflection of point D is

dD 5
FDFLDF

ADFE
5
17.50 3 103 lb2  130 in.2

1
4p134 in.22110.6 3 106 psi2    dD 5 48.0 3 1023 in.

Using (3), we write

 dA 5 0.9dD 5 0.9148.0 3 1023 in.2 dA 5 43.2 3 1023 in. ◀

30 in.
24 in.

C�
D�

C D

E

F

in.1
2

in.3
4

FCE FDF

18 in.
12 in. 8 in.

FCE

By

Bx

FDF10 kips

B
C DA

18 in.
12 in.

30 in.
24 in.

8 in.

10 kips

B

E

F

C DA

18 in.
12 in. 8 in.

B
C' D'

C D
A

A' A� C�
D�
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SAMPLE PROBLEM 2.4

The rigid bar CDE is attached to a pin support at E and rests on the 30-mm-
diameter brass cylinder BD. A 22-mm-diameter steel rod AC passes through 
a hole in the bar and is secured by a nut which is snugly fitted when the 
temperature of the entire assembly is 208C. The temperature of the brass 
cylinder is then raised to 508C while the steel rod remains at 208C. Assum-
ing that no stresses were present before the temperature change, determine 
the stress in the cylinder.

 Rod AC: Steel Cylinder BD: Brass
 E 5 200 GPa E 5 105 GPa
 a 5 11.7 3 1026/°C a 5 20.9 3 1026/°C

SOLUTION

 Statics. Considering the free body of the entire assembly, we write

1l o ME 5 0:  RA 10.75 m 2 2 RB 10.3 m 2 5 0   RA 5 0.4RB (1)

 Deformations. We use the method of superposition, considering RB as 
redundant. With the support at B removed, the temperature rise of the cylinder 
causes point B to move down through dT. The reaction RB must cause a deflec-
tion d1 equal to dT so that the final deflection of B will be zero (Fig. 3).

 Deflection dT. Because of a temperature rise of 508 2 208 5 308C, 
the length of the brass cylinder increases by dT.
 dT 5 L1¢T2a 5 10.3 m2  130°C2  120.9 3 1026/°C2 5 188.1 3 1026 m w

C

A

B0.9 m

0.3 m

0.45 m 0.3 m

D

E

1 2

�
0.3 0.4   C0.75

3

C

C C

D
DD

E E

A AA

B
B B

RB

RA  

�T

�C �C

�D �� �C

�1

 Deflection d1.  We note that dD 5 0.4dC and d1 5 dD 1 dByD.

 dC 5
RAL
AE

5
RA10.9 m2

1
4p10.022 m221200 GPa2 5 11.84 3 1029RA x

 dD 5 0.40dC 5 0.4111.84 3 1029RA2 5 4.74 3 1029RAx

 dByD 5
RBL
AE

5
RB10.3 m2

1
4p10.03 m221105 GPa2 5 4.04 3 1029RB x

We recall from (1) that RA 5 0.4RB and write

d1 5 dD 1 dByD 5 34.7410.4RB2 1 4.04RB 41029 5 5.94 3 1029RB x

But dT 5 d1: 188.1 3 1026 m 5 5.94 3 1029 RB RB 5 31.7 kN

 Stress in Cylinder: sB 5
RB

A
5

31.7 kN
1
4p10.03 m22  sB 5 44.8 MPa ◀

C

A

B

0.3 m0.45 m

D E

RA

RB

Ey

Ex
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PROBLEMS

88

2.33 An axial force of 200 kN is applied to the assembly shown by means 
of rigid end plates. Determine (a) the normal stress in the alumi-
num shell, (b) the corresponding deformation of the assembly.

2.34 The length of the assembly shown decreases by 0.40 mm when an 
axial force is applied by means of rigid end plates. Determine 
(a) the magnitude of the applied force, (b) the corresponding stress 
in the brass core.

 2.35 A 4-ft concrete post is reinforced with four steel bars, each with a 34-in. 
diameter. Knowing that Es 5 29 3 106 psi and Ec 5 3.6 3 106 psi, 
determine the normal stresses in the steel and in the concrete when 
a 150-kip axial centric force P is applied to the post.

300 mm

60 mm

Aluminium shell
E � 70 GPa

Brass core
E � 105 GPa

25 mm

Fig. P2.33 and P2.34

4 ft

8 in.
8 in.

P

Fig. P2.35

 2.36 A 250-mm bar of 150 3 30-mm rectangular cross section consists 
of two aluminum layers, 5 mm thick, brazed to a center brass layer 
of the same thickness. If it is subjected to centric forces of magni-
tude P 5 30 kN, and knowing that Ea 5 70 GPa and Eb 5 105 GPa, 
determine the normal stress (a) in the aluminum layers, (b) in the 
brass layer.

P
Brass

Aluminum

Aluminum

5 mm

5 mm

30 mm

5 mm
250 mm

P'

Fig. P2.36

 2.37 Determine the deformation of the composite bar of Prob. 2.36 if 
it is subjected to centric forces of magnitude P 5 45 kN.
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89Problems 2.38 Compressive centric forces of 40 kips are applied at both ends 
of the assembly shown by means of rigid end plates. Knowing that 
Es 5 29 3 106 psi and Ea 5 10.1 3 106 psi, determine (a) the 
normal stresses in the steel core and the aluminum shell, (b) the 
deformation of the assembly.

 2.39 Three wires are used to suspend the plate shown. Aluminum wires 
of 1

8-in. diameter are used at A and B while a steel wire of 1
12-in. 

diameter is used at C. Knowing that the allowable stress for alu-
minum (Ea 5 10.4 3 106 psi) is 14 ksi and that the allowable stress 
for steel (Es 5 29 3 106 psi) is 18 ksi, determine the maximum load 
P that can be applied.

Aluminum
shell

2.5 in.

10 in.
1 in.

Steel core

Fig. P2.38

A

B

P

C
L

L

Fig. P2.39

 2.40 A polystyrene rod consisting of two cylindrical portions AB and BC 
is restrained at both ends and supports two 6-kip loads as shown. 
Knowing that E 5 0.45 3 106 psi, determine (a) the reactions at 
A and C, (b) the normal stress in each portion of the rod.

 2.41 Two cylindrical rods, one of steel and the other of brass, are joined 
at C and restrained by rigid supports at A and E. For the loading 
shown and knowing that Es 5 200 GPa and Eb 5 105 GPa, deter-
mine (a) the reactions at A and E, (b) the deflection of point C.

B

C

15 in.

25 in.
1.25 in.

A

6 kips6 kips

2 in.

Fig. P2.40

180

40-mm diam. 30-mm diam.

120
100

Dimensions in mm

100

A C D E

60 kN 40 kN

BrassSteel B

Fig. P2.41

 2.42 Solve Prob. 2.41, assuming that rod AC is made of brass and rod 
CE is made of steel.

 2.43 The rigid bar ABCD is suspended from four identical wires. Deter-
mine the tension in each wire caused by the load P shown.

P

A

L L

B C D

L

Fig. P2.43
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90 Stress and Strain—Axial Loading  2.44 The rigid bar AD is supported by two steel wires of 1
16-in. diameter 

(E 5 29 3 106 psi) and a pin and bracket at D. Knowing that the 
wires were initially taut, determine (a) the additional tension in 
each wire when a 120-lb load P is applied at B, (b) the correspond-
ing deflection of point B.

 2.45 The steel rods BE and CD each have a 16-mm diameter (E 5 
200 GPa); the ends of the rods are single-threaded with a pitch 
of 2.5 mm. Knowing that after being snugly fitted, the nut at C 
is tightened one full turn, determine (a) the tension in rod CD, 
(b) the deflection of point C of the rigid member ABC.D

P

B C

E

15 in.

8 in.8 in.8 in.

F

A

8 in.

Fig. P2.44

 2.46 Links BC and DE are both made of steel (E 5 29 3 106 psi) and 
are 1

2 in. wide and 1
4 in. thick. Determine (a) the force in each link 

when a 600-lb force P is applied to the rigid member AF shown, 
(b) the corresponding deflection of point A.

 2.47 The concrete post (Ec 5 3.6 3 106 psi and ac 5 5.5 3 1026/ 8F) 
is reinforced with six steel bars, each of 7

8-in diameter (Es 5 29 3 
106 psi and as 5 6.5 3 1026/ 8F). Determine the normal stresses 
induced in the steel and in the concrete by a temperature rise 
of 658F.

100 mm

2 m

A

CD

B E

3 m

150 mm

Fig. P2.45

F

D

A

B

5 in.4 in.

4 in.

2 in.

2 in. E

C

P

Fig. P2.46

6 ft

10 in.10 in.
Fig. P2.47

 2.48 The assembly shown consists of an aluminum shell (Ea 5 10.6 3 
106 psi, aa 5 12.9 3 1026/ 8F) fully bonded to a steel core (Es 5 
29 3 106 psi, as 5 6.5 3 1026/ 8F) and is unstressed. Determine 
(a) the largest allowable change in temperature if the stress in the 
aluminum shell is not to exceed 6 ksi, (b) the corresponding change 
in length of the assembly.

8 in.

Aluminum shell

1.25 in.
Steel
core

0.75 in.

Fig. P2.48
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91Problems 2.49 The aluminum shell is fully bonded to the brass core and the 
assembly is unstressed at a temperature of 158C. Considering only 
axial deformations, determine the stress in the aluminum when the 
temperature reaches 1958C.

 2.50 Solve Prob. 2.49, assuming that the core is made of steel (Es 5 
200 GPa, as 5 11.7 3 1026/8C) instead of brass.

 2.51 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. Portion AB is made of steel (Es 5 200 GPa, as 5 
11.7 3 1026/8C) and portion BC is made of brass (Eb 5 105 GPa, 
ab 5 20.9 3 1026/8C). Knowing that the rod is initially unstressed, 
determine the compressive force induced in ABC when there is a 
temperature rise of 508C.

Brass core
     E � 105 GPa
         � 20.9  � 10–6/�C   

Aluminum shell
     E � 70 GPa
         � 23.6  � 10–6/�C   

25 mm

60 mm

�

�

Fig. P2.49

B

C

250 mm

300 mm

A

50-mm diameter

30-mm diameter

Fig. P2.51

 2.52 A steel railroad track (Es 5 200 GPa, as 5 11.7 3 1026/8C) was 
laid out at a temperature of 68C. Determine the normal stress in 
the rails when the temperature reaches 488C, assuming that the 
rails (a) are welded to form a continuous track, (b) are 10 m long 
with 3-mm gaps between them.

 2.53 A rod consisting of two cylindrical portions AB and BC is restrained 
at both ends. Portion AB is made of steel (Es 5 29 3 106 psi, 
as 5 6.5 3 1026/ 8F) and portion BC is made of aluminum (Ea 5 
10.4 3 106 psi, aa 5 13.3 3 1026/ 8F). Knowing that the rod is 
initially unstressed, determine (a) the normal stresses induced in 
portions AB and BC by a temperature rise of 708F, (b) the corre-
sponding deflection of point B.

A B C

1   -in. diameter1
2

24 in. 32 in.

2   -in. diameter1
4

Fig. P2.53

 2.54 Solve Prob. 2.53, assuming that portion AB of the composite rod 
is made of aluminum and portion BC is made of steel.
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92 Stress and Strain—Axial Loading  2.55 A brass link (Eb 5 105 GPa, ab 5 20.9 3 1026/8C) and a steel rod 
(Es 5 200 GPa, as 5 11.7 3 1026/8C) have the dimensions shown 
at a temperature of 208C. The steel rod is cooled until it fits freely 
into the link. The temperature of the whole assembly is then raised 
to 458C. Determine (a) the final normal stress in the steel rod, 
(b) the final length of the steel rod.

30-mm diameter

50 mm

250 mm0.12 mm

Steel

Section A-A

Brass
37.5 mm

37.5 mm

A

A

Fig. P2.55

 2.56 Two steel bars (Es 5 200 GPa and as 5 11.7 3 1026/ 8C) are used 
to reinforce a brass bar (Eb 5 105 GPa, ab 5 20.9 3 1026/ 8C) that 
is subjected to a load P 5 25 kN. When the steel bars were fabri-
cated, the distance between the centers of the holes that were to fit 
on the pins was made 0.5 mm smaller than the 2 m needed. The steel 
bars were then placed in an oven to increase their length so that they 
would just fit on the pins. Following fabrication, the temperature in 
the steel bars dropped back to room temperature. Determine (a) the 
increase in temperature that was required to fit the steel bars on the 
pins, (b) the stress in the brass bar after the load is applied to it.

 2.57 Determine the maximum load P that can be applied to the brass 
bar of Prob. 2.56 if the allowable stress in the steel bars is 30 MPa 
and the allowable stress in the brass bar is 25 MPa.

 2.58 Knowing that a 0.02-in. gap exists when the temperature is 758F, 
determine (a) the temperature at which the normal stress in the 
aluminum bar will be equal to 211 ksi, (b) the corresponding exact 
length of the aluminum bar.

 2.59 Determine (a) the compressive force in the bars shown after a 
temperature rise of 1808F, (b) the corresponding change in length 
of the bronze bar.

 2.60 At room temperature (208C) a 0.5-mm gap exists between the ends 
of the rods shown. At a later time when the temperature has 
reached 1408C, determine (a) the normal stress in the aluminum 
rod, (b) the change in length of the aluminum rod.

15 mm

40 mm

2 m

5 mmSteel

Brass

Steel

P�

P

Fig. P2.56

Bronze
 A � 2.4 in2

 E � 15 � 106 psi 
     � 12 � 10–6/�F

0.02 in.
14 in. 18 in.

	

Aluminum
 A � 2.8 in2

 E � 10.6 � 106 psi 
     � 12.9 � 10–6/�F	

Fig. P2.58 and P2.59

Aluminum
 A � 2000 mm2

 E � 75 GPa
     � 23 � 16–6/�C

A B

300 mm 250 mm

0.5 mm

	

Stainless steel
 A � 800 mm2

 E � 190 GPa  
     � 17.3 � 10–6/�C	

Fig. P2.60
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932.11 POISSON’S RATIO
We saw in the earlier part of this chapter that, when a homogeneous 
slender bar is axially loaded, the resulting stress and strain satisfy 
Hooke’s law, as long as the elastic limit of the material is not exceeded. 
Assuming that the load P is directed along the x axis (Fig. 2.35a), 
we have sx 5 PyA, where A is the cross-sectional area of the bar, 
and, from Hooke’s law,

 Px 5 sxyE (2.24)

where E is the modulus of elasticity of the material.
 We also note that the normal stresses on faces respectively per-
pendicular to the y and z axes are zero: sy 5 sz 5 0 (Fig. 2.35b). It 
would be tempting to conclude that the corresponding strains Py and 
Pz are also zero. This, however, is not the case. In all engineering 
materials, the elongation produced by an axial tensile force P in the 
direction of the force is accompanied by a contraction in any trans-
verse direction (Fig. 2.36).† In this section and the following sections 
(Secs. 2.12 through 2.15), all materials considered will be assumed to 
be both homogeneous and isotropic, i.e., their mechanical properties 
will be assumed independent of both position and direction. It follows 
that the strain must have the same value for any transverse direction. 
Therefore, for the loading shown in Fig. 2.35 we must have Py 5 Pz. 
This common value is referred to as the lateral strain. An important 
constant for a given material is its Poisson’s ratio, named after the 
French mathematician Siméon Denis Poisson (1781–1840) and 
denoted by the Greek letter n (nu). It is defined as

 
 n 5 2 

lateral strain
axial strain

 (2.25)

or

 
 n 5 2 

Py

Px
5 2 

Pz

Px
 (2.26)

for the loading condition represented in Fig. 2.35. Note the use of a 
minus sign in the above equations to obtain a positive value for n, the 
axial and lateral strains having opposite signs for all engineering mate-
rials.‡ Solving Eq. (2.26) for Py and Pz, and recalling (2.24), we write 
the following relations, which fully describe the condition of strain 
under an axial load applied in a direction parallel to the x axis:

 
Px 5

sx

E
      Py 5 Pz 5 2 

nsx

E
 (2.27)

2.11 Poisson’s Ratio

†It would also be tempting, but equally wrong, to assume that the volume of the rod 
remains unchanged as a result of the combined effect of the axial elongation and transverse 
contraction (see Sec. 2.13).
‡However, some experimental materials, such as polymer foams, expand laterally when 
stretched. Since the axial and lateral strains have then the same sign, the Poisson’s ratio 
of these materials is negative. (See Roderic Lakes, “Foam Structures with a Negative 
Poisson’s Ratio,” Science, 27 February 1987, Volume 235, pp. 1038–1040.)

z

y

x

x

(a)

(b)

P
A

� �

y 0� �

z 0� �

P

A

Fig. 2.35 Stresses in an axially-
loaded bar.

P

P'

Fig. 2.36 Transverse contraction 
of bar under axial tensile force.
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2.12  MULTIAXIAL LOADING; GENERALIZED
HOOKE’S LAW

All the examples considered so far in this chapter have dealt with 
slender members subjected to axial loads, i.e., to forces directed 
along a single axis. Choosing this axis as the x axis, and denoting by 
P the internal force at a given location, the corresponding stress 
components were found to be sx 5 PyA, sy 5 0, and sz 5 0.
 Let us now consider structural elements subjected to loads 
acting in the directions of the three coordinate axes and producing 
normal stresses sx, sy, and sz which are all different from zero 
(Fig. 2.38). This condition is referred to as a multiaxial loading. 
Note that this is not the general stress condition described in Sec. 
1.12, since no shearing stresses are included among the stresses 
shown in Fig. 2.38.
 Consider an element of an isotropic material in the shape of a 
cube (Fig. 2.39a). We can assume the side of the cube to be equal 
to unity, since it is always possible to select the side of the cube as 
a unit of length. Under the given multiaxial loading, the element will 
deform into a rectangular parallelepiped of sides equal, respectively, 
to 1 1 Px, 1 1 Py, and 1 1 Pz, where Px, Py, and Pz denote the values 
of the normal strain in the directions of the three coordinate axes 
(Fig. 2.39b). You should note that, as a result of the deformations of 

94

A 500-mm-long, 16-mm-diameter rod made of a homogenous, isotropic 
material is observed to increase in length by 300 mm, and to decrease in 
diameter by 2.4 mm when subjected to an axial 12-kN load. Determine 
the modulus of elasticity and Poisson’s ratio of the material.

The cross-sectional area of the rod is

A 5 pr2 5 p 18 3 1023 m 22 5 201 3 1026 m2

Choosing the x axis along the axis of the rod (Fig. 2.37), we write

 sx 5
P
A

5
12 3 103 N

201 3 1026  m2 5 59.7 MPa

 Px 5
dx

L
5

300 mm
500 mm

5 600 3 1026

 Py 5
dy

d
5

22.4 mm
16 mm

5 2150 3 1026

From Hooke’s law, sx 5 EPx, we obtain

E 5
sx

Px
5

59.7 MPa
600 3 1026 5 99.5 GPa

and, from Eq. (2.26),

n 5 2 
Py

Px
5 2 

2150 3 1026

600 3 1026 5 0.25

EXAMPLE 2.07

12 kN

L � 500 mm

d � 16 mm
��y � – 2.4    

�� x � 300    

z

y

x

m

m

Fig. 2.37

x�

y�

y�

x�
z�

z�

Fig. 2.38 Stress state for 
multiaxial loading.
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95the other elements of the material, the element under consideration 
could also undergo a translation, but we are concerned here only 
with the actual deformation of the element, and not with any possible 
superimposed rigid-body displacement.
 In order to express the strain components Px, Py, Pz in terms of 
the stress components sx, sy, sz, we will consider separately the 
effect of each stress component and combine the results obtained. 
The approach we propose here will be used repeatedly in this text, 
and is based on the principle of superposition. This principle states 
that the effect of a given combined loading on a structure can be 
obtained by determining separately the effects of the various loads 
and combining the results obtained, provided that the following con-
ditions are satisfied:

 1. Each effect is linearly related to the load that produces it.
 2. The deformation resulting from any given load is small and does 

not affect the conditions of application of the other loads.

 In the case of a multiaxial loading, the first condition will be 
satisfied if the stresses do not exceed the proportional limit of the 
material, and the second condition will also be satisfied if the stress 
on any given face does not cause deformations of the other faces that 
are large enough to affect the computation of the stresses on those 
faces.
 Considering first the effect of the stress component sx, we recall 
from Sec. 2.11 that sx causes a strain equal to sxyE in the x direc-
tion, and strains equal to 2nsxyE in each of the y and z directions. 
Similarly, the stress component sy, if applied separately, will cause a 
strain syyE in the y direction and strains 2nsyyE in the other two 
directions. Finally, the stress component sz causes a strain szyE in 
the z direction and strains 2nszyE in the x and y directions. Com-
bining the results obtained, we conclude that the components of 
strain corresponding to the given multiaxial loading are

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

 
 Py 5 2 

nsx

E
1
sy

E
2
nsz

E
 (2.28)

 Pz 5 2 
nsx

E
2
nsy

E
1
sz

E

 The relations (2.28) are referred to as the generalized Hooke’s 
law for the multiaxial loading of a homogeneous isotropic material. 
As we indicated earlier, the results obtained are valid only as long as 
the stresses do not exceed the proportional limit, and as long as the 
deformations involved remain small. We also recall that a positive 
value for a stress component signifies tension, and a negative value 
compression. Similarly, a positive value for a strain component indi-
cates expansion in the corresponding direction, and a negative value 
contraction.

2.12 Multiaxial Loading; Generalized
Hooke’s Law

x

(a)

�

y�

z�

z�

1

1

1

(b)

1 � 

x�1 � 

y�1 � 

z

y

x

z

y

x

Fig. 2.39 Deformation of cube under 
multiaxial loading.
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*2.13 DILATATION; BULK MODULUS
In this section you will examine the effect of the normal stresses sx, 
sy, and sz on the volume of an element of isotropic material. Con-
sider the element shown in Fig. 2.39. In its unstressed state, it is in 
the shape of a cube of unit volume; and under the stresses sx, sy, 
sz, it deforms into a rectangular parallelepiped of volume

v 5 (1 1 Px)(1 1 Py)(1 1 Pz)

Since the strains Px, Py, Pz are much smaller than unity, their products 
will be even smaller and may be omitted in the expansion of the 
product. We have, therefore,

v 5 1 1 Px 1 Py 1 Pz

Denoting by e the change in volume of our element, we write

e 5 v 2 1 5 1 1 Px 1 Py 1 Pz 2 1

or

 e 5 Px 1 Py 1 Pz (2.30)

96

The steel block shown (Fig. 2.40) is subjected to a uniform pressure on 
all its faces. Knowing that the change in length of edge AB is 21.2 3 
1023 in., determine (a) the change in length of the other two edges, 
(b) the pressure p applied to the faces of the block. Assume E 5 29 3 
106 psi and n 5 0.29.

 (a) Change in Length of Other Edges. Substituting sx 5 sy 5 
sz 5 2p into the relations (2.28), we find that the three strain compo-
nents have the common value

 
Px 5 Py 5 Pz 5 2 

p

E
 11 2 2n2 (2.29)

Since

 Px 5 dxyAB 5 121.2 3 1023 in.2y14 in.2
 5 2300 3 1026 in./in.

we obtain

Py 5 Pz 5 Px 5 2300 3 1026 in./in.

from which it follows that

 dy 5 Py1BC2 5 12300 3 10262 12 in.2 5 2600 3 1026 in.
 dz 5 Pz1BD2 5 12300 3 10262 13 in.2 5 2900 3 1026 in.

 (b) Pressure. Solving Eq. (2.29) for p, we write

p 5 2 
EPx

1 2 2n
5 2 

129 3 106 psi2 12300 3 10262
1 2 0.58

p 5 20.7 ksi

EXAMPLE 2.08

2 in.

3 in.4  in.
z

y

A

B

D

C

x

Fig. 2.40
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97Since the element had originally a unit volume, the quantity e repre-
sents the change in volume per unit volume; it is referred to as the dila-
tation of the material. Substituting for Px, Py, and Pz from Eqs. (2.28) 
into (2.30), we write

e 5
sx 1 sy 1 sz

E
2

2n1sx 1 sy 1 sz2
E

 
e 5

1 2 2n
E
1sx 1 sy 1 sz2 (2.31)†

 A case of special interest is that of a body subjected to a uni-
form hydrostatic pressure p. Each of the stress components is then 
equal to 2p and Eq. (2.31) yields

 
e 5 2 

311 2 2n2
E

 p (2.32)

Introducing the constant

 
k 5

E
311 2 2n2  (2.33)

we write Eq. (2.32) in the form

 
e 5 2 

p

k  
(2.34)

The constant k is known as the bulk modulus or modulus of compres-
sion of the material. It is expressed in the same units as the modulus 
of elasticity E, that is, in pascals or in psi.
 Observation and common sense indicate that a stable material 
subjected to a hydrostatic pressure can only decrease in volume; thus 
the dilatation e in Eq. (2.34) is negative, from which it follows that 
the bulk modulus k is a positive quantity. Referring to Eq. (2.33), we 
conclude that 1 2 2n . 0, or n , 1

2. On the other hand, we recall 
from Sec. 2.11 that n is positive for all engineering materials. We 
thus conclude that, for any engineering material,

 0 , n , 1
2 (2.35)

We note that an ideal material having a value of v equal to zero could 
be stretched in one direction without any lateral contraction. On the 
other hand, an ideal material for which n 5 1

2, and thus k 5 `, would 
be perfectly incompressible (e 5 0). Referring to Eq. (2.31) we also 
note that, since n , 1

2 in the elastic range, stretching an engineering 
material in one direction, for example in the x direction (sx . 0, 
sy 5 sz 5 0), will result in an increase of its volume (e . 0).‡

*2.13 Dilatation; Bulk Modulus

†Since the dilatation e represents a change in volume, it must be independent of the ori-
entation of the element considered. It then follows from Eqs. (2.30) and (2.31) that the 
quantities Px 1 Py 1 Pz and sx 1 sy 1 sz are also independent of the orientation of the 
element. This property will be verified in Chap. 7.
‡However, in the plastic range, the volume of the material remains nearly constant.
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2.14 SHEARING STRAIN
When we derived in Sec. 2.12 the relations (2.28) between normal 
stresses and normal strains in a homogeneous isotropic material, we 
assumed that no shearing stresses were involved. In the more gen-
eral stress situation represented in Fig. 2.41, shearing stresses txy, 
tyz, and tzx will be present (as well, of course, as the corresponding 
shearing stresses tyx, tzy, and txz). These stresses have no direct 
effect on the normal strains and, as long as all the deformations 
involved remain small, they will not affect the derivation nor 
the validity of the relations (2.28). The shearing stresses, however, 
will tend to deform a cubic element of material into an oblique 
parallelepiped.

98

Determine the change in volume DV of the steel block shown in Fig. 2.40, 
when it is subjected to the hydrostatic pressure p 5 180 MPa. Use E 5 
200 GPa and n 5 0.29.

From Eq. (2.33), we determine the bulk modulus of steel,

k 5
E

311 2 2n2 5
200 GPa

311 2 0.582 5 158.7 GPa

and, from Eq. (2.34), the dilatation,

e 5 2 
p

k
5 2 

180 MPa
158.7 GPa

5 21.134 3 1023

Since the volume V of the block in its unstressed state is

V 5 (80 mm)(40 mm)(60 mm) 5 192 3 103 mm3

and since e represents the change in volume per unit volume, e 5 DVyV, 
we have

DV 5 eV 5 (21.134 3 1023)(192 3 103 mm3)

DV 5 2218 mm3

EXAMPLE 2.09

zy�
yz� yx�

zx�z� x�

y�

z

y

x

xy�

xz�

Q

Fig. 2.41 General state of stress.
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99 Consider first a cubic element of side one (Fig. 2.42) subjected 
to no other stresses than the shearing stresses txy and tyx applied to 
faces of the element respectively perpendicular to the x and y axes. 
(We recall from Sec. 1.12 that txy 5 tyx.) The element is observed 
to deform into a rhomboid of sides equal to one (Fig. 2.43). Two of 
the angles formed by the four faces under stress are reduced from 
p
2  to p2 2 gxy, while the other two are increased from p2  to p2  1 gxy, 
The small angle gxy (expressed in radians) defines the shearing strain 
corresponding to the x and y directions. When the deformation 
involves a reduction of the angle formed by the two faces oriented 
respectively toward the positive x and y axes (as shown in Fig. 2.43), 
the shearing strain gxy is said to be positive; otherwise, it is said to 
be negative.
 We should note that, as a result of the deformations of the 
other elements of the material, the element under consideration can 
also undergo an overall rotation. However, as was the case in our 
study of normal strains, we are concerned here only with the actual 
deformation of the element, and not with any possible superimposed 
rigid-body displacement.†
 Plotting successive values of txy against the corresponding val-
ues of gxy, we obtain the shearing stress-strain diagram for the mate-
rial under consideration. This can be accomplished by carrying out 
a torsion test, as you will see in Chap. 3. The diagram obtained is 
similar to the normal stress-strain diagram obtained for the same 
material from the tensile test described earlier in this chapter. How-
ever, the values obtained for the yield strength, ultimate strength, 
etc., of a given material are only about half as large in shear as they 
are in tension. As was the case for normal stresses and strains, the 
initial portion of the shearing stress-strain diagram is a straight line. 
For values of the shearing stress that do not exceed the proportional 

yx�

yx�

z

y

x

xy�
xy�

1

1

1

Fig. 2.42 Cubic element subjected to 
shearing stresses.

†In defining the strain gxy, some authors arbitrarily assume that the actual deformation of 
the element is accompanied by a rigid-body rotation such that the horizontal faces of the 
element do not rotate. The strain gxy is then represented by the angle through which the 
other two faces have rotated (Fig. 2.44). Others assume a rigid-body rotation such that 
the horizontal faces rotate through 1

2 
gxy counterclockwise and the vertical faces through 

1
2 
gxy clockwise (Fig. 2.45). Since both assumptions are unnecessary and may lead to confu-

sion, we prefer in this text to associate the shearing strain gxy with the change in the angle 
formed by the two faces, rather than with the rotation of a given face under restrictive 
conditions.

1

1

z

y

x

yx�

xy�

xy
� 2 


xy
� 2 �

Fig. 2.43 Deformation of cubic 
element due to shearing stresses.

y

x
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Fig. 2.44
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x
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xy
2
1

xy
2
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Fig. 2.45

2.14 Shearing Strain
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100 Stress and Strain—Axial Loading limit in shear, we can therefore write for any homogeneous isotropic 
material,

 txy 5 Ggxy (2.36)

This relation is known as Hooke’s law for shearing stress and strain, 
and the constant G is called the modulus of rigidity or shear modulus 
of the material. Since the strain gxy was defined as an angle in radi-
ans, it is dimensionless, and the modulus G is expressed in the same 
units as txy, that is, in pascals or in psi. The modulus of rigidity G 
of any given material is less than one-half, but more than one-third 
of the modulus of elasticity E of that material.†
 Considering now a small element of material subjected to 
shearing stresses tyz and tzy (Fig. 2.46a), we define the shearing 
strain gyz as the change in the angle formed by the faces under stress. 
The shearing strain gzx is defined in a similar way by considering an 
element subjected to shearing stresses tzx and txz (Fig. 2.46b). For 
values of the stress that do not exceed the proportional limit, we can 
write the two additional relations

 tyz 5 Ggyz      tzx 5 Ggzx (2.37)

where the constant G is the same as in Eq. (2.36).
 For the general stress condition represented in Fig. 2.41, and 
as long as none of the stresses involved exceeds the corresponding 
proportional limit, we can apply the principle of superposition and 
combine the results obtained in this section and in Sec. 2.12. We 
obtain the following group of equations representing the generalized 
Hooke’s law for a homogeneous isotropic material under the most 
general stress condition.

 
 Px 5 1

sx

E
2
nsy

E
2
nsz

E

 
 Py 5 2 

nsx

E
1
sy

E
2
nsz

E

 
 Pz 5 2 

nsx

E
2
nsy

E
1
sz

E

 (2.38)

 gxy 5
txy

G
    gyz 5

tyz

G
    gzx 5

tzx

G

 An examination of Eqs. (2.38) might lead us to believe that 
three distinct constants, E, n, and G, must first be determined exper-
imentally, if we are to predict the deformations caused in a given 
material by an arbitrary combination of stresses. Actually, only two 
of these constants need be determined experimentally for any given 
material. As you will see in the next section, the third constant can 
then be obtained through a very simple computation.

yz�

z

y

x

zy�

(a)

z

y

x

zx� xz�

(b)

Fig. 2.46

†See Prob. 2.91.
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101

2.15  FURTHER DISCUSSION OF DEFORMATIONS 
UNDER AXIAL LOADING; RELATION AMONG 
E, N, AND G

We saw in Sec. 2.11 that a slender bar subjected to an axial tensile 
load P directed along the x axis will elongate in the x direction 
and contract in both of the transverse y and z directions. If 
Px denotes the axial strain, the lateral strain is expressed as Py 5 
Pz 5 2nPx, where n is Poisson’s ratio. Thus, an element in the 
shape of a cube of side equal to one and oriented as shown in Fig. 
2.49a will deform into a rectangular parallelepiped of sides 1 1 
Px, 1 2 nPx, and 1 2 nPx. (Note that only one face of the element 
is shown in the figure.) On the other hand, if the element is ori-
ented at 458 to the axis of the load (Fig. 2.49b), the face shown in 
the figure is observed to deform into a rhombus. We conclude that 
the axial load P causes in this element a shearing strain g9 equal 
to the amount by which each of the angles shown in Fig. 2.49b 
increases or decreases.†

P

2.5 in.

2 in.

8 in.

Fig. 2.47

P2 in.

0.04 in.

A

F
E

C
B

D

z

y

x
xy�

Fig. 2.48

EXAMPLE 2.10A rectangular block of a material with a modulus of rigidity G 5 90 ksi 
is bonded to two rigid horizontal plates. The lower plate is fixed, while 
the upper plate is subjected to a horizontal force P (Fig. 2.47). Knowing 
that the upper plate moves through 0.04 in. under the action of the force, 
determine (a) the average shearing strain in the material, (b) the force P 
exerted on the upper plate.

 (a) Shearing Strain. We select coordinate axes centered at the 
midpoint C of edge AB and directed as shown (Fig. 2.48). According to 
its definition, the shearing strain gxy is equal to the angle formed by the 
vertical and the line CF joining the midpoints of edges AB and DE. Not-
ing that this is a very small angle and recalling that it should be expressed 
in radians, we write

gxy < tan gxy 5
0.04 in.

2 in.
    gxy 5 0.020 rad

 (b) Force Exerted on Upper Plate. We first determine the shear-
ing stress txy in the material. Using Hooke’s law for shearing stress and 
strain, we have

txy 5 Ggxy 5 190 3 103 psi2 10.020 rad 2 5 1800 psi

The force exerted on the upper plate is thus

P 5 txy A 5 11800 psi2 18 in.2 12.5 in.2 5 36.0 3 103 lb
P 5 36.0 kips

†Note that the load P also produces normal strains in the element shown in Fig. 2.49b 
(see Prob. 2.73).

y

x1

1

1 � x�

1 � x��

(a)

P

(b)

� �22 '� ' �� �

PP'

P'

Fig. 2.49 Representations of strain in an 
axially-loaded bar.
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102 Stress and Strain—Axial Loading  The fact that shearing strains, as well as normal strains, result 
from an axial loading should not come to us as a surprise, since we 
already observed at the end of Sec. 1.12 that an axial load P causes 
normal and shearing stresses of equal magnitude on four of the faces 
of an element oriented at 458 to the axis of the member. This was 
illustrated in Fig. 1.38, which, for convenience, has been repeated 
here. It was also shown in Sec. 1.11 that the shearing stress is maxi-
mum on a plane forming an angle of 458 with the axis of the load. 
It follows from Hooke’s law for shearing stress and strain that the 
shearing strain g9 associated with the element of Fig. 2.49b is also 
maximum: g9 5 gm.
 While a more detailed study of the transformations of strain 
will be postponed until Chap. 7, we will derive in this section a 
 relation between the maximum shearing strain g9 5 gm associated 
with the element of Fig. 2.49b and the normal strain Px in the direc-
tion of the load. Let us consider for this purpose the prismatic ele-
ment obtained by intersecting the cubic element of Fig. 2.49a by a 
diagonal plane (Fig. 2.50a and b). Referring to Fig. 2.49a, we con-
clude that this new element will deform into the element shown in 
Fig. 2.50c, which has horizontal and vertical sides respectively equal 
to 1 1 Px and 1 2 nPx. But the angle formed by the oblique and 
horizontal faces of the element of Fig. 2.50b is precisely half of one 
of the right angles of the cubic element considered in Fig. 2.49b. 
The angle b into which this angle deforms must therefore be equal 
to half of py2 2 gm. We write

b 5
p

4
2
gm

2

(b)

(a)

�m �m
P

P'

P'

P

P

2A

z

x

y

'
45�

�x

�x P
A

P
2A

� '�

'�

'� �

�

�

Fig. 1.38 (repeated )

111

1 1

� x�	

1 
 x	

� �4
1

(a) (b) (c)

Fig. 2.50

Applying the formula for the tangent of the difference of two angles, 
we obtain

tan b 5

tan 
p

4
2 tan 

gm

2

1 1 tan 
p

4
 tan 
gm

2

5

1 2 tan 
gm

2

1 1 tan 
gm

2

or, since gmy2 is a very small angle,

 

tan b 5

1 2
gm

2

1 1
gm

2

 (2.39)
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103But, from Fig. 2.50c, we observe that

 
tan b 5

1 2 nPx

1 1 Px
 (2.40)

Equating the right-hand members of (2.39) and (2.40), and solving 
for gm, we write

gm 5
11 1 n2Px

1 1
1 2 n

2
 Px

Since Px V 1, the denominator in the expression obtained can be 
assumed equal to one; we have, therefore,

 gm 5 (1 1 n)Px (2.41)

which is the desired relation between the maximum shearing strain 
gm and the axial strain Px.
 To obtain a relation among the constants E, n, and G, we recall 
that, by Hooke’s law, gm 5 tmyG, and that, for an axial loading, Px 5 
sxyE. Equation (2.41) can therefore be written as

tm

G
5 11 1 n2sx

E
or

 
E
G

5 11 1 n2sx

tm
 (2.42)

We now recall from Fig. 1.38 that sx 5 PyA and tm 5 Py2A, where 
A is the cross-sectional area of the member. It thus follows that 
sxytm 5 2. Substituting this value into (2.42) and dividing both 
members by 2, we obtain the relation

 
E

2G
5 1 1 n (2.43)

which can be used to determine one of the constants E, n, or G from 
the other two. For example, solving Eq. (2.43) for G, we write

 
G 5

E
2 11 1 n2  (2.439)

*2.16  STRESS-STRAIN RELATIONSHIPS FOR 
FIBER-REINFORCED COMPOSITE MATERIALS

Fiber-reinforced composite materials were briefly discussed in Sec. 
2.5. It was shown at that time that these materials are obtained by 
embedding fibers of a strong, stiff material into a weaker, softer mate-
rial, referred to as a matrix. It was also shown that the relationship 
between the normal stress and the corresponding normal strain cre-
ated in a lamina, or layer, of a composite material depends upon the 
direction in which the load is applied. Different moduli of elasticity, 
Ex, Ey, and Ez, are therefore required to describe the relationship 
between normal stress and normal strain, according to whether the 

*2.16 Stress-Strain Relationships for Fiber-
Reinforced Composite Materials
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104 Stress and Strain—Axial Loading load is applied in a direction parallel to the fibers, in a direction per-
pendicular to the layer, or in a transverse direction.
 Let us consider again the layer of composite material discussed 
in Sec. 2.5 and let us subject it to a uniaxial tensile load parallel to 
its fibers, i.e., in the x direction (Fig. 2.51a). To simplify our analysis, 
it will be assumed that the properties of the fibers and of the matrix 
have been combined, or “smeared,” into a fictitious equivalent homo-
geneous material possessing these combined properties. We now con-
sider a small element of that layer of smeared material (Fig. 2.51b). 
We denote by sx the corresponding normal stress and observe that 
sy 5 sz 5 0. As indicated earlier in Sec. 2.5, the corresponding 
normal strain in the x direction is Px 5 sxyEx, where Ex is the modulus 
of elasticity of the composite material in the x direction. As we saw 
for isotropic materials, the elongation of the material in the x direction 
is accompanied by contractions in the y and z directions. These con-
tractions depend upon the placement of the fibers in the matrix and 
will generally be different. It follows that the lateral strains Py and Pz 
will also be different, and so will the corresponding Poisson’s ratios:

 
nxy 5 2 

Py

Px
  and  nxz 5 2 

Pz

Px
 (2.44)

Note that the first subscript in each of the Poisson’s ratios nxy and 
nxz in Eqs. (2.44) refers to the direction of the load, and the second 
to the direction of the contraction.
 It follows from the above that, in the case of the multiaxial load-
ing of a layer of a composite material, equations similar to Eqs. (2.28) 
of Sec. 2.12 can be used to describe the stress-strain relationship. In 
the present case, however, three different values of the modulus of 
elasticity and six different values of Poisson’s ratio will be involved. We 
write

 
 Px 5

sx

Ex
2
nyxsy

Ey
2
nzxsz

Ez

  Py 5 2 
nxysx

Ex
1
sy

Ey
2
nzysz

Ez
 

(2.45)

 
 Pz 5 2 

nxzsx

Ex
2
nyzsy

Ey
1
sz

Ez

Equations (2.45) may be considered as defining the transformation 
of stress into strain for the given layer. It follows from a general 
property of such transformations that the coefficients of the stress 
components are symmetric, i.e., that

 

nxy

Ex
5
nyx

Ey   

nyz

Ey
5
nzy

Ez   
nzx

Ez
5
nxz

Ex  
(2.46)

These equations show that, while different, the Poisson’s ratios nxy 
and nyx are not independent; either of them can be obtained from 
the other if the corresponding values of the modulus of elasticity are 
known. The same is true of nyz and nzy, and of nzx and nxz.
 Consider now the effect of the presence of shearing stresses 
on the faces of a small element of smeared layer. As pointed out in 

Layer of
material

Fibers

Load

Load

y

z

x

(a)

Fig. 2.51 Fiber-reinforced composite 
material under uniaxial tensile load.
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105Sec. 2.14 in the case of isotropic materials, these stresses come in pairs 
of equal and opposite vectors applied to opposite sides of the given 
element and have no effect on the normal strains. Thus, Eqs. (2.45) 
remain valid. The shearing stresses, however, will create shearing 
strains which are defined by equations similar to the last three of the 
equations (2.38) of Sec. 2.14, except that three different values of the 
modulus of rigidity, Gxy, Gyz, and Gzx, must now be used. We have

 
gxy 5

txy

Gxy  
gyz 5

tyz

Gyz  
gzx 5

tzx

Gzx 
(2.47)

 The fact that the three components of strain Px, Py, and Pz can 
be expressed in terms of the normal stresses only and do not depend 
upon any shearing stresses characterizes orthotropic materials and 
distinguishes them from other anisotropic materials.
 As we saw in Sec. 2.5, a flat laminate is obtained by superposing 
a number of layers or laminas. If the fibers in all layers are given the 
same orientation to better withstand an axial tensile load, the lami-
nate itself will be orthotropic. If the lateral stability of the laminate 
is increased by positioning some of its layers so that their fibers are 
at a right angle to the fibers of the other layers, the resulting laminate 
will also be orthotropic. On the other hand, if any of the layers of a 
laminate are positioned so that their fibers are neither parallel nor 
perpendicular to the fibers of other layers, the lamina, generally, will 
not be orthotropic.†

†For more information on fiber-reinforced composite materials, see Hyer, M. W., Stress 
Analysis of Fiber-Reinforced Composite Materials, McGraw-Hill, New York, 1998.

2.16 Stress-Strain Relationships for Fiber-
Reinforced Composite Materials

EXAMPLE 2.11A 60-mm cube is made from layers of graphite epoxy with fibers aligned 
in the x direction. The cube is subjected to a compressive load of 140 kN 
in the x direction. The properties of the composite material are: Ex 5 
155.0 GPa, Ey 5 12.10 GPa, Ez 5 12.10 GPa, nxy 5 0.248, nxz 5 0.248, 
and nyz 5 0.458. Determine the changes in the cube dimensions, knowing 
that (a) the cube is free to expand in the y and z directions (Fig. 2.52); 
(b) the cube is free to expand in the z direction, but is restrained from 
expanding in the y direction by two fixed frictionless plates (Fig. 2.53).

 (a) Free in y and z Directions. We first determine the stress sx 
in the direction of loading. We have

sx 5
P
A

5
2140 3 103 N
10.060 m2 10.060 m2 5 238.89 MPa

Since the cube is not loaded or restrained in the y and z directions, we have 
sy 5 sz 5 0. Thus, the right-hand members of Eqs. (2.45) reduce to their 
first terms. Substituting the given data into these equations, we write

 Px 5
sx

Ex
5

238.89 MPa
155.0 GPa

5 2250.9 3 1026

 Py 5 2 
nxysx

Ex
5 2 

10.2482 1238.89 MPa2
155.0 GPa

5 162.22 3 1026

 Pz 5 2 
nxzsx

Ex
5 2 

10.2482 1238.69 MPa2
155.0 GPa

5 162.22 3 1026

y

z

140 kN

60 mm

60 mm

60 mm
140 kN

x

Fig. 2.52

y

z

140 kN

60 mm

60 mm

Fixed
frictionless

plates

60 mm

140 kN

x

Fig. 2.53
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The changes in the cube dimensions are obtained by multiplying the cor-
responding strains by the length L 5 0.060 m of the side of the cube:

 dx 5 PxL 5 12250.9 3 10262 10.060 m2 5 215.05 mm

 dy 5 PyL 5 1162.2 3 10262 10.060 m2 5 13.73 mm
 dz 5 PzL 5 1162.2 3 10262 10.060 m2 5 13.73 mm

 (b) Free in z Direction, Restrained in y Direction. The stress 
in the x direction is the same as in part a, namely, sx 5 238.89 MPa. 
Since the cube is free to expand in the z direction as in part a, we again 
have sz 5 0. But since the cube is now restrained in the y direction, 
we should expect a stress sy different from zero. On the other hand, 
since the cube cannot expand in the y direction, we must have dy 5 0 
and, thus, Py 5 dyyL 5 0. Making sz 5 0 and Py 5 0 in the second of 
Eqs. (2.45), solving that equation for sy, and substituting the given data, 
we have

 sy 5 aEy

Ex
b nxysx 5 a12.10

155.0
b10.2482 1238.89 MPa2

 5 2752.9 kPa

Now that the three components of stress have been determined, we can 
use the first and last of Eqs. (2.45) to compute the strain components 
Px and Pz. But the first of these equations contains Poisson’s ratio nyx 
and, as we saw earlier, this ratio is not equal to the ratio nxy which was 
among the given data. To find nyx we use the first of Eqs. (2.46) and 
write

nyx 5 aEy

Ex
b nxy 5 a12.10

155.0
b10.2482 5 0.01936

Making sz 5 0 in the first and third of Eqs. (2.45) and substituting in 
these equations the given values of Ex, Ey, nxz, and nyz, as well as the values 
obtained for sx, sy, and nyx, we have

 Px 5
sx

Ex
2
nyxsy

Ey
5

238.89 MPa
155.0 GPa

2
10.019362 12752.9 kPa2

12.10 GPa
 5 2249.7 3 1026

 Pz 5 2
nxzsx

Ex
2
nyzsy

Ey
5 2

10.2482 1238.89 MPa2
155.0 GPa

2
10.4582 12752.9 kPa2

12.10 GPa
 5 190.72 3 1026

The changes in the cube dimensions are obtained by multiplying the cor-
responding strains by the length L 5 0.060 m of the side of the cube:

 dx 5 PxL 5 12249.7 3 10262 10.060 m2 5 214.98 mm
 dy 5 PyL 5 102 10.060 m2 5 0
 dz 5 PzL 5 1190.72 3 10262 10.060 m2 5 15.44 mm

Comparing the results of parts a and b, we note that the difference 
between the values obtained for the deformation dx in the direction of 
the fibers is negligible. However, the difference between the values 
obtained for the lateral deformation dz is not negligible. This deformation 
is clearly larger when the cube is restrained from deforming in the y 
direction.

106
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107

SAMPLE PROBLEM 2.5

A circle of diameter d 5 9 in. is scribed on an unstressed aluminum plate 
of thickness t 5 3

4 in. Forces acting in the plane of the plate later cause nor-
mal stresses sx 5 12 ksi and sz 5 20 ksi. For E 5 10 3 106 psi and n 5 1

3, 
determine the change in (a) the length of diameter AB, (b) the length of 
diameter CD, (c) the thickness of the plate, (d) the volume of the plate.

SOLUTION

 Hooke’s Law.  We note that sy 5 0. Using Eqs. (2.28) we find the 
strain in each of the coordinate directions.

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

 5
1

10 3 106 psi
  c 112 ksi2 2 0 2

1
3

 120 ksi2 d 5 10.533 3 1023 in./in.

 Py 5 2  

nsx

E
1
sy

E
2
nsz

E

 5
1

10 3 106 psi
  c21

3
 112 ksi2 1 0 2

1
3

  120 ksi2 d 5 21.067 3 1023 in./in.

 Pz 5 2  

nsx

E
2
nsy

E
1
sz

E

 5
1

10 3 106 psi
  c21

3
  112 ksi2 2 0 1 120 ksi2 d 5 11.600 3 1023 in./in.

 a. Diameter AB. The change in length is dByA 5 Px d.

dByA 5 Pxd 5 110.533 3 1023 in./in.2 19 in.2    
dByA 5 14.8 3 1023 in. ◀

 b. Diameter CD.

dCyD 5 Pzd 5 111.600 3 1023 in./in.2 19 in.2 
dCyD 5 114.4 3 1023 in. ◀

 c. Thickness. Recalling that t 5 3
4 in., we have

dt 5 Pyt 5 121.067 3 1023 in./in.2 134 in.2
dt 5 20.800 3 1023 in. ◀

 d. Volume of the Plate.  Using Eq. (2.30), we write

e 5 Px 1 Py 1 Pz 5 110.533 2 1.067 1 1.60021023 5 11.067 3 1023

¢V 5 eV 5 11.067 3 1023 3 115 in.2 115 in.2 134 in.2 4¢V 5 10.187 3 in3 ◀

x�
z�

15 in.
15 in.

z

y

x

A
B

C

D
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PROBLEMS

108

 2.61 A 600-lb tensile load is applied to a test coupon made from 1
16-in. 

flat steel plate (E 5 29 3 106 psi, n 5 0.30). Determine the result-
ing change (a) in the 2-in. gage length, (b) in the width of portion 
AB of the test coupon, (c) in the thickness of portion AB, (d) in 
the cross-sectional area of portion AB.

600 lb600 lb

2 in.

A B

in.1
2

Fig. P2.61

2.62 In a standard tensile test a steel rod of 22-mm diameter is sub-
jected to a tension force of 75 kN. Knowing that n 5 0.3 and E 5 
200 GPa, determine (a) the elongation of the rod in a 200-mm 
gage length, (b) the change in diameter of the rod.

 2.63 A 20-mm-diameter rod made of an experimental plastic is sub-
jected to a tensile force of magnitude P 5 6 kN. Knowing that an 
elongation of 14 mm and a decrease in diameter of 0.85 mm are 
observed in a 150-mm length, determine the modulus of elasticity, 
the modulus of rigidity, and Poisson’s ratio for the material.

 2.64 The change in diameter of a large steel bolt is carefully measured 
as the nut is tightened. Knowing that E 5 29 3 106 psi and n 5 
0.30, determine the internal force in the bolt, if the diameter is 
observed to decrease by 0.5 3 1023 in.

200 mm

22-mm diameter
75 kN 75 kN

Fig. P2.62

2.5 in.

Fig. P2.64

2.5 m

700 kN

Fig. P2.65

�

1

2 �

Fig. P2.66

2.65 A 2.5-m length of a steel pipe of 300-mm outer diameter and 
15-mm wall thickness is used as a column to carry a 700-kN centric 
axial load. Knowing that E 5 200 GPa and n 5 0.30, determine 
(a) the change in length of the pipe, (b) the change in its outer 
diameter, (c) the change in its wall thickness.

 2.66 An aluminum plate (E 5 74 GPa, n 5 0.33) is subjected to a cen-
tric axial load that causes a normal stress s. Knowing that, before 
loading, a line of slope 2:1 is scribed on the plate, determine the 
slope of the line when s 5 125 MPa.
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109Problems 2.67 The block shown is made of a magnesium alloy for which E 5 45 GPa 
and n 5 0.35. Knowing that sx 5 2180 MPa, determine (a) the 
magnitude of sy for which the change in the height of the block will 
be zero, (b) the corresponding change in the area of the face ABCD, 
(c) the corresponding change in the volume of the block.

40 mm

100 mm xz

y

x�

y�

C

BD

G

F

A

E

25 mm

Fig. P2.67

 2.68 A 30-mm square was scribed on the side of a large steel pressure 
vessel. After pressurization the biaxial stress condition at the square 
is as shown. For E 5 200 GPa and n 5 0.30, determine the change 
in length of (a) side AB, (b) side BC, (c) diagonal AC.

 2.69 The aluminum rod AD is fitted with a jacket that is used to apply 
a hydrostatic pressure of 6000 psi to the 12-in. portion BC of the 
rod. Knowing that E 5 10.1 3 106 psi and n 5 0.36, determine 
(a) the change in the total length AD, (b) the change in diameter 
at the middle of the rod.

 2.70 For the rod of Prob. 2.69, determine the forces that should be applied 
to the ends A and D of the rod (a) if the axial strain in portion BC 
of the rod is to remain zero as the hydrostatic pressure is applied, 
(b) if the total length AD of the rod is to remain unchanged.

 2.71 In many situations physical constraints prevent strain from occurring 
in a given direction. For example, Pz 5 0 in the case shown, where 
longitudinal movement of the long prism is prevented at every point. 
Plane sections perpendicular to the longitudinal axis remain plane 
and the same distance apart. Show that for this situation, which is 
known as plane strain, we can express sz, Px, and Py as follows:

 sz 5 n 1sx 1 sy2
 Px 5

1
E

 3 11 2 n22sx 2 n 11 1 n 2sy 4
 Py 5

1
E

 3 11 2 n22sy 2 n 11 1 n 2sx 4

y � 40 MPa�

x � 80 MPa�30 mm

A B

CD

30 mm

Fig. P2.68

12 in. 20 in.

C

D

A

B

1.5 in.
Fig. P2.69

xx�

zz�

yy�
y

x

z (a) (b)

�

Fig. P2.71
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110 Stress and Strain—Axial Loading  2.72 In many situations it is known that the normal stress in a given 
direction is zero. For example, sz 5 0 in the case of the thin plate 
shown. For this case, which is known as plane stress, show that if 
the strains Px and Py have been determined experimentally, we can 
express sx, sy and Pz as follows:

 sx 5 E  

Px 1 nPy

1 2 n2

 sy 5 E  

Py 1 nPx

1 2 n2

 Pz 5 2
n

1 2 n
 1Px 1 Py2

 2.73 For a member under axial loading, express the normal strain P9 in 
a direction forming an angle of 458 with the axis of the load in 
terms of the axial strain Px by (a) comparing the hypotenuses of 
the triangles shown in Fig. 2.50, which represent respectively an 
element before and after deformation, (b) using the values of the 
corresponding stresses s9 and sx shown in Fig. 1.38, and the gen-
eralized Hooke’s law.

 2.74 The homogeneous plate ABCD is subjected to a biaxial loading as 
shown. It is known that sz 5 s0 and that the change in length of 
the plate in the x direction must be zero, that is, Px 5 0. Denoting 
by E the modulus of elasticity and by n Poisson’s ratio, determine 
(a) the required magnitude of sx, (b) the ratio s0yPz.

 2.75 A vibration isolation unit consists of two blocks of hard rubber 
bonded to a plate AB and to rigid supports as shown. Knowing that 
a force of magnitude P 5 25 kN causes a deflection d 5 1.5 mm 
of plate AB, determine the modulus of rigidity of the rubber 
used.

 2.76 A vibration isolation unit consists of two blocks of hard rubber with 
a modulus of rigidity G 5 19 MPa bonded to a plate AB and to 
rigid supports as shown. Denoting by P the magnitude of the force 
applied to the plate and by d the corresponding deflection, deter-
mine the effective spring constant, k 5 Pyd, of the system.

 2.77 The plastic block shown is bonded to a fixed base and to a hori-
zontal rigid plate to which a force P is applied. Knowing that for 
the plastic used G 5 55 ksi, determine the deflection of the plate 
when P 5 9 kips.

x�

y�

Fig. P2.72

x�
z�z

y

x

A

B

C

D

Fig. P2.74

3.5 in.

5.5 in. 2.2 in.

P

Fig. P2.77

150 mm
100 mm

30 mm

B

A

30 mm

P

Fig. P2.75 and P2.76
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111Problems 2.78 A vibration isolation unit consists of two blocks of hard rubber 
bonded to plate AB and to rigid supports as shown. For the type 
and grade of rubber used tall 5 220 psi and G 5 1800 psi. Know-
ing that a centric vertical force of magnitude P 5 3.2 kips must 
cause a 0.1-in. vertical deflection of the plate AB, determine the 
smallest allowable dimensions a and b of the block.

 2.79 The plastic block shown is bonded to a rigid support and to a verti-
cal plate to which a 55-kip load P is applied. Knowing that for the 
plastic used G 5 150 ksi, determine the deflection of the plate.

 2.80 What load P should be applied to the plate of Prob. 2.79 to pro-
duce a 1

16-in. deflection?

 2.81 Two blocks of rubber with a modulus of rigidity G 5 12 MPa are 
bonded to rigid supports and to a plate AB. Knowing that c 5 100 mm 
and P 5 45 kN, determine the smallest allowable dimensions a and 
b of the blocks if the shearing stress in the rubber is not to exceed 
1.4 MPa and the deflection of the plate is to be at least 5 mm.

 2.82 Two blocks of rubber with a modulus of rigidity G 5 10 MPa are 
bonded to rigid supports and to a plate AB. Knowing that b 5 
200 mm and c 5 125 mm, determine the largest allowable load P 
and the smallest allowable thickness a of the blocks if the shearing 
stress in the rubber is not to exceed 1.5 MPa and the deflection 
of the plate is to be at least 6 mm.

 *2.83 Determine the dilatation e and the change in volume of the 
200-mm length of the rod shown if (a) the rod is made of steel 
with E 5 200 GPa and n 5 0.30, (b) the rod is made of aluminum 
with E 5 70 GPa and n 5 0.35.

 *2.84 Determine the change in volume of the 2-in. gage length segment 
AB in Prob. 2.61 (a) by computing the dilatation of the material, 
(b) by subtracting the original volume of portion AB from its final 
volume.

 *2.85 A 6-in.-diameter solid steel sphere is lowered into the ocean to a 
point where the pressure is 7.1 ksi (about 3 miles below the surface). 
Knowing that E 5 29 3 106 psi and n 5 0.30, determine (a) the 
decrease in diameter of the sphere, (b) the decrease in volume of 
the sphere, (c) the percent increase in the density of the sphere.

B

b

A 3.0 in.

P

a
a

Fig. P2.78

4.8 in.

3.2 in.

2 in. P

Fig. P2.79

a a

c

b

A

B

P

Figs. P2.81 and P2.82

46 kN46 kN

200 mm

22-mm diameter

Fig. P2.83
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112 Stress and Strain—Axial Loading  *2.86 (a) For the axial loading shown, determine the change in height 
and the change in volume of the brass cylinder shown. (b) Solve 
part a, assuming that the loading is hydrostatic with sx 5 sy 5 
sz 5 270 MPa.

 *2.87 A vibration isolation support consists of a rod A of radius R1 5 
10 mm and a tube B of inner radius R2 5 25 mm bonded to an 
80-mm-long hollow rubber cylinder with a modulus of rigidity 
G 5 12 MPa. Determine the largest allowable force P that can be 
applied to rod A if its deflection is not to exceed 2.50 mm.

�

E � 105 GPa 

y � �58 MPa

v � 0.33

135 mm

85 mm

Fig. P2.86

A

B

R1

80 mm

R2

P

Fig. P2.87 and P2.88

 *2.88 A vibration isolation support consists of a rod A of radius R1 and 
a tube B of inner radius R2 bonded to an 80-mm-long hollow rub-
ber cylinder with a modulus of rigidity G 5 10.93 MPa. Determine 
the required value of the ratio R2yR1 if a 10-kN force P is to cause 
a 2-mm deflection of rod A.

 *2.89 The material constants E, G, k, and n are related by Eqs. (2.33) 
and (2.43). Show that any one of the constants may be expressed 
in terms of any other two constants. For example, show that (a) k 5 
GEy(9G 2 3E) and (b) n 5 (3k 2 2G)y(6k 1 2G).

 *2.90 Show that for any given material, the ratio G/E of the modulus of 
rigidity over the modulus of elasticity is always less than 1

2 but more 
than 1

3. [Hint: Refer to Eq. (2.43) and to Sec. 2.13.]

 *2.91 A composite cube with 40-mm sides and the properties shown is 
made with glass polymer fibers aligned in the x direction. The cube 
is constrained against deformations in the y and z directions and 
is subjected to a tensile load of 65 kN in the x direction. Determine 
(a) the change in the length of the cube in the x direction, (b) the 
stresses sx, sy, and sz.

 *2.92 The composite cube of Prob. 2.91 is constrained against defor-
mation in the z direction and elongated in the x direction by 
0.035 mm due to a tensile load in the x direction. Determine 
(a) the stresses sx, sy, and sz, (b) the change in the dimension 
in the y direction.

Ex � 50 GPa 
Ey � 15.2 GPa 
Ez � 15.2 GPa 

�xz � 0.254
�xy � 0.254 
�zy � 0.428 

y

z
x

Fig. P2.91
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1132.17  STRESS AND STRAIN DISTRIBUTION UNDER 
AXIAL LOADING; SAINT-VENANT’S PRINCIPLE

We have assumed so far that, in an axially loaded member, the nor-
mal stresses are uniformly distributed in any section perpendicular 
to the axis of the member. As we saw in Sec. 1.5, such an assumption 
may be quite in error in the immediate vicinity of the points of 
application of the loads. However, the determination of the actual 
stresses in a given section of the member requires the solution of a 
statically indeterminate problem.
 In Sec. 2.9, you saw that statically indeterminate problems 
involving the determination of forces can be solved by considering 
the deformations caused by these forces. It is thus reasonable to 
conclude that the determination of the stresses in a member requires 
the analysis of the strains produced by the stresses in the member. 
This is essentially the approach found in advanced textbooks, where 
the mathematical theory of elasticity is used to determine the distri-
bution of stresses corresponding to various modes of application of 
the loads at the ends of the member. Given the more limited math-
ematical means at our disposal, our analysis of stresses will be 
restricted to the particular case when two rigid plates are used to 
transmit the loads to a member made of a homogeneous isotropic 
material (Fig. 2.54).
 If the loads are applied at the center of each plate,† the plates 
will move toward each other without rotating, causing the member 
to get shorter, while increasing in width and thickness. It is reason-
able to assume that the member will remain straight, that plane 
sections will remain plane, and that all elements of the member will 
deform in the same way, since such an assumption is clearly compat-
ible with the given end conditions. This is illustrated in Fig. 2.55, 

2.17 Stress and Strain Distribution under Axial 
Loading; Saint-Venant’s Principle

P

P'

Fig. 2.54 Axial load applied 
by rigid plates to a member.

†More precisely, the common line of action of the loads should pass through the centroid 
of the cross section (cf. Sec. 1.5).

(a) (b)

P

P'

Fig. 2.55 Axial load applied by rigid 
plates to rubber model.
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114 Stress and Strain—Axial Loading which shows a rubber model before and after loading.† Now, if all 
elements deform in the same way, the distribution of strains through-
out the member must be uniform. In other words, the axial strain Py 
and the lateral strain Px 5 2nPy are constant. But, if the stresses do 
not exceed the proportional limit, Hooke’s law applies and we may 
write sy 5 EPy, from which it follows that the normal stress sy is 
also constant. Thus, the distribution of stresses is uniform throughout 
the member and, at any point,

sy 5 1sy2ave 5
P
A

 On the other hand, if the loads are concentrated, as illustrated 
in Fig. 2.56, the elements in the immediate vicinity of the points of 
application of the loads are subjected to very large stresses, while 
other elements near the ends of the member are unaffected by the 
loading. This may be verified by observing that strong deformations, 
and thus large strains and large stresses, occur near the points of 
application of the loads, while no deformation takes place at the 
corners. As we consider elements farther and farther from the ends, 
however, we note a progressive equalization of the deformations 
involved, and thus a more nearly uniform distribution of the strains 
and stresses across a section of the member. This is further illustrated 
in Fig. 2.57, which shows the result of the calculation by advanced 
mathematical methods of the distribution of stresses across various 
sections of a thin rectangular plate subjected to concentrated loads. 
We note that at a distance b from either end, where b is the width 
of the plate, the stress distribution is nearly uniform across the sec-
tion, and the value of the stress sy at any point of that section can 
be assumed equal to the average value PyA. Thus, at a distance equal 
to, or greater than, the width of the member, the distribution of 
stresses across a given section is the same, whether the member is 
loaded as shown in Fig. 2.54 or Fig. 2.56. In other words, except in 
the immediate vicinity of the points of application of the loads, the 
stress distribution may be assumed independent of the actual mode 
of application of the loads. This statement, which applies not only to 
axial loadings, but to practically any type of load, is known as Saint-
Venant’s principle, after the French mathematician and engineer 
Adhémar Barré de Saint-Venant (1797–1886).
 While Saint-Venant’s principle makes it possible to replace a 
given loading by a simpler one for the purpose of computing the 
stresses in a structural member, you should keep in mind two impor-
tant points when applying this principle:

 1. The actual loading and the loading used to compute the stresses 
must be statically equivalent.

 2. Stresses cannot be computed in this manner in the immediate 
vicinity of the points of application of the loads. Advanced theo-
retical or experimental methods must be used to determine the 
distribution of stresses in these areas.

P

P'

Fig. 2.56 Concentrated 
axial load applied to 
rubber model.

†Note that for long, slender members, another configuration is possible, and indeed will 
prevail, if the load is sufficiently large; the member buckles and assumes a curved shape. 
This will be discussed in Chap. 10.

b b

�min �ave� 0.973

�max �ave� 1.027

PP

P'

b1
2

b1
4 �min

�ave

�max

P
A�

�min �ave� 0.668

�max �ave� 1.387

�min �ave� 0.198

�max �ave� 2.575

PP

Fig. 2.57 Stress distributions in a plate under 
concentrated axial loads.
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115 You should also observe that the plates used to obtain a uniform 
stress distribution in the member of Fig. 2.55 must allow the mem-
ber to freely expand laterally. Thus, the plates cannot be rigidly 
attached to the member; you must assume them to be just in contact 
with the member, and smooth enough not to impede the lateral 
expansion of the member. While such end conditions can actually be 
achieved for a member in compression, they cannot be physically 
realized in the case of a member in tension. It does not matter, 
however, whether or not an actual fixture can be realized and used 
to load a member so that the distribution of stresses in the member 
is uniform. The important thing is to imagine a model that will allow 
such a distribution of stresses, and to keep this model in mind so 
that you may later compare it with the actual loading conditions.

2.18 STRESS CONCENTRATIONS
As you saw in the preceding section, the stresses near the points of 
application of concentrated loads can reach values much larger than 
the average value of the stress in the member. When a structural 
member contains a discontinuity, such as a hole or a sudden change 
in cross section, high localized stresses can also occur near the dis-
continuity. Figures 2.58 and 2.59 show the distribution of stresses in 
critical sections corresponding to two such situations. Figure 2.58 
refers to a flat bar with a circular hole and shows the stress distribu-
tion in a section passing through the center of the hole. Figure 2.59 
refers to a flat bar consisting of two portions of different widths con-
nected by fillets; it shows the stress distribution in the narrowest part 
of the connection, where the highest stresses occur.
 These results were obtained experimentally through the use of 
a photoelastic method. Fortunately for the engineer who has to 
design a given member and cannot afford to carry out such an analy-
sis, the results obtained are independent of the size of the member 
and of the material used; they depend only upon the ratios of the 
geometric parameters involved, i.e., upon the ratio ryd in the case 
of a circular hole, and upon the ratios ryd and Dyd in the case of 
fillets. Furthermore, the designer is more interested in the maximum 
value of the stress in a given section, than in the actual distribution 
of stresses in that section, since the main concern is to determine 
whether the allowable stress will be exceeded under a given loading, 
and not where this value will be exceeded. For this reason, one 
defines the ratio

 
K 5

smax

save
 (2.48)

of the maximum stress over the average stress computed in the 
 critical (narrowest) section of the discontinuity. This ratio is referred 
to as the stress-concentration factor of the given discontinuity. Stress-
 concentration factors can be computed once and for all in terms of 
the ratios of the geometric parameters involved, and the results 
obtained can be expressed in the form of tables or of graphs, as 

2.18 Stress Concentrations

PP'

P'

r
D

d1
2

d1
2

�max

�ave

Fig. 2.58 Stress distribution near circular 
hole in flat bar under axial loading.

PP'

P'

�max

�ave

dD

r

Fig. 2.59 Stress distribution near fillets 
in flat bar under axial loading.
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1.6

1.4

1.2

1.0
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.180.16 0.20 0.22 0.24 0.26 0.28 0.30
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r

D

D/d � 2
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1.1
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3.0

3.2

3.4

2.8

2.6

2.4

2.2

2.0

K

1.8

1.6

1.4

1.2

1.0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

2r/D

1
2 d

D
1
2 d

r

Fig. 2.60 Stress concentration factors for flat 
bars under axial loading†

Note that the average stress must be computed 
across the narrowest section: save 5 P/td, where 
t is the thickness of the bar.

(a) Flat bars with holes (b) Flat bars with fillets

Determine the largest axial load P that can be safely supported by a flat 
steel bar consisting of two portions, both 10 mm thick and, respectively, 
40 and 60 mm wide, connected by fillets of radius r 5 8 mm. Assume an 
allowable normal stress of 165 MPa.

We first compute the ratios
D
d

5
60 mm
40 mm

5 1.50     r
d

5
8 mm

40 mm
5 0.20

Using the curve in Fig. 2.60b corresponding to Dyd 5 1.50, we find that 
the value of the stress-concentration factor corresponding to ryd 5 0.20 is

K 5 1.82
Carrying this value into Eq. (2.48) and solving for save, we have

save 5
smax

1.82
But smax cannot exceed the allowable stress sall 5 165 MPa. Substituting 
this value for smax, we find that the average stress in the narrower portion 
(d 5 40 mm) of the bar should not exceed the value

save 5
165 MPa

1.82
5 90.7 MPa

Recalling that save 5 PyA, we have
P 5 Asave 5 140 mm2 110 mm2 190.7 MPa2 5 36.3 3 103 N

P 5 36.3 kN

EXAMPLE 2.12

†W. D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed., John Wiley & Sons, New 
York, 1997.

shown in Fig. 2.60. To determine the maximum stress occurring near a 
discontinuity in a given member subjected to a given axial load P, the 
designer needs only to compute the average stress save 5 PyA in the 
critical section, and multiply the result obtained by the appropriate value 
of the stress-concentration factor K. You should note, however, that this 
procedure is valid only as long as smax does not exceed the proportional 
limit of the material, since the values of K plotted in Fig. 2.60 were 
obtained by assuming a linear relation between stress and strain.

116
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1172.19 PLASTIC DEFORMATIONS
The results obtained in the preceding sections were based on the 
assumption of a linear stress-strain relationship. In other words, we 
assumed that the proportional limit of the material was never exceeded. 
This is a reasonable assumption in the case of brittle materials, which 
rupture without yielding. In the case of ductile materials, however, this 
assumption implies that the yield strength of the material is not 
exceeded. The deformations will then remain within the elastic range 
and the structural member under consideration will regain its original 
shape after all loads have been removed. If, on the other hand, the 
stresses in any part of the member exceed the yield strength of the 
material, plastic deformations occur and most of the results obtained 
in earlier sections cease to be valid. A more involved analysis, based 
on a nonlinear stress-strain relationship, must then be carried out.
 While an analysis taking into account the actual stress-strain rela-
tionship is beyond the scope of this text, we gain considerable insight into 
plastic behavior by considering an idealized elastoplastic material for 
which the stress-strain diagram consists of the two straight-line segments 
shown in Fig. 2.61. We may note that the stress-strain diagram for mild 
steel in the elastic and plastic ranges is similar to this idealization. As long 
as the stress s is less than the yield strength sY, the material behaves 
elastically and obeys Hooke’s law, s 5 EP. When s reaches the value sY, 
the material starts yielding and keeps deforming plastically under a con-
stant load. If the load is removed, unloading takes place along a straight-
line segment CD parallel to the initial portion AY of the loading curve. 
The segment AD of the horizontal axis represents the strain  corresponding 
to the permanent set or plastic deformation resulting from the loading 
and unloading of the specimen. While no actual material behaves exactly 
as shown in Fig. 2.61, this stress-strain diagram will prove useful in dis-
cussing the plastic deformations of ductile materials such as mild steel.

2.19 Plastic Deformations

D �A

C
Rupture

Y
�

�

Y

Fig. 2.61 Stress-strain diagram for 
an idealized elastoplastic material.

EXAMPLE 2.13A rod of length L 5 500 mm and cross-sectional area A 5 60 mm2 is made 
of an elastoplastic material having a modulus of elasticity E 5 200 GPa in 
its elastic range and a yield point sY 5 300 MPa. The rod is subjected to 
an axial load until it is stretched 7 mm and the load is then removed. What 
is the resulting permanent set?

Referring to the diagram of Fig. 2.61, we find that the maximum 
strain, represented by the abscissa of point C, is

PC 5
dC

L
5

7 mm
500 mm

5 14 3 1023

On the other hand, the yield strain, represented by the abscissa of point Y, is

PY 5
sY

E
5

300 3 106 Pa
200 3 109 Pa

5 1.5 3 1023

The strain after unloading is represented by the abscissa PD of point D. 
We note from Fig. 2.61 that

 PD 5 AD 5 YC 5 PC 2 PY

 5 14 3 1023 2 1.5 3 1023 5 12.5 3 1023

The permanent set is the deformation dD corresponding to the strain PD. 
We have

dD 5 PDL 5 112.5 3 10232 1500 mm2 5 6.25 mm
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A 30-in.-long cylindrical rod of cross-sectional area Ar 5 0.075 in2 is 
placed inside a tube of the same length and of cross-sectional area At 5 
0.100 in2. The ends of the rod and tube are attached to a rigid support 
on one side, and to a rigid plate on the other, as shown in the longitudinal 
section of Fig. 2.62. The rod and tube are both assumed to be elastoplastic, 
with moduli of elasticity Er 5 30 3 106 psi and Et 5 15 3 106 psi, and 
yield strengths (sr)Y 5 36 ksi and (st)Y 5 45 ksi. Draw the load-deflection 
diagram of the rod-tube assembly when a load P is applied to the plate 
as shown.

EXAMPLE 2.14

Tube

Plate

30 in.

Rod
P

Fig. 2.62

Pr (kips)

2.7

0 36

Yr

�r (10–3 in.)
(a)

Pt (kips)

1.8

4.5

0 36 90 �t (10–3 in.)
(b)

P (kips)

4.5

7.2

0 36 90

Yr

Yt

Yt

� (10–3 in.)
(c)

Fig. 2.63

We first determine the internal force and the elongation of the rod 
as it begins to yield:

 1Pr2Y 5 1sr2YAr 5 136 ksi2 10.075 in22 5 2.7 kips

 1dr2Y 5 1Pr2YL 5
1sr2Y
Er

L 5
36 3 103 psi

30 3 106 psi
 130 in.2

 5 36 3 1023 in.

Since the material is elastoplastic, the force-elongation diagram of 
the rod alone consists of an oblique straight line and of a horizontal 
straight line, as shown in Fig. 2.63a. Following the same procedure for 
the tube, we have

 1Pt2Y 5 1st2YAt 5 145 ksi2 10.100 in22 5 4.5 kips

 1dt2Y 5 1Pt2YL 5
1st2Y
Et

L 5
45 3 103 psi

15 3 106 psi
 130 in.2

 5 90 3 1023 in.

The load-deflection diagram of the tube alone is shown in Fig. 2.63b. 
Observing that the load and deflection of the rod-tube combination are, 
respectively,

P 5 Pr 1 Pt  d 5 dr 5 dt

we draw the required load-deflection diagram by adding the ordinates of 
the diagrams obtained for the rod and for the tube (Fig. 2.63c). Points 
Yr and Yt correspond to the onset of yield in the rod and in the tube, 
respectively.
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 We recall that the discussion of stress concentrations of Sec. 2.18 
was carried out under the assumption of a linear stress-strain  relationship. 
The stress distributions shown in Figs. 2.58 and 2.59, and the values of 
the stress-concentration factors plotted in Fig. 2.60 cannot be used, 
therefore, when plastic deformations take place, i.e., when the value of 
smax obtained from these figures exceeds the yield strength sY.
 Let us consider again the flat bar with a circular hole of Fig. 2.58, 
and let us assume that the material is elastoplastic, i.e., that its stress-
strain diagram is as shown in Fig. 2.61. As long as no plastic deforma-
tion takes place, the distribution of stresses is as indicated in Sec. 2.18 

Pr (kips)

2.7

0 60

Yr C

D

�r (10–3 in.)

(a)

Pt (kips)

3.0

0 60

Yt

C

C

FE

�

�

t (10–3 in.)

0

� 60 � 10–3 in.

� (10–3 in.)

(b)

P (kips)

4.5

5.7
Yr

Yt

(c)

'�

�

p

Pmax

max

Fig. 2.64

EXAMPLE 2.15If the load P applied to the rod-tube assembly of Example 2.14 is increased 
from zero to 5.7 kips and decreased back to zero, determine (a) the 
maximum elongation of the assembly, (b) the permanent set after the load 
has been removed.

 (a) Maximum Elongation. Referring to Fig. 2.63c, we observe 
that the load Pmax 5 5.7 kips corresponds to a point located on the seg-
ment YrYt of the load-deflection diagram of the assembly. Thus, the rod 
has reached the plastic range, with Pr 5 (Pr)Y 5 2.7 kips and sr 5 (sr)Y 5 
36 ksi, while the tube is still in the elastic range, with

 Pt 5 P 2 Pr 5 5.7 kips 2 2.7 kips 5 3.0 kips

 st 5
Pt

At
5

3.0 kips

0.1 in2 5 30 ksi

 dt 5 PtL 5
st

Et
L 5

30 3 103 psi

15 3 106 psi
 130 in.2 5 60 3 1023 in.

The maximum elongation of the assembly, therefore, is

dmax 5 dt 5 60 3 1023 in.

 (b) Permanent Set. As the load P decreases from 5.7 kips to zero, 
the internal forces Pr and Pt both decrease along a straight line, as shown 
in Fig. 2.64a and b, respectively. The force Pr decreases along line CD 
parallel to the initial portion of the loading curve, while the force Pt 
decreases along the original loading curve, since the yield stress was not 
exceeded in the tube. Their sum P, therefore, will decrease along a line 
CE parallel to the portion 0Yr of the load-deflection curve of the assembly 
(Fig. 2.64c). Referring to Fig. 2.63c, we find that the slope of 0Yr, and 
thus of CE, is

m 5
4.5 kips

36 3 1023 in.
5 125 kips/in.

The segment of line FE in Fig. 2.64c represents the deformation d9 of the 
assembly during the unloading phase, and the segment 0E the permanent 
set dp after the load P has been removed. From triangle CEF we have

d¿ 5 2 
Pmax

m
5 2 

5.7 kips

125 kips/in.
5 245.6 3 1023 in.

The permanent set is thus

 dP 5 dmax 1 d¿ 5 60 3 1023 2 45.6 3 1023

 5 14.4 3 1023 in.
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120 Stress and Strain—Axial Loading

(Fig. 2.65a). We observe that the area under the stress-distribution 
curve represents the integral es dA, which is equal to the load P. 
Thus this area, and the value of smax, must increase as the load P 
increases. As long as smax # sY, all the successive stress distributions 
obtained as P increases will have the shape shown in Fig. 2.58 and 
repeated in Fig. 2.65a. However, as P is increased beyond the value 
PY corresponding to smax 5 sY (Fig. 2.65b), the stress-distribution 
curve must flatten in the vicinity of the hole (Fig. 2.65c), since the 
stress in the material considered cannot exceed the value sY. This 
indicates that the material is yielding in the vicinity of the hole. As the 
load P is further increased, the plastic zone where yield takes place 
keeps expanding, until it reaches the edges of the plate (Fig. 2.65d). 
At that point, the distribution of stresses across the plate is uniform, 
s 5 sY, and the corresponding value P 5 PU of the load is the largest 
that can be applied to the bar without causing rupture.
 It is interesting to compare the maximum value PY of the load 
that can be applied if no permanent deformation is to be produced in 
the bar, with the value PU that will cause rupture. Recalling the  definition 
of the average stress, save 5 PyA, where A is the net cross-sectional 
area, and the definition of the stress concentration factor, K 5 smaxysave, 
we write

 
P 5 save A 5

smax A
K

 (2.49)

for any value of smax that does not exceed sY. When smax 5 sY (Fig. 
2.65b), we have P 5 PY, and Eq. (2.49) yields

 
PY 5

sYA
K

 (2.50)

(a)

(b)

(c)

�

� �max Y

Y

�max

  � 

� �ave � (d)

PY

P

PU

P

Y

Fig. 2.65 Distribution of stresses in 
elastoplastic material under increasing load.
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EXAMPLE 2.16Determine the residual stresses in the rod and tube of Examples 2.14 and 
2.15 after the load P has been increased from zero to 5.7 kips and 
decreased back to zero.

We observe from the diagrams of Fig. 2.66 that after the load P has 
returned to zero, the internal forces Pr and Pt are not equal to zero. Their 
values have been indicated by point E in parts a and b, respectively, of 
Fig. 2.66. It follows that the corresponding stresses are not equal to zero 
either after the assembly has been unloaded. To determine these residual 
stresses, we shall determine the reverse stresses s9r and s9t caused by the 
unloading and add them to the maximum stresses sr 5 36 ksi and st 5 
30 ksi found in part a of Example 2.15.

The strain caused by the unloading is the same in the rod and in 
the tube. It is equal to d9yL, where d9 is the deformation of the assembly 
during unloading, which was found in Example 2.15. We have

P¿ 5
d¿
L

5
245.6 3 1023 in.

30 in.
5 21.52 3 1023 in./in.

The corresponding reverse stresses in the rod and tube are

 s¿r 5 P¿Er 5 121.52 3 10232 130 3 106 psi2 5 245.6 ksi
 s¿t 5 P¿Et 5 121.52 3 10232 115 3 106 psi2 5 222.8 ksi

The residual stresses are found by superposing the stresses due to loading 
and the reverse stresses due to unloading. We have

 1sr2res 5 sr 1 s¿r 5 36 ksi 2 45.6 ksi 5 29.6 ksi
 1st2res 5 st 1 s¿t 5 30 ksi 2 22.8 ksi 5 17.2 ksi

Pr (kips)

2.7

0 60

Yr C

D
E

E

�r (10–3 in.)

(a)(a)

Pt (kips)

3.0

0 60

Yt

C

C

FE

�

�

t (10–3 in.)

0
� (10–3 in.)

(b)

P (kips)

4.5

5.7
Yr

Yt

(c)

'�p

Pmax

Fig. 2.66

On the other hand, when P 5 PU (Fig. 2.65d), we have save 5 sY and
 PU 5 sYA (2.51)
Comparing Eqs. (2.50) and (2.51), we conclude that

 
PY 5

PU

K
 (2.52)

*2.20 RESIDUAL STRESSES
In Example 2.13 of the preceding section, we considered a rod that 
was stretched beyond the yield point. As the load was removed, the 
rod did not regain its original length; it had been permanently 
deformed. However, after the load was removed, all stresses disap-
peared. You should not assume that this will always be the case. 
Indeed, when only some of the parts of an indeterminate structure 
undergo plastic deformations, as in Example 2.15, or when different 
parts of the structure undergo different plastic deformations, the 
stresses in the various parts of the structure will not, in general, 
return to zero after the load has been removed. Stresses, called 
residual stresses, will remain in the various parts of the structure.
 While the computation of the residual stresses in an actual structure 
can be quite involved, the following example will provide you with a 
general understanding of the method to be used for their determination.

*2.20 Residual Stresses
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122 Stress and Strain—Axial Loading  Plastic deformations caused by temperature changes can also 
result in residual stresses. For example, consider a small plug that is 
to be welded to a large plate. For discussion purposes the plug will 
be considered as a small rod AB that is to be welded across a small 
hole in the plate (Fig. 2.67). During the welding process the tem-
perature of the rod will be raised to over 10008C, at which tempera-
ture its modulus of elasticity, and hence its stiffness and stress, will 
be almost zero. Since the plate is large, its temperature will not be 
increased significantly above room temperature (208C). Thus, when 
the welding is completed, we have rod AB at T 5 10008C, with no 
stress, attached to the plate, which is at 208C.

A B

Fig. 2.67 Small rod 
welded to a large plate. 

 As the rod cools, its modulus of elasticity increases and, at 
about 5008C, will approach its normal value of about 200 GPa. As 
the temperature of the rod decreases further, we have a situation 
similar to that considered in Sec. 2.10 and illustrated in Fig. 2.31. 
Solving Eq. (2.23) for DT and making s equal to the yield strength, 
sY 5 300 MPa, of average steel, and a 5 12 3 1026/8C, we find the 
temperature change that will cause the rod to yield:

¢T 5 2 
s

Ea
5 2 

300 MPa
1200 GPa2 112 3 1026/°C2 5 2125°C

This means that the rod will start yielding at about 3758C and will 
keep yielding at a fairly constant stress level, as it cools down to room 
temperature. As a result of the welding operation, a residual stress 
approximately equal to the yield strength of the steel used is thus 
created in the plug and in the weld.
 Residual stresses also occur as a result of the cooling of metals 
that have been cast or hot rolled. In these cases, the outer layers 
cool more rapidly than the inner core. This causes the outer layers 
to reacquire their stiffness (E returns to its normal value) faster than 
the inner core. When the entire specimen has returned to room 
temperature, the inner core will have contracted more than the outer 
layers. The result is residual longitudinal tensile stresses in the inner 
core and residual compressive stresses in the outer layers.
 Residual stresses due to welding, casting, and hot rolling can 
be quite large (of the order of magnitude of the yield strength). 
These stresses can be removed, when necessary, by reheating the 
entire specimen to about 6008C, and then allowing it to cool slowly 
over a period of 12 to 24 hours.
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SAMPLE PROBLEM 2.6

The rigid beam ABC is suspended from two steel rods as shown and is ini-
tially horizontal. The midpoint B of the beam is deflected 10 mm downward 
by the slow application of the force Q, after which the force is slowly 
removed. Knowing that the steel used for the rods is elastoplastic with E 5 
200 GPa and sY 5 300 MPa, determine (a) the required maximum value 
of Q and the corresponding position of the beam, (b) the final position of 
the beam.

SOLUTION

 Statics.  Since Q is applied at the midpoint of the beam, we have

PAD 5 PCE  and  Q 5 2PAD

 Elastic Action. The maximum value of Q and the maximum elastic 
deflection of point A occur when s 5 sY in rod AD.

 1PAD2max 5 sYA 5 1300 MPa2 1400 mm22 5 120 kN
  Qmax 5 21PAD2max 5 21120 kN2 Qmax 5 240 kN ◀

 dA1
5 PL 5

sY

E
 L 5 a300 MPa

200 GPa
b 12 m2 5 3 mm

Since PCE 5 PAD 5 120 kN, the stress in rod CE is

sCE 5
PCE

A
5

120 kN
500 mm2 5 240 MPa

The corresponding deflection of point C is

dC1
5 PL 5

sCE

E
 L 5 a240 MPa

200 GPa
b15 m2 5 6 mm

The corresponding deflection of point B is

dB1
5 1

2 1dA1
1 dC1

2 5 1
2 13 mm 1 6 mm2 5 4.5 mm

Since we must have dB 5 10 mm, we conclude that plastic deformation will 
occur.

 Plastic Deformation. For Q 5 240 kN, plastic deformation occurs in 
rod AD, where sAD 5 sY 5 300 MPa. Since the stress in rod CE is within 
the elastic range, dC remains equal to 6 mm. The deflection dA for which 
dB 5 10 mm is obtained by writing

dB2
5 10 mm 5 1

2 1dA2
1 6 mm2  dA2

5 14 mm

 Unloading.  As force Q is slowly removed, the force PAD decreases 
along line HJ parallel to the initial portion of the load-deflection diagram of 
rod AD. The final deflection of point A is

dA3
5 14 mm 2 3 mm 5 11 mm

Since the stress in rod CE remained within the elastic range, we note that 
the final deflection of point C is zero.

123

PAD (kN)

120

2 m 2 m

0 3 0 611 14 mm

3 mm 6 mm4.5 mm

Load-deflection diagrams

Rod AD Rod CE
mm

120

PCE (kN)
HY Y

J

A1 B1 C1

Q = 240 kN

14 mm
6 mm10 mm

A2
B2

C1

Q = 240 kN

(a) Deflections for    B � 10 mm�

�

11 mm

3 mm

6 mm

A2

A3
B2

C2

B3

C3

Q = 0

(b) Final deflections

Q

PAD PCE
B

CA

C = 0

2 m

2 m

5 m

2 m

Q

B

D

E

CA

AD � 400 mm2

CE � 500 mm2

Areas:
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PROBLEMS

124

 2.93 Two holes have been drilled through a long steel bar that is sub-
jected to a centric axial load as shown. For P 5 6.5 kips, determine 
the maximum value of the stress (a) at A, (b) at B.

 2.94 Knowing that sall 5 16 ksi, determine the maximum allowable 
value of the centric axial load P.

 2.95 Knowing that the hole has a diameter of 9 mm, determine (a) the 
radius rf of the fillets for which the same maximum stress occurs 
at the hole A and at the fillets, (b) the corresponding maximum 
allowable load P if the allowable stress is 100 MPa.

1
2 in.

1
2 in.

1
21    in.B

A
3 in.

P

Fig. P2.93 and P2.94

P

9 mm

9 mm

9 mm

96 mm 60 mm

A

rf

Fig. P2.95

 2.96 For P 5 100 kN, determine the minimum plate thickness t required 
if the allowable stress is 125 MPa.

rA � 20 mm

rB � 15 mm

B

A

64 mm

88 mm

P

t

Fig. P2.96

150

300

75

150

P'

75

Dimensions in mm

P

15

r � 6
60 

Fig. P2.97

 2.97 The aluminum test specimen shown is subjected to two equal and 
opposite centric axial forces of magnitude P. (a) Knowing that E 5
70 GPa and sall 5 200 MPa, determine the maximum allowable 
value of P and the corresponding total elongation of the specimen. 
(b) Solve part a, assuming that the specimen has been replaced by 
an aluminum bar of the same length and a uniform 60 3 15-mm 
rectangular cross section.
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125Problems 2.98 For the test specimen of Prob. 2.97, determine the maximum 
value of the normal stress corresponding to a total elongation of 
0.75 mm.

 2.99 A hole is to be drilled in the plate at A. The diameters of the bits 
available to drill the hole range from 1

2 to 11
2 in. in 1

4-in. increments. 
If the allowable stress in the plate is 21 ksi, determine (a) the 
diameter d of the largest bit that can be used if the allowable load 
P at the hole is to exceed that at the fillets, (b) the corresponding 
allowable load P.

A

d rf �

P

1
2 in.

1
83    in.

3
8 in.11

164    in.

Figs. P2.99 and P2.100

 2.100 (a) For P 5 13 kips and d 5 1
2 in., determine the maximum stress 

in the plate shown. (b) Solve part a, assuming that the hole at A 
is not drilled.

 2.101 Rod ABC consists of two cylindrical portions AB and BC; it is 
made of a mild steel that is assumed to be elastoplastic with E 5 
200 GPa and sY 5 250 MPa. A force P is applied to the rod and 
then removed to give it a permanent set dp 5 2 mm. Determine 
the maximum value of the force P and the maximum amount dm 

by which the rod should be stretched to give it the desired per-
manent set.

 2.102 Rod ABC consists of two cylindrical portions AB and BC; it is made 
of a mild steel that is assumed to be elastoplastic with E 5 200 GPa 
and sY 5 250 MPa. A force P is applied to the rod until its end A 
has moved down by an amount dm 5 5 mm. Determine the maxi-
mum value of the force P and the permanent set of the rod after 
the force has been removed.

 2.103 The 30-mm-square bar AB has a length L 5 2.2 m; it is made of 
a mild steel that is assumed to be elastoplastic with E 5 200 GPa 
and sY 5 345 MPa. A force P is applied to the bar until end A 
has moved down by an amount dm. Determine the maximum value 
of the force P and the permanent set of the bar after the force has 
been removed, knowing that (a) dm 5 4.5 mm, (b) dm 5 8 mm.

 2.104 The 30-mm-square bar AB has a length L 5 2.5 m; it is made of 
a mild steel that is assumed to be elastoplastic with E 5 200 GPa 
and sY 5 345 MPa. A force P is applied to the bar and then 
removed to give it a permanent set dp. Determine the maximum 
value of the force P and the maximum amount dm by which the 
bar should be stretched if the desired value of dp is (a) 3.5 mm, 
(b) 6.5 mm.

P

40-mm
diameter

30-mm
diameter

1.2 m

0.8 m

C

B

A

Fig. P2.101 and P2.102

B

L

A

P

Fig. P2.103 and P2.104
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126 Stress and Strain—Axial Loading  2.105 Rod AB is made of a mild steel that is assumed to be elastoplastic 
with E 5 29 3 106 psi and sY 5 36 ksi. After the rod has been 
attached to the rigid lever CD, it is found that end C is 3

8 in. too 
high. A vertical force Q is then applied at C until this point has 
moved to position C9. Determine the required magnitude of Q and 
the deflection d1 if the lever is to snap back to a horizontal position 
after Q is removed.

 2.106 Solve Prob. 2.105, assuming that the yield point of the mild steel 
is 50 ksi.

 2.107 Each cable has a cross-sectional area of 100 mm2 and is made of an 
elastoplastic material for which sY 5 345 MPa and E 5 200 GPa. 
A force Q is applied at C to the rigid bar ABC and is gradually 
increased from 0 to 50 kN and then reduced to zero. Knowing that 
the cables were initially taut, determine (a) the maximum stress 
that occurs in cable BD, (b) the maximum deflection of point C, 
(c) the final displacement of point C. (Hint: In part c, cable CE is 
not taut.)

3
8 in.

3
8 -in. diameter

11 in.
22 in.

60 in.

C B
D

A

C'

1�

Fig. P2.105

1 m

A
B C

Q

D E

1 m

2 m

Fig. P2.107

190 mm

190 mm

C

B

A

P

Fig. P2.109

 2.108 Solve Prob. 2.107, assuming that the cables are replaced by rods 
of the same cross-sectional area and material. Further assume that 
the rods are braced so that they can carry compressive forces.

 2.109 Rod AB consists of two cylindrical portions AC and BC, each with 
a cross-sectional area of 1750 mm2. Portion AC is made of a mild 
steel with E 5 200 GPa and sY 5 250 MPa, and portion CB is 
made of a high-strength steel with E 5 200 GPa and sY 5 345 MPa. 
A load P is applied at C as shown. Assuming both steels to be 
elastoplastic, determine (a) the maximum deflection of C if P is 
gradually increased from zero to 975 kN and then reduced back 
to zero, (b) the maximum stress in each portion of the rod, (c) the 
permanent deflection of C.

 2.110 For the composite rod of Prob. 2.109, if P is gradually increased 
from zero until the deflection of point C reaches a maximum value 
of dm 5 0.3 mm and then decreased back to zero, determine 
(a) the maximum value of P, (b) the maximum stress in each por-
tion of the rod, (c) the permanent deflection of C after the load is 
removed.
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127Problems 2.111 Two tempered-steel bars, each 3
16-in. thick, are bonded to a 1

2-in. 
mild-steel bar. This composite bar is subjected as shown to a cen-
tric axial load of magnitude P. Both steels are elastoplastic with 
E 5 29 3 106 psi and with yield strengths equal to 100 ksi and 
50 ksi, respectively, for the tempered and mild steel. The load P is 
gradually increased from zero until the deformation of the bar 
reaches a maximum value dm 5 0.04 in. and then decreased back 
to zero. Determine (a) the maximum value of P, (b) the maximum 
stress in the tempered-steel bars, (c) the permanent set after the 
load is removed.

 2.112 For the composite bar of Prob. 2.111, if P is gradually increased 
from zero to 98 kips and then decreased back to zero, determine 
(a) the maximum deformation of the bar, (b) the maximum stress 
in the tempered-steel bars, (c) the permanent set after the load is 
removed.

 2.113 The rigid bar ABC is supported by two links, AD and BE, of uni-
form 37.5 3 6-mm rectangular cross section and made of a mild 
steel that is assumed to be elastoplastic with E 5 200 GPa and 
sY 5 250 MPa. The magnitude of the force Q applied at B is 
gradually increased from zero to 260 kN. Knowing that a 5 0.640 m, 
determine (a) the value of the normal stress in each link, (b) the 
maximum deflection of point B.

P

14 in.

2.0 in.

P'

in.

1
2 in.

3
16 3

16

in.

Fig. P2.111

1.7 m

1 m

2.64 m

C

B

E

D

A

Q
a

Fig. P2.113

 2.114 Solve Prob. 2.113, knowing that a 5 1.76 m and that the magni-
tude of the force Q applied at B is gradually increased from zero 
to 135 kN.

 *2.115 Solve Prob. 2.113, assuming that the magnitude of the force Q 
applied at B is gradually increased from zero to 260 kN and then 
decreased back to zero. Knowing that a 5 0.640 m, determine 
(a) the residual stress in each link, (b) the final deflection of point 
B. Assume that the links are braced so that they can carry compres-
sive forces without buckling.

 2.116 A uniform steel rod of cross-sectional area A is attached to rigid 
supports and is unstressed at a temperature of 458F. The steel is 
assumed to be elastoplastic with sY 5 36 ksi and E 5 29 3 106 psi. 
Knowing that a 5 6.5 3 1026/8F, determine the stress in the bar 
(a) when the temperature is raised to 3208F, (b) after the tempera-
ture has returned to 458F.

L

BA

Fig. P2.116
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128 Stress and Strain—Axial Loading  2.117 The steel rod ABC is attached to rigid supports and is unstressed 
at a temperature of 258C. The steel is assumed elastoplastic with 
E 5 200 GPa and sY 5 250 MPa. The temperature of both  portions 
of the rod is then raised to 1508C. Knowing that a 5 11.7 3 1026/8C, 
determine (a) the stress in both portions of the rod, (b) the deflec-
tion of point C.

BA C

A � 500 mm2
A� 300 mm2

150 mm 250 mm 

Fig. P2.117

Fig. P2.121

440 mm

a � 120 mm

F

C BA

Fig. P2.122

 *2.123 Solve Prob. 2.122, assuming that a 5 180 mm.

 *2.118 Solve Prob. 2.117, assuming that the temperature of the rod is 
raised to 1508C and then returned to 258C.

 *2.119 For the composite bar of Prob. 2.111, determine the residual 
stresses in the tempered-steel bars if P is gradually increased from 
zero to 98 kips and then decreased back to zero.

 *2.120 For the composite bar in Prob. 2.111, determine the residual 
stresses in the tempered-steel bars if P is gradually increased from 
zero until the deformation of the bar reaches a maximum value 
dm 5 0.04 in. and is then decreased back to zero.

 *2.121 Narrow bars of aluminum are bonded to the two sides of a thick 
steel plate as shown. Initially, at T1 5 708F, all stresses are zero. 
Knowing that the temperature will be slowly raised to T2 and then 
reduced to T1, determine (a) the highest temperature T2 that does 
not result in residual stresses, (b) the temperature T2 that will 
result in a residual stress in the aluminum equal to 58 ksi. Assume 
aa 5 12.8 3 1026/8F for the aluminum and as 5 6.5 3 1026/8F 
for the steel. Further assume that the aluminum is elastoplastic 
with E 5 10.9 3 106 psi and sY 5 58 ksi. (Hint: Neglect the small 
stresses in the plate.)

 *2.122 Bar AB has a cross-sectional area of 1200 mm2 and is made of 
a steel that is assumed to be elastoplastic with E 5 200 GPa and 
sY 5 250 MPa. Knowing that the force F increases from 0 to 520 kN 
and then decreases to zero, determine (a) the permanent deflec-
tion of point C, (b) the residual stress in the bar.
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129

REVIEW AND SUMMARY

This chapter was devoted to the introduction of the concept of strain,
to the discussion of the relationship between stress and strain in 
various types of materials, and to the determination of the deforma-
tions of structural components under axial loading.

Considering a rod of length L and uniform cross section and denot-
ing by d its deformation under an axial load P (Fig. 2.68), we defined 
the normal strain P in the rod as the deformation per unit length
[Sec. 2.2]:

P 5
d

L
  (2.1)

In the case of a rod of variable cross section, the normal strain was 
defined at any given point Q by considering a small element of rod 
at Q. Denoting by Dx the length of the element and by Dd its defor-
mation under the given load, we wrote

P 5 lim
¢xy0

 
¢d
¢x

5
dd
dx

 (2.2)

Plotting the stress s versus the strain P as the load increased, we 
obtained a stress-strain diagram for the material used [Sec. 2.3]. 
From such a diagram, we were able to distinguish between brittle
and ductile materials: A specimen made of a brittle material ruptures 
without any noticeable prior change in the rate of elongation (Fig. 
2.69), while a specimen made of a ductile material yields after a 
critical stress sY, called the yield strength, has been reached, i.e., the 
specimen undergoes a large deformation before rupturing, with a 
relatively small increase in the applied load (Fig. 2.70). An example 
of brittle material with different properties in tension and in com-
pression was provided by concrete.

Normal strain

Stress-strain diagram

B B

C
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130 Stress and Strain—Axial Loading We noted in Sec. 2.5 that the initial portion of the stress-strain dia-
gram is a straight line. This means that for small deformations, the 
stress is directly proportional to the strain:

 s 5 EP (2.4)

This relation is known as Hooke’s law and the coefficient E as the 
modulus of elasticity of the material. The largest stress for which Eq. 
(2.4) applies is the proportional limit of the material.
 Materials considered up to this point were isotropic, i.e., their 
properties were independent of direction. In Sec. 2.5 we also con-
sidered a class of anisotropic materials, i.e., materials whose proper-
ties depend upon direction. They were fiber-reinforced composite 
materials, made of fibers of a strong, stiff material embedded in lay-
ers of a weaker, softer material (Fig. 2.71). We saw that different 
moduli of elasticity had to be used, depending upon the direction of 
loading.

If the strains caused in a test specimen by the application of a given 
load disappear when the load is removed, the material is said to 
behave elastically, and the largest stress for which this occurs is 
called the elastic limit of the material [Sec. 2.6]. If the elastic limit 
is exceeded, the stress and strain decrease in a linear fashion when 
the load is removed and the strain does not return to zero (Fig. 2.72), 
indicating that a permanent set or plastic deformation of the material 
has taken place.

In Sec. 2.7, we discussed the phenomenon of fatigue, which causes 
the failure of structural or machine components after a very large 
number of repeated loadings, even though the stresses remain in 
the elastic range. A standard fatigue test consists in determining 
the number n of successive loading-and-unloading cycles required 
to cause the failure of a specimen for any given maximum stress 
level s, and plotting the resulting s-n curve. The value of s for 
which failure does not occur, even for an indefinitely large number 
of cycles, is known as the endurance limit of the material used in 
the test.

Section 2.8 was devoted to the determination of the elastic defor-
mations of various types of machine and structural components 
under various conditions of axial loading. We saw that if a rod of 
length L and uniform cross section of area A is subjected at its 
end to a centric axial load P (Fig. 2.73), the corresponding defor-
mation is

 
d 5

PL
AE  

(2.7)

If the rod is loaded at several points or consists of several parts of 
various cross sections and possibly of different materials, the defor-
mation d of the rod must be expressed as the sum of the deforma-
tions of its component parts [Example 2.01]:

 
d 5 a

i

PiLi

AiEi 
(2.8)

Elastic limit. Plastic deformation
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131

Section 2.9 was devoted to the solution of statically indeterminate 
problems, i.e., problems in which the reactions and the internal 
forces cannot be determined from statics alone. The equilibrium 
equations derived from the free-body diagram of the member under 
consideration were complemented by relations involving deforma-
tions and obtained from the geometry of the problem. The forces in 
the rod and in the tube of Fig. 2.74, for instance, were determined 
by observing, on one hand, that their sum is equal to P, and on the 
other, that they cause equal deformations in the rod and in the tube 
[Example 2.02]. Similarly, the reactions at the supports of the bar of 
Fig. 2.75 could not be obtained from the free-body diagram of the 
bar alone [Example 2.03]; but they could be determined by express-
ing that the total elongation of the bar must be equal to zero.

In Sec. 2.10, we considered problems involving temperature changes. 
We first observed that if the temperature of an unrestrained rod AB 
of length L is increased by DT, its elongation is

 dT 5 a 1¢T 2  L  (2.21)

where a is the coefficient of thermal expansion of the material. We 
noted that the corresponding strain, called thermal strain, is

 PT 5 a¢T  (2.22)

and that no stress is associated with this strain. However, if the rod 
AB is restrained by fixed supports (Fig. 2.76), stresses develop in the 

Statically indeterminate problems

Problems with temperature changes
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L

Fig. 2.74
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(a) (b)

L

A

B

A

B

C C

P

Fig. 2.75

rod as the temperature increases, because of the reactions at the 
supports. To determine the magnitude P of the reactions, we detached 
the rod from its support at B (Fig. 2.77) and considered separately 
the deformation dT of the rod as it expands freely because of the 
temperature change, and the deformation dP caused by the force P 
required to bring it back to its original length, so that it may be reat-
tached to the support at B. Writing that the total deformation d 5 
dT 1 dP is equal to zero, we obtained an equation that could be 
solved for P. While the final strain in rod AB is clearly zero, this will 
generally not be the case for rods and bars consisting of elements of 
different cross sections or materials, since the deformations of the 
various elements will usually not be zero [Example 2.06].

Fig. 2.76
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A B
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132 Stress and Strain—Axial Loading

When an axial load P is applied to a homogeneous, slender bar 
(Fig. 2.78), it causes a strain, not only along the axis of the bar but in 
any transverse direction as well [Sec. 2.11]. This strain is referred to as 
the lateral strain, and the ratio of the lateral strain over the axial strain 
is called Poisson’s ratio and is denoted by n (Greek letter nu). We 
wrote

 
n 5 2  

lateral strain
axial strain  

(2.25)

 Recalling that the axial strain in the bar is Px 5 sxyE, we expressed 
as follows the condition of strain under an axial loading in the x 
direction:

 
Px 5

sx

E
  Py 5 Pz 5 2  

nsx

E  
(2.27)

This result was extended in Sec. 2.12 to the case of a multiaxial 
loading causing the state of stress shown in Fig. 2.79. The resulting 
strain condition was described by the following relations, referred to 
as the generalized Hooke’s law for a multiaxial loading.

 Px 5 1
sx

E
2
nsy

E
2
nsz

E

 
 Py 5 2  

nsx

E
1
sy

E
2
nsz

E  
(2.28)

 Pz 5 2  

nsx

E
2
nsy

E
1
sz

E

If an element of material is subjected to the stresses sx, sy, sz, it 
will deform and a certain change of volume will result [Sec. 2.13]. 
The change in volume per unit volume is referred to as the dilatation 
of the material and is denoted by e. We showed that

 
e 5

1 2 2n
E

 1sx 1 sy 1 sz2 (2.31)

When a material is subjected to a hydrostatic pressure p, we have

 
e 5 2 

p

k
 (2.34)

where k is known as the bulk modulus of the material:

 
k 5

E
311 2 2n2  (2.33)
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As we saw in Chap. 1, the state of stress in a material under the most 
general loading condition involves shearing stresses, as well as nor-
mal stresses (Fig. 2.80). The shearing stresses tend to deform a cubic 
element of material into an oblique parallelepiped [Sec. 2.14]. Con-
sidering, for instance, the stresses txy and tyx shown in Fig. 2.81 
(which, we recall, are equal in magnitude), we noted that they cause 
the angles formed by the faces on which they act to either increase 
or decrease by a small angle gxy; this angle, expressed in radians, 
defines the shearing strain corresponding to the x and y directions. 
Defining in a similar way the shearing strains gyz and gzx, we wrote 
the relations

 txy 5 Ggxy  tyz 5 Ggyz  tzx 5 Ggzx (2.36, 37)

which are valid for any homogeneous isotropic material within its 
proportional limit in shear. The constant G is called the modulus of 
rigidity of the material and the relations obtained express Hooke’s 
law for shearing stress and strain. Together with Eqs. (2.28), they 
form a group of equations representing the generalized Hooke’s law 
for a homogeneous isotropic material under the most general stress 
condition.
 We observed in Sec. 2.15 that while an axial load exerted on a 
slender bar produces only normal strains—both axial and  transverse—
on an element of material oriented along the axis of the bar, it will 
produce both normal and shearing strains on an element rotated 
through 458 (Fig. 2.82). We also noted that the three constants E, n, 
and G are not independent; they satisfy the relation.

 
E

2G
5 1 1 n (2.43)

which may be used to determine any of the three constants in terms 
of the other two.

Stress-strain relationships for fiber-reinforced composite materials 
were discussed in an optional section (Sec. 2.16). Equations similar 
to Eqs. (2.28) and (2.36, 37) were derived for these materials, but 
we noted that direction-dependent moduli of elasticity, Poisson’s 
ratios, and moduli of rigidity had to be used.
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134 Stress and Strain—Axial Loading In Sec. 2.17, we discussed Saint-Venant’s principle, which states 
that except in the immediate vicinity of the points of application of 
the loads, the distribution of stresses in a given member is inde-
pendent of the actual mode of application of the loads. This prin-
ciple makes it possible to assume a uniform distribution of stresses 
in a member subjected to concentrated axial loads, except close to 
the points of application of the loads, where stress concentrations 
will occur.

Stress concentrations will also occur in structural members near a 
discontinuity, such as a hole or a sudden change in cross section [Sec. 
2.18]. The ratio of the maximum value of the stress occurring near 
the discontinuity over the average stress computed in the critical 
section is referred to as the stress-concentration factor of the discon-
tinuity and is denoted by K:

K 5
smax

save   
(2.48)

Values of K for circular holes and fillets in flat bars were given in 
Fig. 2.64 on p. 108.

In Sec. 2.19, we discussed the plastic deformations which occur in 
structural members made of a ductile material when the stresses in 
some part of the member exceed the yield strength of the material. 
Our analysis was carried out for an idealized elastoplastic material
characterized by the stress-strain diagram shown in Fig. 2.83 [Exam-
ples 2.13, 2.14, and 2.15]. Finally, in Sec. 2.20, we observed that 
when an indeterminate structure undergoes plastic deformations, the 
stresses do not, in general, return to zero after the load has been 
removed. The stresses remaining in the various parts of the structure 
are called residual stresses and may be determined by adding the 
maximum stresses reached during the loading phase and the reverse 
stresses corresponding to the unloading phase [Example 2.16].
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135

REVIEW PROBLEMS

 2.124 Rod BD is made of steel (E 5 29 3 106 psi) and is used to brace 
the axially compressed member ABC. The maximum force that can 
be developed in member BD is 0.02P. If the stress must not exceed 
18 ksi and the maximum change in length of BD must not exceed 
0.001 times the length of ABC, determine the smallest-diameter 
rod that can be used for member BD.

 2.125 Two solid cylindrical rods are joined at B and loaded as shown. 
Rod AB is made of steel (E 5 200 GPa) and rod BC of brass 
(E 5 105 GPa). Determine (a) the total deformation of the com-
posite rod ABC, (b) the deflection of point B.

72 in.

54 in.

72 in.

B

A

C

D

P � 130 kips

Fig. P2.124

300 mm

250 mm

B

C

A

30 mm

50 mm

40 kN

P � 30 kN

Fig. P2.125

 2.126 Two solid cylindrical rods are joined at B and loaded as shown. 
Rod AB is made of steel (E 5 29 3 106 psi), and rod BC of brass 
(E 5 15 3 106 psi). Determine (a) the total deformation of the 
composite rod ABC, (b) the deflection of point B.

 2.127 The uniform wire ABC, of unstretched length 2l, is attached to the 
supports shown and a vertical load P is applied at the midpoint B. 
Denoting by A the cross-sectional area of the wire and by E the mod-
ulus of elasticity, show that, for d V l, the deflection at the midpoint 
B is

d 5 l B3
P

AE

C

B

A

3 in.

2 in.
30 kips 30 kips

P � 40 kips

40 in.

30 in.

Fig. P2.126

P

l l

C
B

A�

Fig. P2.127
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136 Stress and Strain—Axial Loading  2.128 The brass strip AB has been attached to a fixed support at A 
and rests on a rough support at B. Knowing that the coeffi-
cient of friction is 0.60 between the strip and the support at B, 
determine the decrease in temperature for which slipping will 
impend.

3 mm

A

B

40 mm
100 kg

20 mm

Brass strip:
    E � 105 GPa
    � � 20 � 10�6/�C

Fig. P2.128

 2.129 Members AB and CD are 11
8-in.-diameter steel rods, and members 

BC and AD are 7
8-in.-diameter steel rods. When the turnbuckle is 

tightened, the diagonal member AC is put in tension. Knowing that 
E 5 29 3 106 psi and h 5 4 ft, determine the largest allowable 
tension in AC so that the deformations in members AB and CD 
do not exceed 0.04 in.

 2.130 The 1.5-m concrete post is reinforced with six steel bars, each with 
a 28-mm diameter. Knowing that Es 5 200 GPa and Ec 5 25 GPa, 
determine the normal stresses in the steel and in the concrete when 
a 1550-kN axial centric force P is applied to the post.

 2.131 The brass shell (ab 5 11.6 3 1026/8F) is fully bonded to the 
steel core (as 5 6.5 3 1026/8F). Determine the largest allowable 
increase in temperature if the stress in the steel core is not to 
exceed 8 ksi.

3 ft

C

DA

h

B

Fig. P2.129

1.5 m

450 mm

P

Fig. P2.130

12 in.

1 in.1 in.

Steel core
E � 29 � 106 psi

Brass shell
E � 15 � 106 psi

in.1
4

in.1
4

in.1
4

in.1
4

Fig. P2.131
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137Review Problems 2.132 A fabric used in air-inflated structures is subjected to a biax-
ial loading that results in normal stresses sx 5 120 MPa and 
sz 5 160 MPa. Knowing that the properties of the fabric can be 
approximated as E 5 87 GPa and n 5 0.34, determine the change 
in length of (a) side AB, (b) side BC, (c) diagonal AC.

 2.133 An elastomeric bearing (G 5 0.9 MPa) is used to support a bridge 
girder as shown to provide flexibility during earthquakes. The 
beam must not displace more than 10 mm when a 22-kN lateral 
load is applied as shown. Knowing that the maximum allowable 
shearing stress is 420 kPa, determine (a) the smallest allowable 
dimension b, (b) the smallest required thickness a.

x�
z�

75 mm
100 mm

z

y

x

A

B

C

D

Fig. P2.132

200 mm

b

a

P

Fig. P2.133

 2.134 Knowing that P 5 10 kips, determine the maximum stress when 
(a) r 5 0.50 in., (b) r 5 0.625 in.

 2.135 The uniform rod BC has cross-sectional area A and is made of a 
mild steel that can be assumed to be elastoplastic with a modulus 
of elasticity E and a yield strength sY. Using the block-and-spring 
system shown, it is desired to simulate the deflection of end C of 
the rod as the axial force P is gradually applied and removed, that 
is, the deflection of points C and C9 should be the same for all 
values of P. Denoting by m the coefficient of friction between the 
block and the horizontal surface, derive an expression for (a) the 
required mass m of the block, (b) the required constant k of the 
spring.

5.0 in.

2.50 in. r

P

in.3
4

Fig. P2.134

L

C
P

P
k

m

B

B'
C'

Fig. P2.135
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COMPUTER PROBLEMS

The following problems are designed to be solved with a computer. Write each 
program so that it can be used with either SI or U.S. customary units and in 
such a way that solid cylindrical elements may be defined by either their diam-
eter or their cross-sectional area.

 2.C1 A rod consisting of n elements, each of which is homogeneous and 
of uniform cross section, is subjected to the loading shown. The length of 
element i is denoted by Li, its cross-sectional area by Ai, modulus of elastic-
ity by Ei, and the load applied to its right end by Pi, the magnitude Pi of 
this load being assumed to be positive if Pi is directed to the right and 
negative otherwise. (a) Write a computer program that can be used to deter-
mine the average normal stress in each element, the deformation of each 
element, and the total deformation of the rod. (b) Use this program to solve 
Probs. 2.20 and 2.126.

 2.C2 Rod AB is horizontal with both ends fixed; it consists of n ele-
ments, each of which is homogeneous and of uniform cross section, and 
is subjected to the loading shown. The length of element i is denoted by 
Li, its cross-sectional area by Ai, its modulus of elasticity by Ei, and the 
load applied to its right end by Pi, the magnitude Pi of this load being 
assumed to be positive if Pi is directed to the right and negative otherwise. 
(Note that P1 5 0.) (a) Write a computer program that can be used to 
determine the reactions at A and B, the average normal stress in each 
element, and the deformation of each element. (b) Use this program to 
solve Probs. 2.41 and 2.42.

 2.C3 Rod AB consists of n elements, each of which is homogeneous 
and of uniform cross section. End A is fixed, while initially there is a gap 
d0 between end B and the fixed vertical surface on the right. The length 
of element i is denoted by Li, its cross-sectional area by Ai, its modulus 
of elasticity by Ei, and its coefficient of thermal expansion by ai. After 
the temperature of the rod has been increased by DT, the gap at B is 
closed and the vertical surfaces exert equal and opposite forces on 
the rod. (a) Write a computer program that can be used to determine the 
magnitude of the reactions at A and B, the normal stress in each element, 
and the deformation of each element. (b) Use this program to solve 
Probs. 2.51, 2.59, and 2.60.

 2.C4 Bar AB has a length L and is made of two different materials of 
given cross-sectional area, modulus of elasticity, and yield strength. The bar 
is subjected as shown to a load P that is gradually increased from zero until 
the deformation of the bar has reached a maximum value dm and then 
decreased back to zero. (a) Write a computer program that, for each of 25 
values of dm equally spaced over a range extending from 0 to a value equal 
to 120% of the deformation causing both materials to yield, can be used 
to determine the maximum value Pm of the load, the maximum normal 
stress in each material, the permanent deformation dp of the bar, and the 
residual stress in each material. (b) Use this program to solve Probs. 2.111 
and 2.112.

Element n Element 1

Pn P1

Fig. P2.C1

Element n Element 1

Pn

P2

A
B

Fig. P2.C2

Element n Element 1

A
B

0�

Fig. P2.C3

Plate

�A1, E1, (  Y)1

L

�A2, E2, (  Y)2

P

Fig. P2.C4
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139Computer Problems 2.C5 The plate has a hole centered across the width. The stress concen-
tration factor for a flat bar under axial loading with a centric hole is:

K 5 3.00 2 3.13 a2r
D
b 1 3.66 a2r

D
b2

2 1.53 a2r
D
b3

where r is the radius of the hole and D is the width of the bar. Write a computer 
program to determine the allowable load P for the given values of r, D, the 
thickness t of the bar, and the allowable stress sall of the material. Knowing 
that t 5 1

4 in., D 5 3.0 in. and sall 5 16 ksi, determine the allowable load P 
for values of r from 0.125 in. to 0.75 in., using 0.125 in. increments.

 2.C6 A solid truncated cone is subjected to an axial force P as shown. 
The exact elongation is (PL)y(2pc2E). By replacing the cone by n circular 
cylinders of equal thickness, write a computer program that can be used 
to calculate the elongation of the truncated cone. What is the percentage 
error in the answer obtained from the program using (a) n 5 6, (b) n 5 12, 
(c) n 5 60?

1
2 d

1
2 d

D
r PP'

Fig. P2.C5

L

A

B

c

P
2c

Fig. P2.C6
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This chapter is devoted to the study 

of torsion and of the stresses and 

deformations it causes. In the jet engine 

shown here, the central shaft links the 

components of the engine to develop 

the thrust that propels the plane.
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Chapter 3 Torsion
 3.1 Introduction
 3.2  Preliminary Discussion of the 

Stresses in a Shaft
 3.3 Deformations in a Circular Shaft
 3.4 Stresses in the Elastic Range
 3.5 Angle of Twist in the Elastic Range
 3.6 Statically Indeterminate Shafts
 3.7 Design of Transmission Shafts
 3.8 Stress Concentrations in Circular 

Shafts
 *3.9 Plastic Deformations in Circular 

Shafts
 *3.10  Circular Shafts Made of an 

Elastoplastic Material
 *3.11 Residual Stresses in Circular Shafts
 *3.12 Torsion of Noncircular Members
 *3.13 Thin-Walled Hollow Shafts

3.1 INTRODUCTION
In the two preceding chapters you studied how to calculate the 
stresses and strains in structural members subjected to axial loads, 
that is, to forces directed along the axis of the member. In this chap-
ter structural members and machine parts that are in torsion will be 
considered. More specifically, you will analyze the stresses and strains 
in members of circular cross section subjected to twisting couples, 
or torques, T and T9 (Fig. 3.1). These couples have a common mag-
nitude T, and opposite senses. They are vector quantities and can be 
represented either by curved arrows as in Fig. 3.1a, or by couple 
vectors as in Fig. 3.1b.
 Members in torsion are encountered in many engineering 
applications. The most common application is provided by transmis-
sion shafts, which are used to transmit power from one point to 
another. For example, the shaft shown in Photo 3.1 is used to trans-
mit power from the engine to the rear wheels of an automobile. 
These shafts can be either solid, as shown in Fig. 3.1, or hollow.

(a)

(b)

T

B

A

T'

T'

B

A

T

Fig. 3.1 Shaft subject to torsion.

Photo 3.1 In the automotive power train shown, the shaft transmits power from 
the engine to the rear wheels.

 Consider the system shown in Fig. 3.2a, which consists of a 
steam turbine A and an electric generator B connected by a transmis-
sion shaft AB. By breaking the system into its three component parts 
(Fig. 3.2b), you can see that the turbine exerts a twisting couple or 
torque T on the shaft and that the shaft exerts an equal torque on 
the generator. The generator reacts by exerting the equal and oppo-
site torque T9 on the shaft, and the shaft by exerting the torque T9 
on the turbine.
 You will first analyze the stresses and deformations that take 
place in circular shafts. In Sec. 3.3, an important property of circular 
shafts is demonstrated: When a circular shaft is subjected to torsion, 
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143

every cross section remains plane and undistorted. In other words, 
while the various cross sections along the shaft rotate through differ-
ent angles, each cross section rotates as a solid rigid slab. This prop-
erty will enable you to determine the distribution of shearing strains 
in a circular shaft and to conclude that the shearing strain varies 
linearly with the distance from the axis of the shaft.
 Considering deformations in the elastic range and using Hooke’s 
law for shearing stress and strain, you will determine the distribution 
of shearing stresses in a circular shaft and derive the elastic torsion 
formulas (Sec. 3.4).
 In Sec. 3.5, you will learn how to find the angle of twist of a 
circular shaft subjected to a given torque, assuming again elastic 
deformations. The solution of problems involving statically indeter-
minate shafts is considered in Sec. 3.6.
 In Sec. 3.7, you will study the design of transmission shafts. In 
order to accomplish the design, you will learn to determine the 
required physical characteristics of a shaft in terms of its speed of 
rotation and the power to be transmitted.
 The torsion formulas cannot be used to determine stresses near 
sections where the loading couples are applied or near a section 
where an abrupt change in the diameter of the shaft occurs. More-
over, these formulas apply only within the elastic range of the 
material.

B Rotation

Generator

A
Turbine

B

A T'

T'

T

(a)

(b)

T

Fig. 3.2 Transmission shaft.

3.1 Introduction
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144 Torsion  In Sec. 3.8, you will learn how to account for stress concentra-
tions where an abrupt change in diameter of the shaft occurs. In 
Secs. 3.9 to 3.11, you will consider stresses and deformations in 
circular shafts made of a ductile material when the yield point of 
the material is exceeded. You will then learn how to determine the 
permanent plastic deformations and residual stresses that remain 
in a shaft after it has been loaded beyond the yield point of the 
material.
 In the last sections of this chapter, you will study the torsion of 
noncircular members (Sec. 3.12) and analyze the distribution of 
stresses in thin-walled hollow noncircular shafts (Sec. 3.13).

3.2  PRELIMINARY DISCUSSION OF THE STRESSES
IN A SHAFT

Considering a shaft AB subjected at A and B to equal and opposite 
torques T and T9, we pass a section perpendicular to the axis of the 
shaft through some arbitrary point C (Fig. 3.3). The free-body dia-
gram of the portion BC of the shaft must include the elementary 
shearing forces dF, perpendicular to the radius of the shaft, that 
portion AC exerts on BC as the shaft is twisted (Fig. 3.4a). But the 
conditions of equilibrium for BC require that the system of these 
elementary forces be equivalent to an internal torque T, equal and 
opposite to T9 (Fig. 3.4b). Denoting by r the perpendicular distance 
from the force dF to the axis of the shaft, and expressing that the 
sum of the moments of the shearing forces dF about the axis of the 
shaft is equal in magnitude to the torque T, we write

erdF 5 T

or, since dF 5 t dA, where t is the shearing stress on the element 
of area dA,

 er(t dA) 5 T (3.1)

 While the relation obtained expresses an important condition 
that must be satisfied by the shearing stresses in any given cross sec-
tion of the shaft, it does not tell us how these stresses are distributed 
in the cross section. We thus observe, as we already did in Sec. 1.5, 
that the actual distribution of stresses under a given load is statically 
indeterminate, i.e., this distribution cannot be determined by the meth-
ods of statics. However, having assumed in Sec. 1.5 that the normal 
stresses produced by an axial centric load were uniformly distributed, 
we found later (Sec. 2.17) that this assumption was justified, except in 
the neighborhood of concentrated loads. A similar assumption with 
respect to the distribution of shearing stresses in an elastic shaft would 
be wrong. We must withhold any judgment regarding the distribution 
of stresses in a shaft until we have analyzed the deformations that are 
produced in the shaft. This will be done in the next section.
 One more observation should be made at this point. As was 
indicated in Sec. 1.12, shear cannot take place in one plane only. 
Consider the very small element of shaft shown in Fig. 3.5. We know 
that the torque applied to the shaft produces shearing stresses t on 

B

A

C

TT'

Fig. 3.3 Shaft subject to torques.

B

C

B

C

(a)

(b)

dF
�

T

T'

T'

Fig. 3.4

Axis of shaft

�

Fig. 3.5 Element in shaft.
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the faces perpendicular to the axis of the shaft. But the conditions 
of equilibrium discussed in Sec. 1.12 require the existence of equal 
stresses on the faces formed by the two planes containing the axis of 
the shaft. That such shearing stresses actually occur in torsion can 
be demonstrated by considering a “shaft” made of separate slats 
pinned at both ends to disks as shown in Fig. 3.6a. If markings have 
been painted on two adjoining slats, it is observed that the slats slide 
with respect to each other when equal and opposite torques are 
applied to the ends of the “shaft” (Fig. 3.6b). While sliding will not 
actually take place in a shaft made of a homogeneous and cohesive 
material, the tendency for sliding will exist, showing that stresses 
occur on longitudinal planes as well as on planes perpendicular to 
the axis of the shaft.†

3.3 DEFORMATIONS IN A CIRCULAR SHAFT
Consider a circular shaft that is attached to a fixed support at one end 
(Fig. 3.7a). If a torque T is applied to the other end, the shaft will 
twist, with its free end rotating through an angle f called the angle of 
twist (Fig. 3.7b). Observation shows that, within a certain range of 
values of T, the angle of twist f is proportional to T. It also shows that 
f is proportional to the length L of the shaft. In other words, the angle 
of twist for a shaft of the same material and same cross section, but 
twice as long, will be twice as large under the same torque T. One 
purpose of our analysis will be to find the specific relation existing 
among f, L, and T; another purpose will be to determine the distribu-
tion of shearing stresses in the shaft, which we were unable to obtain 
in the preceding section on the basis of statics alone.
 At this point, an important property of circular shafts should 
be noted: When a circular shaft is subjected to torsion, every cross 
section remains plane and undistorted. In other words, while the 
various cross sections along the shaft rotate through different 
amounts, each cross section rotates as a solid rigid slab. This is illus-
trated in Fig. 3.8a, which shows the deformations in a rubber model 
subjected to torsion. The property we are discussing is characteristic 
of circular shafts, whether solid or hollow; it is not enjoyed by mem-
bers of noncircular cross section. For example, when a bar of square 
cross section is subjected to torsion, its various cross sections warp 
and do not remain plane (Fig. 3.8b).

†The twisting of a cardboard tube that has been slit lengthwise provides another demon-
stration of the existence of shearing stresses on longitudinal planes.

3.3 Deformations in a Circular Shaft

L

(a)
A

B

B

(b)

A'

�
A

B

T

Fig. 3.7 Shaft with fixed support.

(a)

(b)

T

T'

T'

T

Fig. 3.8 Comparison of deformations 
in circular and square shafts.

(a)
Fig. 3.6 Model of shaft.

(b)

TT'
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146 Torsion  The cross sections of a circular shaft remain plane and undis-
torted because a circular shaft is axisymmetric, i.e., its appearance 
remains the same when it is viewed from a fixed position and rotated 
about its axis through an arbitrary angle. (Square bars, on the other 
hand, retain the same appearance only if they are rotated through 
908 or 1808.) As we will see presently, the axisymmetry of circular 
shafts may be used to prove theoretically that their cross sections 
remain plane and undistorted.
 Consider the points C and D located on the circumference of 
a given cross section of the shaft, and let C9 and D9 be the positions 
they will occupy after the shaft has been twisted (Fig. 3.9a). The 
axisymmetry of the shaft and of the loading requires that the rotation 
which would have brought D into D9 should now bring C into C9. 
Thus C9 and D9 must lie on the circumference of a circle, and the 
arc C9D9 must be equal to the arc CD (Fig. 3.9b). We will now 
examine whether the circle on which C9 and D9 lie is different from 
the original circle. Let us assume that C9 and D9 do lie on a different 
circle and that the new circle is located to the left of the original 
circle, as shown in Fig. 3.9b. The same situation will prevail for any 
other cross section, since all the cross sections of the shaft are sub-
jected to the same internal torque T, and an observer looking at the 
shaft from its end A will conclude that the loading causes any given 
circle drawn on the shaft to move away. But an observer located at 
B, to whom the given loading looks the same (a clockwise couple in 
the foreground and a counterclockwise couple in the background) 
will reach the opposite conclusion, i.e., that the circle moves toward 
him. This contradiction proves that our assumption is wrong and that 
C9 and D9 lie on the same circle as C and D. Thus, as the shaft is 
twisted, the original circle just rotates in its own plane. Since the 
same reasoning may be applied to any smaller, concentric circle 
located in the cross section under consideration, we conclude that 
the entire cross section remains plane (Fig. 3.10).
 The above argument does not preclude the possibility for the 
various concentric circles of Fig. 3.10 to rotate by different amounts 
when the shaft is twisted. But if that were so, a given diameter of 
the cross section would be distorted into a curve which might look 
as shown in Fig. 3.11a. An observer looking at this curve from A 
would conclude that the outer layers of the shaft get more twisted 
than the inner ones, while an observer looking from B would reach 
the opposite conclusion (Fig. 3.11b). This inconsistency leads us to 
conclude that any diameter of a given cross section remains straight 
(Fig. 3.11c) and, therefore, that any given cross section of a circular 
shaft remains plane and undistorted.

(b)

C'

D'

C

D

(a)

A

B

C'

D'

C

D

A

B

T'

T'

T

T

Fig. 3.9 Shaft subject to twisting.
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B

T
T'

Fig. 3.10 Concentric circles.

(a)

A

B

T
T'

A

B

(c)

T
T'

(b)

A

B

T'

T

Fig. 3.11 Potential deformations of cross section.
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147 Our discussion so far has ignored the mode of application of the 
twisting couples T and T9. If all sections of the shaft, from one end to 
the other, are to remain plane and undistorted, we must make sure that 
the couples are applied in such a way that the ends of the shaft them-
selves remain plane and undistorted. This may be accomplished by 
applying the couples T and T9 to rigid plates, which are solidly attached 
to the ends of the shaft (Fig. 3.12a). We can then be sure that all sec-
tions will remain plane and undistorted when the loading is applied, 
and that the resulting deformations will occur in a uniform fashion 
throughout the entire length of the shaft. All of the equally spaced cir-
cles shown in Fig. 3.12a will rotate by the same amount relative to their 
neighbors, and each of the straight lines will be transformed into a curve 
(helix) intersecting the various circles at the same angle (Fig. 3.12b).
 The derivations given in this and the following sections will be 
based on the assumption of rigid end plates. Loading conditions 
encountered in practice may differ appreciably from those corre-
sponding to the model of Fig. 3.12. The chief merit of this model is 
that it helps us define a torsion problem for which we can obtain an 
exact solution, just as the rigid-end-plates model of Sec. 2.17 made 
it possible for us to define an axial-load problem which could be 
easily and accurately solved. By virtue of Saint-Venant’s principle, the 
results obtained for our idealized model may be extended to most 
engineering applications. However, we should keep these results 
associated in our mind with the specific model shown in Fig. 3.12.
 We will now determine the distribution of shearing strains in 
a circular shaft of length L and radius c that has been twisted through 
an angle f (Fig. 3.13a). Detaching from the shaft a cylinder of radius 
r, we consider the small square element formed by two adjacent 
circles and two adjacent straight lines traced on the surface of the 
cylinder before any load is applied (Fig. 3.13b). As the shaft is 
 subjected to a torsional load, the element deforms into a rhombus 
(Fig. 3.13c). We now recall from Sec. 2.14 that the shearing strain g 
in a given element is measured by the change in the angles formed 
by the sides of that element. Since the circles defining two of the 
sides of the element considered here remain unchanged, the shear-
ing strain g must be equal to the angle between lines AB and A9B. 
(We recall that g should be expressed in radians.)
 We observe from Fig. 3.13c that, for small values of g, we can 
express the arc length AA9 as AA9 5 Lg. But, on the other hand, we 
have AA9 5 rf. It follows that Lg 5 rf, or

 
g 5

rf

L  
(3.2)

where g and f are both expressed in radians. The equation obtained 
shows, as we could have anticipated, that the shearing strain g at a 
given point of a shaft in torsion is proportional to the angle of twist 
f. It also shows that g is proportional to the distance r from the axis 
of the shaft to the point under consideration. Thus, the shearing 
strain in a circular shaft varies linearly with the distance from the 
axis of the shaft.

3.3 Deformations in a Circular Shaft

(b)

(a)

T'

T

Fig. 3.12 Deformation of shaft 
subject to twisting couples.

L

L

(a)

(b)

(c)

L

B

O
�

c

�

B

B

A
�

O

O
A'

A
�

�

Fig. 3.13 Shearing strain.
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148 Torsion  It follows from Eq. (3.2) that the shearing strain is maximum 
on the surface of the shaft, where r 5 c. We have

 
gmax 5

cf
L  

(3.3)

Eliminating f from Eqs. (3.2) and (3.3), we can express the shearing 
strain g at a distance r from the axis of the shaft as

 
g 5

r

c
 gmax 

(3.4)

3.4 STRESSES IN THE ELASTIC RANGE
No particular stress-strain relationship has been assumed so far in our 
discussion of circular shafts in torsion. Let us now consider the case 
when the torque T is such that all shearing stresses in the shaft remain 
below the yield strength tY. We know from Chap. 2 that, for all practi-
cal purposes, this means that the stresses in the shaft will remain below 
the proportional limit and below the elastic limit as well. Thus, Hooke’s 
law will apply and there will be no permanent deformation.
  Recalling Hooke’s law for shearing stress and strain from Sec. 
2.14, we write

 t 5 Gg (3.5)

where G is the modulus of rigidity or shear modulus of the material. 
Multiplying both members of Eq. (3.4) by G, we write

Gg 5
r

c
 Ggmax

or, making use of Eq. (3.5),

 
t 5
r

c
 tmax 

(3.6)

The equation obtained shows that, as long as the yield strength (or 
proportional limit) is not exceeded in any part of a circular shaft, the 
shearing stress in the shaft varies linearly with the distance r from 
the axis of the shaft. Figure 3.14a shows the stress distribution in a 
solid circular shaft of radius c, and Fig. 3.14b in a hollow circular 
shaft of inner radius c1 and outer radius c2. From Eq. (3.6), we find 
that, in the latter case,

 
tmin 5

c1

c2
 tmax 

(3.7)

 We now recall from Sec. 3.2 that the sum of the moments of 
the elementary forces exerted on any cross section of the shaft must 
be equal to the magnitude T of the torque exerted on the shaft:

 er(t dA) 5 T (3.1)
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Substituting for t from (3.6) into (3.1), we write

T 5 ert dA 5
tmax

c er2 dA

But the integral in the last member represents the polar moment of 
inertia J of the cross section with respect to its center O. We have 
therefore

 
T 5

tmax  J
c  

(3.8)

or, solving for tmax,

 
tmax 5

Tc
J  

(3.9)

Substituting for tmax from (3.9) into (3.6), we express the shearing 
stress at any distance r from the axis of the shaft as

 
t 5

Tr
J  

(3.10)

Equations (3.9) and (3.10) are known as the elastic torsion formulas. 
We recall from statics that the polar moment of inertia of a circle of 
radius c is J 5 1

2 pc4. In the case of a hollow circular shaft of inner 
radius c1 and outer radius c2, the polar moment of inertia is

 J 5 1
2pc2

4 2 1
2pc1

4 5 1
2p 1c2

4 2 c4
12 (3.11)

 We note that, if SI metric units are used in Eq. (3.9) or (3.10), 
T will be expressed in N ? m, c or r in meters, and J in m4; we check 
that the resulting shearing stress will be expressed in N/m2, that is, 
pascals (Pa). If U.S. customary units are used, T should be expressed 
in lb ? in., c or r in inches, and J in in4, with the resulting shearing 
stress expressed in psi.

3.4 Stresses in the Elastic Range
max�max�

min�

(a) (b)

c

�

�

�

O
c1 c2 �

O

Fig. 3.14 Distribution of shearing stresses.

bee80288_ch03_140-219.indd Page 149  9/21/10  3:04:17 PM user-f499bee80288_ch03_140-219.indd Page 149  9/21/10  3:04:17 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03



150

EXAMPLE 3.01 A hollow cylindrical steel shaft is 1.5 m long and has inner and outer 
diameters respectively equal to 40 and 60 mm (Fig. 3.15). (a) What is the 
largest torque that can be applied to the shaft if the shearing stress is not 
to exceed 120 MPa? (b) What is the corresponding minimum value of the 
shearing stress in the shaft?

 (a) Largest Permissible Torque. The largest torque T that can 
be applied to the shaft is the torque for which tmax 5 120 MPa. Since 
this value is less than the yield strength for steel, we can use Eq. (3.9). 
Solving this equation for T, we have

 
T 5

Jtmax

c   
(3.12)

Recalling that the polar moment of inertia J of the cross section is given by 
Eq. (3.11), where c1 5 1

2 140 mm 2 5 0.02 m and c2 5 1
2 160 mm 2 5 0.03 m, 

we write

J 5 1
2 p 1c4

2 2 c4
12 5 1

2 p10.034 2 0.0242 5 1.021 3 1026 m4

Substituting for J and tmax into (3.12), and letting c 5 c2 5 0.03 m, we 
have

T 5
Jtmax

c
5
11.021 3 1026 m42 1120 3 106 Pa2

0.03 m
5 4.08 kN ? m

  

 (b) Minimum Shearing Stress. The minimum value of the shear-
ing stress occurs on the inner surface of the shaft. It is obtained from Eq. 
(3.7), which expresses that tmin and tmax are respectively proportional to 
c1 and c2:

tmin 5
c1

c2
 tmax 5

0.02 m
0.03 m

 1120 MPa2 5 80 MPa
 

1.5 m

40 mm

60 mmT

Fig. 3.15

 The torsion formulas (3.9) and (3.10) were derived for a shaft 
of uniform circular cross section subjected to torques at its ends. 
However, they can also be used for a shaft of variable cross section 
or for a shaft subjected to torques at locations other than its ends 
(Fig. 3.16a). The distribution of shearing stresses in a given cross 
section S of the shaft is obtained from Eq. (3.9), where J denotes the 
polar moment of inertia of that section, and where T represents the 
internal torque in that section. The value of T is obtained by drawing 
the free-body diagram of the portion of shaft located on one side of 
the section (Fig. 3.16b) and writing that the sum of the torques 
applied to that portion, including the internal torque T, is zero (see 
Sample Prob. 3.1).
 Up to this point, our analysis of stresses in a shaft has been 
limited to shearing stresses. This is due to the fact that the element 
we had selected was oriented in such a way that its faces were either 
parallel or perpendicular to the axis of the shaft (Fig. 3.5). We know 
from earlier discussions (Secs. 1.11 and 1.12) that normal stresses, 
shearing stresses, or a combination of both may be found under the 
same loading condition, depending upon the orientation of the 
 element that has been chosen. Consider the two elements a and 
b located on the surface of a circular shaft subjected to torsion 

B

(a)

(b)

TC

TE

TB

TA

E

B

S

C

A

SE

TTB

TE

Fig. 3.16 Shaft with variable cross 
section.
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151(Fig. 3.17). Since the faces of element a are respectively parallel and 
 perpendicular to the axis of the shaft, the only stresses on the ele-
ment will be the shearing stresses defined by formula (3.9), namely 
tmax 5 TcyJ. On the other hand, the faces of element b, which form 
arbitrary angles with the axis of the shaft, will be subjected to a 
combination of normal and shearing stresses.
 Let us consider the stresses and resulting forces on faces that 
are at 458 to the axis of the shaft. In order to determine the stresses 
on the faces of this element, we consider the two triangular elements 
shown in Fig. 3.18 and draw their free-body diagrams. In the case 
of the element of Fig. 3.18a, we know that the stresses exerted on 
the faces BC and BD are the shearing stresses tmax 5 TcyJ. The 
magnitude of the corresponding shearing forces is thus tmax A0, where 
A0 denotes the area of the face. Observing that the components along 
DC of the two shearing forces are equal and opposite, we conclude 
that the force F exerted on DC must be perpendicular to that face. 
It is a tensile force, and its magnitude is

 F 5 2 1tmaxA02cos 45° 5 tmaxA012 (3.13)

The corresponding stress is obtained by dividing the force F by the 
area A of face DC. Observing that A 5 A012, we write

 
s 5

F
A

5
tmax A012

A012
5 tmax 

(3.14)

A similar analysis of the element of Fig. 3.18b shows that the stress 
on the face BE is s 5 2tmax. We conclude that the stresses exerted 
on the faces of an element c at 458 to the axis of the shaft (Fig. 3.19) 
are normal stresses equal to 6tmax. Thus, while the element a in 
Fig. 3.19 is in pure shear, the element c in the same figure is sub-
jected to a tensile stress on two of its faces, and to a compressive 
stress on the other two. We also note that all the stresses involved 
have the same magnitude, TcyJ.†
 As you learned in Sec. 2.3, ductile materials generally fail in 
shear. Therefore, when subjected to torsion, a specimen J made of 
a ductile material breaks along a plane perpendicular to its longitu-
dinal axis (Photo 3.2a). On the other hand, brittle materials are 
weaker in tension than in shear. Thus, when subjected to torsion, a 
specimen made of a brittle material tends to break along surfaces 
that are perpendicular to the direction in which tension is maximum, 
i.e., along surfaces forming a 458 angle with the longitudinal axis of 
the specimen (Photo 3.2b).

3.4 Stresses in the Elastic Range

†Stresses on elements of arbitrary orientation, such as element b of Fig. 3.18, will be dis-
cussed in Chap. 7.

Photo 3.2 Shear failure of shaft subject to torque.

(a) Ductile failure
T'

T

(b) Brittle failure
T'

T

a

max�
T

T'
b

Fig. 3.17 Circular shaft with 
elements at different orientations.

(a) (b)

C CB B

D E

maxA0�maxA0�

maxA0� maxA0�
45� 45�

F F'

Fig. 3.18 Forces on faces at 458 to 
shaft axis.

�
Tc
J

max� ��
Tc
J

45�	

a

T

T'

c

Fig. 3.19 Shaft with elements with 
only shear stresses or normal stresses.
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SAMPLE PROBLEM 3.1

Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm, 
respectively. Shafts AB and CD are solid and of diameter d. For the loading 
shown, determine (a) the maximum and minimum shearing stress in shaft 
BC, (b) the required diameter d of shafts AB and CD if the allowable shear-
ing stress in these shafts is 65 MPa.

0.9 m

d

A

B

TC

TD

0.7 m

0.5 m

120 mm

d

C
D

TA � 6 kN · m 

 � 14 kN · m 

 � 26 kN · m 

 � 6 kN · m 

TB

SOLUTION

 Equations of Statics. Denoting by TAB the torque in shaft AB, we 
pass a section through shaft AB and, for the free body shown, we write

©Mx 5 0:    16 kN ? m2 2 TAB 5 0    TAB 5 6 kN ? m

We now pass a section through shaft BC and, for the free body shown, we 
have

©Mx 5 0:  16 kN ? m2 1 114 kN ? m2 2 TBC 5 0    TBC 5 20 kN ? m

 a. Shaft BC. For this hollow shaft we have

J 5
p

2
1c4

2 2 c4
12 5

p

2
3 10.060 24 2 10.045 24 4 5 13.92 3 1026 m4

 Maximum Shearing Stress.  On the outer surface, we have

tmax 5 t2 5
TBC c2

J
5
120 kN ? m2  10.060 m2

13.92 3 1026 m4   tmax 5 86.2 MPa b

 Minimum Shearing Stress.  We write that the stresses are propor-
tional to the distance from the axis of the shaft.

tmin

tmax
5

c1

c2
         tmin

86.2 MPa
5

45 mm
60 mm  

tmin 5 64.7 MPa b

 b. Shafts AB and CD.  We note that in both of these shafts the mag-
nitude of the torque is T 5 6 kN ? m and tall 5 65 MPa. Denoting by c 
the radius of the shafts, we write

t 5
Tc
J
        65 MPa 5

16 kN ? m2c
p

2
 c4

c3 5 58.8 3 1026 m3    c 5 38.9 3 1023 m
 d 5 2c 5 2 138.9 mm 2    d 5 77.8 mm b

A TAB

x

TA � 6 kN · m 

TB

A

B TBC

xx

TA � 6 kN · m 

 � 14 kN · m 

c1 � 45 mm

c2 � 60 mm

2

1

�

�

A

B

6 kN · m

6 kN · m
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SAMPLE PROBLEM 3.2

The preliminary design of a large shaft connecting a motor to a generator 
calls for the use of a hollow shaft with inner and outer diameters of 4 in. 
and 6 in., respectively. Knowing that the allowable shearing stress is 12 ksi, 
determine the maximum torque that can be transmitted (a) by the shaft as 
designed, (b) by a solid shaft of the same weight, (c) by a hollow shaft of 
the same weight and of 8-in. outer diameter.

8 ft

T'

T

6 in.4 in.

SOLUTION

 a. Hollow Shaft as Designed. For the hollow shaft we have

J 5
p

2
1c4

2 2 c4
12 5

p

2
3 13 in.24 2 12 in.24 4 5 102.1 in4

Using Eq. (3.9), we write

 tmax 5
Tc2

J
        12 ksi 5

T 13 in.2
102.1 in4    T 5 408 kip ? in. b

 b. Solid Shaft of Equal Weight. For the shaft as designed and this 
solid shaft to have the same weight and length, their cross-sectional areas 
must be equal.

 A1a2 5 A1b2
 p 3 13 in.22 2 12 in.22 4 5 pc2

3         c3 5 2.24 in.

Since tall 5 12 ksi, we write

 tmax 5
Tc3

J
      12 ksi 5

T 12.24 in.2
p

2
12.24 in.24

    T 5 211 kip ? in. b

 c. Hollow Shaft of 8-in. Diameter. For equal weight, the cross-
 sectional areas again must be equal. We determine the inside diameter of 
the shaft by writing

 A1a2 5 A1c2
 p 3 13 in.22 2 12 in.22 4 5 p 3 14 in.22 2 c2

5 4      c5 5 3.317 in.

For c5 5 3.317 in. and c4 5 4 in.,

J 5
p

2
3 14 in.24 2 13.317 in.24 4 5 212 in4

With tall 5 12 ksi and c4 5 4 in.,

tmax 5
Tc4

J
     12 ksi 5

T 14 in.2
212 in4   T 5 636 kip ? in. b

c2 � 3 in.

c1 � 2 in.

T

c3

T

c4 � 4 in.

c5

T
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PROBLEMS

154

 3.1 (a) Determine the maximum shearing stress caused by a 4.6-kN ? m 
torque T in the 76-mm-diameter solid aluminum shaft shown. 
(b) Solve part a, assuming that the solid shaft has been replaced by 
a hollow shaft of the same outer diameter and of 24-mm inner 
diameter.

 3.2 (a) Determine the torque T that causes a maximum shearing stress 
of 45 MPa in the hollow cylindrical steel shaft shown. (b) Deter-
mine the maximum shearing stress caused by the same torque T 
in a solid cylindrical shaft of the same cross-sectional area.

76 mm

1.2 m

T

Fig. P3.1

 3.3 Knowing that d 5 1.2 in., determine the torque T that causes a 
maximum shearing stress of 7.5 ksi in the hollow shaft shown.

3.4 Knowing that the internal diameter of the hollow shaft shown is 
d 5 0.9 in., determine the maximum shearing stress caused by a 
torque of magnitude T 5 9 kip ? in.

 3.5 A torque T 5 3 kN ? m is applied to the solid bronze cylinder 
shown. Determine (a) the maximum shearing stress, (b) the shear-
ing stress at point D, which lies on a 15-mm-radius circle drawn 
on the end of the cylinder, (c) the percent of the torque carried 
by the portion of the cylinder within the 15-mm radius.

2.4 m

30 mm

45 mmT

Fig. P3.2

d

1.6 in.

T

Fig. P3.3 and P3.4 60 mm
30 mm

D
200 mmT � 3 kN · m

Fig. P3.5

 3.6 (a) Determine the torque that can be applied to a solid shaft of 
20-mm diameter without exceeding an allowable shearing stress of 
80 MPa. (b) Solve part a, assuming that the solid shaft has been 
replaced by a hollow shaft of the same cross-sectional area and with 
an inner diameter equal to half of its outer diameter.
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155Problems 3.7 The solid spindle AB has a diameter ds 5 1.5 in. and is made of 
a steel with an allowable shearing stress of 12 ksi, while sleeve CD 
is made of a brass with an allowable shearing stress of 7 ksi. Deter-
mine the largest torque T that can be applied at A.

 3.8 The solid spindle AB is made of a steel with an allowable shearing 
stress of 12 ksi, and sleeve CD is made of a brass with an allowable 
shearing stress of 7 ksi. Determine (a) the largest torque T that 
can be applied at A if the allowable shearing stress is not to be 
exceeded in sleeve CD, (b) the corresponding required value of 
the diameter ds of spindle AB.

 3.9 The torques shown are exerted on pulleys A and B. Knowing that 
both shafts are solid, determine the maximum shearing stress in 
(a) in shaft AB, (b) in shaft BC.

4 in.

8 in.

ds

t � in.1
4

3 in.

D

C

A

B

T

Fig. P3.7 and P3.8

30 mm

46 mm

C

A

B

TA � 300 N · m

TB � 400 N · m

Fig. P3.9

 3.10 In order to reduce the total mass of the assembly of Prob. 3.9, a 
new design is being considered in which the diameter of shaft BC 
will be smaller. Determine the smallest diameter of shaft BC for 
which the maximum value of the shearing stress in the assembly 
will not increase.

 3.11 Knowing that each of the shafts AB, BC, and CD consists of a solid 
circular rod, determine (a) the shaft in which the maximum shear-
ing stress occurs, (b) the magnitude of that stress.

D

dCD � 21 mm

B

dBC � 18 mm
C

60 N · m

48 N · m

A
dAB � 15 mm

144 N · m

Fig. P3.11 and P3.12

 3.12 Knowing that an 8-mm-diameter hole has been drilled through each 
of the shafts AB, BC, and CD, determine (a) the shaft in which the 
maximum shearing stress occurs, (b) the magnitude of that stress.
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156 Torsion  3.13 Under normal operating conditions, the electric motor exerts a 
12-kip ? in. torque at E. Knowing that each shaft is solid, deter-
mine the maximum shearing stress in (a) shaft BC, (b) shaft CD, 
(c) shaft DE.

2.25 in.

2 in.

1.75 in.

1.50 in.

E

A

B

C

D

5 kip · in.

4 kip · in.

3 kip · in.

Fig. P3.13

 3.14 Solve Prob. 3.13, assuming that a 1-in.-diameter hole has been 
drilled into each shaft.

 3.15 The allowable shearing stress is 15 ksi in the 1.5-in.-diameter steel 
rod AB and 8 ksi in the 1.8-in.-diameter brass rod BC. Neglecting 
the effect of stress concentrations, determine the largest torque 
that can be applied at A.

 3.16 The allowable shearing stress is 15 ksi in the steel rod AB and 
8 ksi in the brass rod BC. Knowing that a torque of magnitude 
T 5 10 kip ? in. is applied at A, determine the required diameter 
of (a) rod AB, (b) rod BC.

 3.17 The allowable stress is 50 MPa in the brass rod AB and 25 MPa 
in the aluminum rod BC. Knowing that a torque of magnitude 
T 5 1250 N ? m is applied at A, determine the required diameter 
of (a) rod AB, (b) rod BC.

B

C

Brass

T
A

Steel

Fig. P3.15 and P3.16

Brass

Aluminum

B

C

A

T

Fig. P3.17 and P3.18

 3.18 The solid rod BC has a diameter of 30 mm and is made of an alu-
minum for which the allowable shearing stress is 25 MPa. Rod AB 
is hollow and has an outer diameter of 25 mm; it is made of a brass 
for which the allowable shearing stress is 50 MPa. Determine (a) the 
largest inner diameter of rod AB for which the factor of safety is the 
same for each rod, (b) the largest torque that can be applied at A.

bee80288_ch03_140-219.indd Page 156  9/21/10  3:05:18 PM user-f499bee80288_ch03_140-219.indd Page 156  9/21/10  3:05:18 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03



157Problems 3.19 The solid rod AB has a diameter dAB 5 60 mm. The pipe CD has 
an outer diameter of 90 mm and a wall thickness of 6 mm. Know-
ing that both the rod and the pipe are made of steel for which the 
allowable shearing stress is 75 MPa, determine the largest torque 
T that can be applied at A.

 3.20 The solid rod AB has a diameter dAB 5 60 mm and is made of a 
steel for which the allowable shearing stress is 85 MPa. The pipe 
CD, which has an outer diameter of 90 mm and a wall thickness 
of 6 mm, is made of an aluminum for which the allowable shearing 
stress is 54 MPa. Determine the largest torque T that can be 
applied at A.

 3.21 A torque of magnitude T 5 1000 N ? m is applied at D as shown. 
Knowing that the diameter of shaft AB is 56 mm and that the 
diameter of shaft CD is 42 mm, determine the maximum shearing 
stress in (a) shaft AB, (b) shaft CD.

D

A

B

90 mm

dAB
C

T

Fig. P3.19 and P3.20

A

100 mm

40 mmC

B
D

T � 1000 N · m

Fig. P3.21 and P3.22

 3.22 A torque of magnitude T 5 1000 N ? m is applied at D as shown. 
Knowing that the allowable shearing stress is 60 MPa in each shaft, 
determine the required diameter of (a) shaft AB, (b) shaft CD.

 3.23 Under normal operating conditions a motor exerts a torque of mag-
nitude TF 5 1200 lb ? in. at F. Knowing that rD 5 8 in., rG 5 
3 in., and the allowable shearing stress is 10.5 ksi in each shaft, 
determine the required diameter of (a) shaft CDE, (b) shaft FGH.

F

TE
H

E

A

B
D

C

GrG

rDTF

Fig. P3.23 and P3.24

 3.24 Under normal operating conditions a motor exerts a torque of mag-
nitude TF at F. The shafts are made of a steel for which the allow-
able shearing stress is 12 ksi and have diameters dCDE 5 0.900 in. 
and dFGH 5 0.800 in. Knowing that rD 5 6.5 in. and rG 5 4.5 in., 
determine the largest allowable value of TF.
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158 Torsion  3.25 The two solid shafts are connected by gears as shown and are made 
of a steel for which the allowable shearing stress is 8500 psi. Know-
ing that a torque of magnitude TC 5 5 kip ? in. is applied at C and 
that the assembly is in equilibrium, determine the required diam-
eter of (a) shaft BC, (b) shaft EF.

 3.26 The two solid shafts are connected by gears as shown and are made 
of a steel for which the allowable shearing stress is 7000 psi. Know-
ing the diameters of the two shafts are, respectively, dBC 5 1.6 in. 
and dEF 5 1.25 in., determine the largest torque TC that can be 
applied at C.

 3.27 A torque of magnitude T 5 100 N ? m is applied to shaft AB of 
the gear train shown. Knowing that the diameters of the three solid 
shafts are, respectively, dAB 5 21 mm, dCD 5 30 mm, and dEF 5 
40 mm, determine the maximum shearing stress in (a) shaft AB, 
(b) shaft CD, (c) shaft EF.

B4 in.

2.5 in.

E

G

H

A

D

F

C TC

TF

Fig. P3.25 and P3.26

C

B

F

D

A

30 mm

25 mm

60 mm

75 mm

E

T

Fig. P3.27 and P3.28

 3.28 A torque of magnitude T 5 120 N ? m is applied to shaft AB of 
the gear train shown. Knowing that the allowable shearing stress 
is 75 MPa in each of the three solid shafts, determine the required 
diameter of (a) shaft AB, (b) shaft CD, (c) shaft EF.

 3.29 (a) For a given allowable shearing stress, determine the ratio Tyw 
of the maximum allowable torque T and the weight per unit length 
w for the hollow shaft shown. (b) Denoting by (Tyw)0 the value of 
this ratio for a solid shaft of the same radius c2, express the ratio 
Tyw for the hollow shaft in terms of (Tyw)0 and c1yc2.

 3.30 While the exact distribution of the shearing stresses in a hollow cylin-
drical shaft is as shown in Fig. P3.30a, an approximate value can be 
obtained for tmax by assuming that the stresses are uniformly distrib-
uted over the area A of the cross section, as shown in Fig. P3.30b, 
and then further assuming that all of the elementary shearing forces 
act at a distance from O equal to the mean radius 1

2(c1 1 c2) of the 
cross section. This approximate value t0 5 TyArm, where T is the 
applied torque. Determine the ratio tmaxyt0 of the true value of 
the maximum shearing stress and its approximate value t0 for val-
ues of c1yc2 respectively equal to 1.00, 0.95, 0.75, 0.50 and 0.

c2

c1

Fig. P3.29

O O
c1

max

r

�

�

m
c2

0

(a) (b)
Fig. P3.30 

bee80288_ch03_140-219.indd Page 158  11/2/10  3:06:37 PM user-f499bee80288_ch03_140-219.indd Page 158  11/2/10  3:06:37 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03



1593.5 ANGLE OF TWIST IN THE ELASTIC RANGE
In this section, a relation will be derived between the angle of twist f 
of a circular shaft and the torque T exerted on the shaft. The entire shaft 
will be assumed to remain elastic. Considering first the case of a shaft 
of length L and of uniform cross section of radius c subjected to a torque 
T at its free end (Fig. 3.20), we recall from Sec. 3.3 that the angle of 
twist f and the maximum shearing strain gmax are related as follows:

 
gmax 5

cf
L

 (3.3)

But, in the elastic range, the yield stress is not exceeded anywhere 
in the shaft, Hooke’s law applies, and we have gmax 5 tmaxyG or, 
recalling Eq. (3.9),

 
gmax 5

tmax

G
5

Tc
JG

 (3.15)

Equating the right-hand members of Eqs. (3.3) and (3.15), and solv-
ing for f, we write

 
f 5

TL
JG

 (3.16)

where f is expressed in radians. The relation obtained shows that, 
within the elastic range, the angle of twist f is proportional to the 
torque T applied to the shaft. This is in accordance with the experi-
mental evidence cited at the beginning of Sec. 3.3.
 Equation (3.16) provides us with a convenient method for 
determining the modulus of rigidity of a given material. A specimen 
of the material, in the form of a cylindrical rod of known diameter 
and length, is placed in a torsion testing machine (Photo 3.3). Torques 
of increasing magnitude T are applied to the specimen, and the 
 corresponding values of the angle of twist f in a length L of the 
specimen are recorded. As long as the yield stress of the material is 
not exceeded, the points obtained by plotting f against T will fall on 
a straight line. The slope of this line represents the quantity JGyL, 
from which the modulus of rigidity G may be computed.

3.5 Angle of Twist in the Elastic Range

Photo 3.3 Torsion testing machine.

L

T
c

�

�max

Fig. 3.20 Angle of twist f.
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EXAMPLE 3.02 What torque should be applied to the end of the shaft of Example 3.01 
to produce a twist of 28? Use the value G 5 77 GPa for the modulus of 
rigidity of steel.

Solving Eq. (3.16) for T, we write

T 5
JG

L
f

Substituting the given values

 G 5 77 3 109 Pa        L 5 1.5 m

 f 5 2°a2p rad
360°

b 5 34.9 3 1023 rad

and recalling from Example 3.01 that, for the given cross section,

J 5 1.021 3 1026 m4

we have

 T 5
JG

L
 f 5

11.021 3 1026 m42  177 3 109 Pa2
1.5 m

 134.9 3 1023 rad2
 T 5 1.829 3 103 N ? m 5 1.829 kN ? m

EXAMPLE 3.03 What angle of twist will create a shearing stress of 70 MPa on the inner 
surface of the hollow steel shaft of Examples 3.01 and 3.02?

The method of attack for solving this problem that first comes to 
mind is to use Eq. (3.10) to find the torque T corresponding to the given 
value of t, and Eq. (3.16) to determine the angle of twist f corresponding 
to the value of T just found.

A more direct solution, however, may be used. From Hooke’s law, 
we first compute the shearing strain on the inner surface of the shaft:

gmin 5
tmin

G
5

70 3 106 Pa
77 3 109 Pa

5 909 3 1026

Recalling Eq. (3.2), which was obtained by expressing the length of arc 
AA9 in Fig. 3.13c in terms of both g and f, we have

f 5
Lgmin

c1
5

1500 mm
20 mm

 1909 3 10262 5 68.2 3 1023 rad

To obtain the angle of twist in degrees, we write

f 5 168.2 3 1023 rad2a 360°
2p rad

b 5 3.91°

 Formula (3.16) for the angle of twist can be used only if the 
shaft is homogeneous (constant G), has a uniform cross section, and 
is loaded only at its ends. If the shaft is subjected to torques at loca-
tions other than its ends, or if it consists of several portions with 
various cross sections and possibly of different materials, we must 
divide it into component parts that satisfy individually the required 
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conditions for the application of formula (3.16). In the case of the 
shaft AB shown in Fig. 3.21, for example, four different parts should 
be considered: AC, CD, DE, and EB. The total angle of twist of the 
shaft, i.e., the angle through which end A rotates with respect to end 
B, is obtained by adding algebraically the angles of twist of each 
component part. Denoting, respectively, by Ti, Li, Ji, and Gi the inter-
nal torque, length, cross-sectional polar moment of inertia, and mod-
ulus of rigidity corresponding to part i, the total angle of twist of the 
shaft is expressed as

 
f 5 a

i
 
Ti Li

Ji Gi
 (3.17)

The internal torque Ti in any given part of the shaft is obtained by 
passing a section through that part and drawing the free-body dia-
gram of the portion of shaft located on one side of the section. This 
procedure, which has already been explained in Sec. 3.4 and illus-
trated in Fig. 3.16, is applied in Sample Prob. 3.3.
 In the case of a shaft with a variable circular cross section, as 
shown in Fig. 3.22, formula (3.16) may be applied to a disk of thick-
ness dx. The angle by which one face of the disk rotates with respect 
to the other is thus

df 5
T dx
JG

3.5 Angle of Twist in the Elastic Range

TC

TD

TA

TB

A

C

B

E

D

Fig. 3.21 Multiple sections and multiple 
torques.

x

A

dx
B

L

T'

T

Fig. 3.22 Shaft with variable cross 
section.
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162 Torsion where J is a function of x, which may be determined. Integrating in 
x from 0 to L, we obtain the total angle of twist of the shaft:

 
f 5 #

L

0

 
T dx
JG

 (3.18)

 The shaft shown in Fig. 3.20, which was used to derive formula 
(3.16), and the shaft of Fig. 3.15, which was discussed in Examples 
3.02 and 3.03, both had one end attached to a fixed support. In each 
case, therefore, the angle of twist f of the shaft was equal to the 
angle of rotation of its free end. When both ends of a shaft rotate, 
however, the angle of twist of the shaft is equal to the angle through 
which one end of the shaft rotates with respect to the other. Con-
sider, for instance, the assembly shown in Fig. 3.23a, consisting of 
two elastic shafts AD and BE, each of length L, radius c, and modu-
lus of rigidity G, which are attached to gears meshed at C. If a 
torque T is applied at E (Fig. 3.23b), both shafts will be twisted. 
Since the end D of shaft AD is fixed, the angle of twist of AD is 
measured by the angle of rotation fA of end A. On the other hand, 
since both ends of shaft BE rotate, the angle of twist of BE is equal 
to the difference between the angles of rotation fB and fE, i.e., the 
angle of twist is equal to the angle through which end E rotates with 
respect to end B. Denoting this relative angle of rotation by fEyB, 
we write

fEyB 5 fE 2 fB 5
TL
JG

(a)

C

B

L

rB

A rA

E

Fixed support

D

(b)

C''

T

E�

B�

C

Fixed end

B

L

A

D

A�

C'

E

Fig. 3.23 Gear assembly.
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EXAMPLE 3.04For the assembly of Fig. 3.23, knowing that rA 5 2rB, determine the angle 
of rotation of end E of shaft BE when the torque T is applied at E.

We first determine the torque TAD exerted on shaft AD. Observing 
that equal and opposite forces F and F9 are applied on the two gears at 
C (Fig. 3.24), and recalling that rA 5 2rB, we conclude that the torque 
exerted on shaft AD is twice as large as the torque exerted on shaft BE; 
thus, TAD 5 2T.

Since the end D of shaft AD is fixed, the angle of rotation fA of gear 
A is equal to the angle of twist of the shaft and is obtained by writing

fA 5
TAD  

L
JG

5
2TL
JG

Observing that the arcs CC9 and CC0 in Fig. 3.26b must be equal, we 
write rAfA 5 rBfB and obtain

fB 5 1rAyrB 2fA 5  2fA 

We have, therefore,

fB 5 2fA 5
4TL
JG

Considering now shaft BE, we recall that the angle of twist of the 
shaft is equal to the angle fEyB through which end E rotates with respect 
to end B. We have

fEyB 5
TBEL

JG
5

TL
JG

The angle of rotation of end E is obtained by writing

 fE 5 fB 1 fEyB

 5
4TL
JG

1
TL
JG

5
5TL
JG

A
B

C

F

F'

rA rB

Fig. 3.24

3.6 STATICALLY INDETERMINATE SHAFTS
You saw in Sec. 3.4 that, in order to determine the stresses in a shaft, 
it was necessary to first calculate the internal torques in the various 
parts of the shaft. These torques were obtained from statics by draw-
ing the free-body diagram of the portion of shaft located on one side 
of a given section and writing that the sum of the torques exerted 
on that portion was zero.
 There are situations, however, where the internal torques cannot 
be determined from statics alone. In fact, in such cases the external 
torques themselves, i.e., the torques exerted on the shaft by the  supports 
and connections, cannot be determined from the free-body diagram of 
the entire shaft. The equilibrium equations must be complemented by 
relations involving the deformations of the shaft and obtained by con-
sidering the geometry of the problem. Because statics is not sufficient 
to determine the external and internal torques, the shafts are said to 
be statically indeterminate. The following example, as well as Sample 
Prob. 3.5, will show how to analyze statically indeterminate shafts.

163
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(a)

(b)

(c)

TBT1
T2

TA

TB

TA

A

A

C

B

B

90 lb · ft

Fig. 3.26

164

EXAMPLE 3.05 A circular shaft AB consists of a 10-in.-long, 7
8-in.-diameter steel cylinder, 

in which a 5-in.-long, 5
8-in.-diameter cavity has been drilled from end B. 

The shaft is attached to fixed supports at both ends, and a 90 lb ? ft torque 
is applied at its midsection (Fig. 3.25). Determine the torque exerted on 
the shaft by each of the supports.

5 in.

5 in.

90 lb · ft
B

A

Fig. 3.25

Drawing the free-body diagram of the shaft and denoting by TA and 
TB the torques exerted by the supports (Fig. 3.26a), we obtain the equi-
librium equation

TA 1 TB 5 90 lb ? ft

Since this equation is not sufficient to determine the two unknown torques 
TA and TB, the shaft is statically indeterminate.

However, TA and TB can be determined if we observe that the total 
angle of twist of shaft AB must be zero, since both of its ends are 
restrained. Denoting by f1 and f2, respectively, the angles of twist of 
portions AC and CB, we write

f 5 f1 1 f2 5 0

From the free-body diagram of a small portion of shaft including end A 
(Fig. 3.26b), we note that the internal torque T1 in AC is equal to TA; from 
the free-body diagram of a small portion of shaft including end B (Fig. 
3.26c), we note that the internal torque T2 in CB is equal to TB. Recalling 
Eq. (3.16) and observing that portions AC and CB of the shaft are twisted 
in opposite senses, we write

f 5 f1 1 f2 5
TAL1

J1G
2

TBL 2

J2G
5 0

Solving for TB , we have

TB 5
L1 

J2

L2 
J1

 TA

Substituting the numerical data gives

 L1 5 L2 5 5 in.
  J1 5 1

2p 1 7
16 in.24 5 57.6 3 1023 in4

  J2 5 1
2p 3 1 7

16 in.24 2 1 5
16 in.24 4 5 42.6 3 1023 in4

we obtain
TB 5 0.740 TA

Substituting this expression into the original equilibrium equation, we 
write

1.740 TA 5 90 lb ? ft

TA 5 51.7 lb ? ft  TB 5 38.3 lb ? ft
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B

D

C

A
0.2 m

0.4 m

0.6 m

60 mm

30 mm

250 N · m

2000 N · m44 mm

SOLUTION

Since the shaft consists of three portions AB, BC, and CD, each of uniform cross 
section and each with a constant internal torque, Eq. (3.17) may be used.

 Statics.  Passing a section through the shaft between A and B and 
using the free body shown, we find

©Mx 5 0: 1250 N ? m 2 2 TAB 5 0    TAB 5 250 N ? m

Passing now a section between B and C, we have

©Mx 5 0: 1250 N ? m 2 1 12000 N ? m 2 2 TBC 5 0   TBC 5 2250 N ? m

Since no torque is applied at C,

TCD 5 TBC 5 2250 N ? m

 Polar Moments of Inertia

 JAB 5
p

2
 c4 5

p

2
 10.015 m 24 5 0.0795 3 1026 m4

 JBC 5
p

2
 c4 5

p

2
 10.030 m 24 5 1.272 3 1026 m4

  JCD 5
p

2
 1c2

4 2 c1
42 5

p

2
3 10.030 m 24 2 10.022 m 24 4 5 0.904 3 1026 m4

 Angle of Twist.  Using Eq. (3.17) and recalling that G 5 77 GPa for 
the entire shaft, we have

 
fA 5 a

i
 
TiLi

JiG
5

1
G
aTABLAB

JAB
1

TBCLBC

JBC
1

TCDLCD

JCD
b

fA 5
1

77 GPa
c 1250 N ? m2  10.4 m2

0.0795 3 1026 m4 1
122502  10.22

1.272 3 1026 1
122502  10.62

0.904 3 1026 d
 5 0.01634 1 0.00459 1 0.01939 5 0.0403 rad

 fA 5 10.0403 rad2 360°
2p rad

 fA 5 2.31° b

A x

TAB

250 N · m

B

A

TBC

2000 N · m

250 N · m

x

22 mm

15 mm
30 mm

30 mm

AB BC CD

C

B
A

A

D

�

SAMPLE PROBLEM 3.3

The horizontal shaft AD is attached to a fixed base at D and is subjected to 
the torques shown. A 44-mm-diameter hole has been drilled into portion 
CD of the shaft. Knowing that the entire shaft is made of steel for which 
G 5 77 GPa, determine the angle of twist at end A.
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24 in.
B

c � 0.375 in. A

TAB � T0

TAB � T0

36 in.

TCD

TCD

c � 0.5 in.

D

C

C

B

D

A

�A � 10.48�

�B � 8.26�

�C � 2.95�

24 in.

0.75 in.

36 in.

0.875 in.
2.45 in.

A T0

D

C

B

1 in.

SAMPLE PROBLEM 3.4

Two solid steel shafts are connected by the gears shown. Knowing that for 
each shaft G 5 11.2 3 106 psi and that the allowable shearing stress is 8 ksi, 
determine (a) the largest torque T0 that may be applied to end A of shaft AB, 
(b) the corresponding angle through which end A of shaft AB rotates.

SOLUTION

 Statics.  Denoting by F the magnitude of the tangential force between 
gear teeth, we have
 Gear B. oMB 5 0:  F 10.875 in.2 2 T0 5 0

 TCD 5 2.8T0 (1) Gear C. oMC 5 0:  F 12.45 in.2 2 TCD 5 0 

 Kinematics.  Noting that the peripheral motions of the gears are equal, 
we write

 
rBfB 5 rC fC        fB 5 fC

rC

rB
5 fC

2.45 in.
0.875 in.

5 2.8fC (2)

 a. Torque T0

 Shaft AB.  With TAB 5 T0 and c 5 0.375 in., together with a maximum 
permissible shearing stress of 8000 psi, we write

t 5
TAB c

J
        8000 psi 5

T010.375 in.2
1
2p10.375 in.24        T0 5 663 lb ? in.

 
◀

 Shaft CD.  From (1) we have TCD 5 2.8T0. With c 5 0.5 in. and 
tall 5 8000 psi, we write

t 5
TCD c

J
         8000 psi 5

2.8T010.5 in.2
1
2p10.5 in.24          T0 5 561 lb ? in.

 
◀

 Maximum Permissible Torque.  We choose the smaller value obtained 
for T0

T0 5 561 lb ? in. ◀

 b. Angle of Rotation at End A.  We first compute the angle of twist 
for each shaft.

 Shaft AB.  For TAB 5 T0 5 561 lb ? in., we have

fAyB 5
TABL

JG
5

1561 lb ? in.2  124 in.2
1
2p 10.375 in.24111.2 3 106 psi2 5 0.0387 rad 5 2.22°

 Shaft CD.  TCD 5 2.8T0 5 2.8(561 lb ? in.)

fCyD 5
TCDL

JG
5

2.81561 lb ? in.2  136 in.2
1
2p10.5 in.24111.2 3 106 psi2 5 0.0514 rad 5 2.95°

 Since end D of shaft CD is fixed, we have fC 5 fC@D 5 2.958. Using 
(2), we find the angle of rotation of gear B to be

fB 5 2.8fC 5 2.812.95°2 5 8.26°

For end A of shaft AB, we have

 fA 5 fB 1 fAyB 5 8.26° 1 2.22° fA 5 10.48° ◀

�C

C B

�B

rB � 0.875 in.
rC � 2.45 in.

C

TCD

F

F

rB � 0.875 in.
rC � 2.45 in.

B

TAB � T0
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50 mm76 mm

8 mm

500 mm

SOLUTION

 Statics.  Free Body of Disk. Denoting by T1 the torque exerted by 
the tube on the disk and by T2 the torque exerted by the shaft, we find

 T0 5 T1 1 T2  (1)

 Deformations.  Since both the tube and the shaft are connected to the 
rigid disk, we have

   
f1 5 f2:    T1L1

J1G1
5

T2L2

J2G2

T1 10.5 m 2
12.003 3 1026 m42 127 GPa2 5

T2 10.5 m 2
10.614 3 1026 m42 177 GPa2

 T2 5 0.874T1 (2)

 Shearing Stresses. We assume that the requirement talum # 70 MPa 
is critical. For the aluminum tube, we have

T1 5
talum  

J1

c1
5
170 MPa2 12.003 3 1026 m42

0.038 m
5 3690 N ? m

Using Eq. (2), we compute the corresponding value T2 and then find the 
maximum shearing stress in the steel shaft.

T2 5 0.874T1 5 0.874 13690 2 5 3225 N ? m

tsteel 5
T2c2

J2
5
13225 N ? m 2 10.025 m 2

0.614 3 1026 m4 5 131.3 MPa

We note that the allowable steel stress of 120 MPa is exceeded; our assump-
tion was wrong. Thus the maximum torque T0 will be obtained by making 
tsteel 5 120 MPa. We first determine the torque T2.

T2 5
tsteel J2

c2
5
1120 MPa2  10.614 3 1026

  m42
0.025 m

5 2950 N ? m

From Eq. (2), we have

2950 N ? m 5 0.874T1     T1 5 3375 N ? m 

Using Eq. (1), we obtain the maximum permissible torque

T0 5 T1 1 T2 5 3375 N ? m 1 2950 N ? m

 T0 5 6.325 kN ? m ◀

T1

T2

T0

30 mm

0.5 m

T1

1�

�J1 �    �(38 mm)4 � (30 mm)4	2

G1 � 27 GPa
Aluminum

� 2.003 
 10�6m4

38 mm

25 mm

T2

2�

�J1 �    �(25 mm)4	2

G1 � 77 GPa
Steel

� 0.614 
 10�6m4

0.5 m

SAMPLE PROBLEM 3.5

A steel shaft and an aluminum tube are connected to a fixed support and 
to a rigid disk as shown in the cross section. Knowing that the initial stresses 
are zero, determine the maximum torque T0 that can be applied to the disk 
if the allowable stresses are 120 MPa in the steel shaft and 70 MPa in 
the aluminum tube. Use G 5 77 GPa for steel and G 5 27 GPa for 
aluminum.
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PROBLEMS
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 3.31 (a) For the solid steel shaft shown (G 5 77 GPa), determine the 
angle of twist at A. (b) Solve part a, assuming that the steel shaft is 
hollow with a 30-mm-outer diameter and a 20-mm-inner diameter.

250 N · m30 mm
A

1.8 m

Fig. P3.31

T

1.25 m

12 mm
18 mm

Fig. P3.32

3.32 For the aluminum shaft shown (G 5 27 GPa), determine (a) the 
torque T that causes an angle of twist of 48, (b) the angle of twist 
caused by the same torque T in a solid cylindrical shaft of the same 
length and cross-sectional area.

 3.33 Determine the largest allowable diameter of a 10-ft-long steel rod 
(G 5 11.2 3 106 psi) if the rod is to be twisted through 308 without 
exceeding a shearing stress of 12 ksi.

 3.34 While an oil well is being drilled at a depth of 6000 ft, it is observed 
that the top of the 8-in.-diameter steel drill pipe rotates though 
two complete revolutions before the drilling bit starts to rotate. 
Using G 5 11.2 3 106 psi, determine the maximum shearing stress 
in the pipe caused by torsion.

 3.35 The electric motor exerts a 500 N ? m-torque on the aluminum shaft 
ABCD when it is rotating at a constant speed. Knowing that G 5
27 GPa and that the torques exerted on pulleys B and C are as shown, 
determine the angle of twist between (a) B and C, (b) B and D.

300 N · m 

A

200 N · m 

1 m

1.2 m

0.9 m

44 mm

40 mm

B

C

48 mm

D

Fig. P3.35
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169Problems 3.36 The torques shown are exerted on pulleys B, C, and D. Knowing 
that the entire shaft is made of aluminum (G 5 27 GPa), deter-
mine the angle of twist between (a) C and B, (b) D and B.

30 mm

B

30 mm
400 N · m

900 N · m

500 N · m

0.6 m

0.8 m

1 m

0.5 m

36 mm

C

D
E

A

36 mm

Fig. P3.36

 3.37 The aluminum rod BC (G 5 26 GPa) is bonded to the brass rod 
AB (G 5 39 GPa). Knowing that each rod is solid and has a diam-
eter of 12 mm, determine the angle of twist (a) at B, (b) at C.

 3.38 The aluminum rod AB (G 5 27 GPa) is bonded to the brass rod 
BD (G 5 39 GPa). Knowing that portion CD of the brass rod is 
hollow and has an inner diameter of 40 mm, determine the angle 
of twist at A.

Brass

200 mm

300 mm

A

B

C

Aluminum

100 N · m

Fig. P3.37

400 mm

375 mm

250 mm

D

60 mm

36 mm

TA � 800 N · m

TB � 1600 N · m

C

B

A

Fig. P3.38

 3.39 The solid spindle AB has a diameter ds 5 1.5 in. and is made of 
a steel with G 5 11.2 3 106 psi and tall 5 12 ksi, while sleeve CD 
is made of a brass with G 5 5.6 3 106 psi and tall 5 7 ksi. Deter-
mine the largest angle through which end A can be rotated.

 3.40 The solid spindle AB has a diameter ds 5 1.75 in. and is made of 
a steel with G 5 11.2 3 106 psi and tall 5 12 ksi, while sleeve CD 
is made of a brass with G 5 5.6 3 106 psi and tall 5 7 ksi. Deter-
mine (a) the largest torque T that can be applied at A if the given 
allowable stresses are not to be exceeded and if the angle of twist 
of sleeve CD is not to exceed 0.3758, (b) the corresponding angle 
through which end A rotates.

4 in.

8 in.

ds

t � in.1
4

3 in.

D

C

A

B

T

Fig. P3.39 and P3.40
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170 Torsion  3.41 Two shafts, each of 7
8-in. diameter, are connected by the gears 

shown. Knowing that G 5 11.2 3 106 psi and that the shaft at F 
is fixed, determine the angle through which end A rotates when 
a 1.2 kip ? in. torque is applied at A.

T
E

F B

A

4.5 in.

6 in.

12 in.

8 in.

6 in.

D

C

Fig. P3.41

 3.42 Two solid shafts are connected by gears as shown. Knowing that 
G 5 77.2 GPa for each shaft, determine the angle through which 
end A rotates when TA 5 1200 N ? m.

1.2 m

80 mm

1.6 m

42 mm

D
C

B

A

TA

240 mm 60 mm

Fig. P3.42
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171Problems 3.43 A coder F, used to record in digital form the rotation of shaft A, 
is connected to the shaft by means of the gear train shown, which 
consists of four gears and three solid steel shafts each of diameter 
d. Two of the gears have a radius r and the other two a radius nr. 
If the rotation of the coder F is prevented, determine in terms of 
T, l, G, J, and n the angle through which end A rotates.

F

ED
nr r

C
l

TA

B

A

nr

l

l

r

Fig. P3.43

 3.44 For the gear train described in Prob. 3.43, determine the angle 
through which end A rotates when T 5 5 lb ? in., l 5 2.4 in., d 5 
1
16 in., G 5 11.2 3 106 psi, and n 5 2.

 3.45 The design of the gear-and-shaft system shown requires that steel 
shafts of the same diameter be used for both AB and CD. It is 
further required that tmax # 60 MPa and that the angle fD through 
which end D of shaft CD rotates not exceed 1.58. Knowing that 
G 5 77 GPa, determine the required diameter of the shafts.

A

100 mm

40 mmC

B
D

T � 1000 N · m

400 mm

600 mm

Fig. P3.45
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172 Torsion  3.46 The electric motor exerts a torque of 800 N ? m on the steel shaft 
ABCD when it is rotating at a constant speed. Design specifications 
require that the diameter of the shaft be uniform from A to D and 
that the angle of twist between A and D not exceed 1.58. Knowing 
that tmax # 60 MPa and G 5 77 GPa, determine the minimum 
diameter shaft that can be used.

 3.47 The design specifications of a 2-m-long solid circular transmission 
shaft require that the angle of twist of the shaft not exceed 38 when 
a torque of 9 kN ? m is applied. Determine the required diameter 
of the shaft, knowing that the shaft is made of (a) a steel with an 
allowable shearing stress of 90 MPa and a modulus of rigidity of 
77 GPa, (b) a bronze with an allowable shearing stress of 35 MPa 
and a modulus of rigidity of 42 GPa.

 3.48 A hole is punched at A in a plastic sheet by applying a 600-N force 
P to end D of lever CD, which is rigidly attached to the solid 
cylindrical shaft BC. Design specifications require that the dis-
placement of D should not exceed 15 mm from the time the punch 
first touches the plastic sheet to the time it actually penetrates it. 
Determine the required diameter of shaft BC if the shaft is made 
of a steel with G 5 77 GPa and tall 5 80 MPa.

A

0.3 m

0.6 m

0.4 m C

B

500 N · m

300 N · m

D

Fig. P3.46

500 mm

300 mm
C

D

B

P

A

Fig. P3.48
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173Problems 3.49 The design specifications for the gear-and-shaft system shown require 
that the same diameter be used for both shafts and that the angle 
through which pulley A will rotate when subjected to a 2-kip ? in. 
torque TA while pulley D is held fixed will not exceed 7.58. Determine 
the required diameter of the shafts if both shafts are made of a steel 
with G 5 11.2 3 106 psi and tall 5 12 ksi.

 3.50 Solve Prob. 3.49, assuming that both shafts are made of a brass 
with G 5 5.6 3 106 psi and tall 5 8 ksi.

 3.51 A torque of magnitude T 5 4 kN ? m is applied at end A of the com-
posite shaft shown. Knowing that the modulus of rigidity is 77 GPa 
for the steel and 27 GPa for the aluminum, determine (a) the maxi-
mum shearing stress in the steel core, (b) the maximum shearing 
stress in the aluminum jacket, (c) the angle of twist at A.

A

8 in.

6 in.

5 in.

16 in.

2 in.

C

B

D

TA

TD

Fig. P3.49

Steel core

Aluminum jacket

72 mm

54 mm

A

B

25 m
T

Fig. P3.51 and P3.52

 3.52 The composite shaft shown is to be twisted by applying a torque T 
at end A. Knowing that the modulus of rigidity is 77 GPa for the 
steel and 27 GPa for the aluminum, determine the largest angle 
through which end A can be rotated if the following allowable 
stresses are not to be exceeded: tsteel 5 60 MPa and taluminum 5 
45 MPa.
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174 Torsion  3.53 The solid cylinders AB and BC are bonded together at B and are 
attached to fixed supports at A and C. Knowing that the modulus 
of rigidity is 3.7 3 106 psi for aluminum and 5.6 3 106 psi for 
brass, determine the maximum shearing stress (a) in cylinder AB, 
(b) in cylinder BC.

18 in.

12 in.

1.5 in.

2.0 in.

A

C

B
T � 12.5 kip · in.

Aluminum

Brass

Fig. P3.53

Fig. P3.55 and P3.56

1.5 in.

1.25 in.

3 ft

2 ft

C

B

D

A

T � 350 lb · ft

 3.54 Solve Prob. 3.53, assuming that cylinder AB is made of steel, for 
which G 5 11.2 3 106 psi.

 3.55 and 3.56 Two solid steel shafts are fitted with flanges that are 
then connected by bolts as shown. The bolts are slightly undersized 
and permit a 1.58 rotation of one flange with respect to the other 
before the flanges begin to rotate as a single unit. Knowing that 
G 5 11.2 3 106 psi, determine the maximum shearing stress in 
each shaft when a torque of T of magnitude 420 kip ? ft is applied 
to the flange indicated.

   3.55 The torque T is applied to flange B.
   3.56 The torque T is applied to flange C.
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175Problems 3.57 Ends A and D of the two solid steel shafts AB and CD are fixed, 
while ends B and C are connected to gears as shown. Knowing that 
a 4-kN ? m torque T is applied to gear B, determine the maximum 
shearing stress (a) in shaft AB, (b) in shaft CD.

100 mm

60 mm

500 mm

300 mm

A

B
45 mm

40 mmC

D

T

Fig. P3.57 and P3.58

 3.58 Ends A and D of the two solid steel shafts AB and CD are fixed, 
while ends B and C are connected to gears as shown. Knowing that 
the allowable shearing stress is 50 MPa in each shaft, determine 
the largest torque T that can be applied to gear B.

 3.59 The steel jacket CD has been attached to the 40-mm-diameter 
steel shaft AE by means of rigid flanges welded to the jacket and 
to the rod. The outer diameter of the jacket is 80 mm and its wall 
thickness is 4 mm. If 500 N ? m-torques are applied as shown, 
determine the maximum shearing stress in the jacket.

B

C

D
E

A
T

T'

Fig. P3.59

B

L

A
T

2

c

2c

Fig. P3.61

 3.60 A solid shaft and a hollow shaft are made of the same material and 
are of the same weight and length. Denoting by n the ratio c1yc2, 
show that the ratio TsyTh of the torque Ts in the solid shaft to the 

  torque Th in the hollow shaft is (a) 211 2 n22y11 1 n22 if the 
maximum shearing stress is the same in each shaft, (b) (1 2 n2)y
(1 1 n2) if the angle of twist is the same for each shaft.

 3.61 A torque T is applied as shown to a solid tapered shaft AB. Show 
by integration that the angle of twist at A is

  
f 5

7TL

12pGc4
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 3.62 The mass moment of inertia of a gear is to be determined experi-
mentally by using a torsional pendulum consisting of a 6-ft steel wire. 
Knowing that G 5 11.2 3 106 psi, determine the diameter of the 
wire for which the torsional spring constant will be 4.27 lb ? ft/rad.

Fig. P3.62

C

t

A

L2

L1

B

D

r1

r2

T

Fig. P3.63

 3.63 An annular plate of thickness t and modulus G is used to connect 
shaft AB of radius r1 to tube CD of radius r2. Knowing that a 
torque T is applied to end A of shaft AB and that end D of tube 
CD is fixed, (a) determine the magnitude and location of the maxi-
mum shearing stress in the annular plate, (b) show that the angle 
through which end B of the shaft rotates with respect to end C of 
the tube is

 
fBC 5

T
4pGt

 a 1
r 1

2 2
1
r 2

2b

3.7 DESIGN OF TRANSMISSION SHAFTS
The principal specifications to be met in the design of a transmission 
shaft are the power to be transmitted and the speed of rotation of 
the shaft. The role of the designer is to select the material and the 
dimensions of the cross section of the shaft, so that the maximum 

176 Torsion
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177shearing stress allowable in the material will not be exceeded when 
the shaft is transmitting the required power at the specified speed.
 To determine the torque exerted on the shaft, we recall from 
elementary dynamics that the power P associated with the rotation 
of a rigid body subjected to a torque T is

 P 5 Tv (3.19)

where v is the angular velocity of the body expressed in radians per 
second. But v 5 2pf, where f is the frequency of the rotation, i.e., the 
number of revolutions per second. The unit of frequency is thus 1 s21 
and is called a hertz (Hz). Substituting for v into Eq. (3.19), we write

 P 5 2p f T (3.20)

 If SI units are used we verify that, with f expressed in Hz and 
T in N ? m, the power will be expressed in N ? m/s, that is, in watts 
(W). Solving Eq. (3.20) for T, we obtain the torque exerted on a shaft 
transmitting the power P at a frequency of rotation f,

 
T 5

P
2p f

 (3.21)

where P, f, and T are expressed in the units indicated above.
 After having determined the torque T that will be applied to 
the shaft and having selected the material to be used, the designer 
will carry the values of T and of the maximum allowable stress into 
the elastic torsion formula (3.9). Solving for Jyc, we have

 

J
c

5
T
tmax

 (3.22)

and obtain in this way the minimum value allowable for the parameter 
Jyc. We check that, if SI units are used, T will be expressed in N ? m, 
tmax in Pa (or N/m2), and Jyc will be obtained in m3. In the case of a solid 
circular shaft, J 5 1

2pc4, and Jyc 5 1
2pc3; substituting this value for 

Jyc into Eq. (3.22) and solving for c yields the minimum allowable 
value for the radius of the shaft. In the case of a hollow circular shaft, 
the critical parameter is Jyc2, where c2 is the outer radius of the shaft; 
the value of this parameter may be computed from Eq. (3.11) of Sec. 
3.4 to determine whether a given cross section will be acceptable.
 When U.S. customary units are used, the frequency is usually 
expressed in rpm and the power in horsepower (hp). It is then neces-
sary, before applying formula (3.21), to convert the frequency into 
revolutions per second (i.e., hertzes) and the power into ft ? lb/s or 
in ? lb/s through the use of the following relations:

1 rpm 5
1
60

 s21 5
1
60

Hz

1 hp 5 550 ft ? lb/s 5 6600 in ? lb/s

If we express the power in in ? lb/s, formula (3.21) will yield the value of 
the torque T in lb ? in. Carrying this value of T into Eq. (3.22), and ex-
pressing tmax in psi, we obtain the value of the parameter Jyc in in3.

3.7 Design of Transmission Shafts
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EXAMPLE 3.06 What size of shaft should be used for the rotor of a 5-hp motor operating 
at 3600 rpm if the shearing stress is not to exceed 8500 psi in the shaft?

We first express the power of the motor in in ? lb/s and its frequency 
in cycles per second (or hertzes).

P 5 15 hp2a6600 in ? lb/s
1 hp

b 5 33,000 in ? lb/s

f 5 13600 rpm2  1 Hz
60 rpm

5 60 Hz 5 60 s21

The torque exerted on the shaft is given by Eq. (3.21):

T 5
P

2p f
5

33,000 in ? lb/s
2p 160 s212 5 87.54 lb ? in.

Substituting for T and tmax into Eq. (3.22), we write
J

c
5

T
tmax

5
87.54 lb ? in.

8500 psi
5 10.30 3 1023 in3

But Jyc 5 1
2pc3 for a solid shaft. We have, therefore,

 12pc3 5 10.30 3 1023 in3

 c 5 0.1872 in.
 d 5 2c 5 0.374 in.

A 3
8-in. shaft should be used.

178

EXAMPLE 3.07 A shaft consisting of a steel tube of 50-mm outer diameter is to transmit 
100 kW of power while rotating at a frequency of 20 Hz. Determine the 
tube thickness that should be used if the shearing stress is not to exceed 
60 MPa.

The torque exerted on the shaft is given by Eq. (3.21):

T 5
P

2p f
5

100 3 103 W
2p 120 Hz2 5 795.8 N ? m

From Eq. (3.22) we conclude that the parameter Jyc2 must be at least 
equal to

 

J

c2
5

T
tmax

5
795.8 N ? m

60 3 106 N/m2 5 13.26 3 1026 m3

 
(3.23)

But, from Eq. (3.10) we have

 

J

c2
5
p

2c2
 1c4

2 2 c4
12 5

p

0.050
3 10.02524 2 c4

1 4  (3.24)

Equating the right-hand members of Eqs. (3.23) and (3.24), we obtain:

10.02524 2 c4
1 5

0.050
p

 113.26 3 10262
 c4

1 5 390.6 3 1029 2 211.0 3 1029 5 179.6 3 1029 m4

 c1 5 20.6 3 1023 m 5 20.6 mm

The corresponding tube thickness is

c2 2 c1 5 25 mm 2 20.6 mm 5 4.4 mm

A tube thickness of 5 mm should be used.
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1793.8 STRESS CONCENTRATIONS IN CIRCULAR SHAFTS
The torsion formula tmax 5 TcyJ was derived in Sec. 3.4 for a circular 
shaft of uniform cross section. Moreover, we had assumed earlier in 
Sec. 3.3 that the shaft was loaded at its ends through rigid end plates 
solidly attached to it. In practice, however, the torques are usually 
applied to the shaft through flange couplings (Fig. 3.27a) or through 
gears connected to the shaft by keys fitted into keyways (Fig. 3.27b). 
In both cases one should expect the distribution of stresses, in and 
near the section where the torques are applied, to be different from 
that given by the torsion formula. High concentrations of stresses, 
for example, will occur in the neighborhood of the keyway shown in 
Fig. 3.27b. The determination of these localized stresses may be 
carried out by experimental stress analysis methods or, in some cases, 
through the use of the mathematical theory of elasticity.
 As we indicated in Sec. 3.4, the torsion formula can also be 
used for a shaft of variable circular cross section. In the case of a 
shaft with an abrupt change in the diameter of its cross section, 
however, stress concentrations will occur near the discontinuity, with 
the highest stresses occurring at A (Fig. 3.28). These stresses may 

3.8 Stress Concentrations in Circular Shafts 

D

d

A

Fig. 3.28 Shaft with change in diameter.

be reduced through the use of a fillet, and the maximum value of 
the shearing stress at the fillet can be expressed as

 
tmax 5 K 

Tc
J

 (3.25)

where the stress TcyJ is the stress computed for the smaller-diameter 
shaft, and where K is a stress-concentration factor. Since the factor 
K depends only upon the ratio of the two diameters and the ratio of 
the radius of the fillet to the diameter of the smaller shaft, it may 
be computed once and for all and recorded in the form of a table 
or a graph, as shown in Fig. 3.29. We should note, however, that this 
procedure for determining localized shearing stresses is valid only as 
long as the value of tmax given by Eq. (3.25) does not exceed the 
proportional limit of the material, since the values of K plotted in 
Fig. 3.29 were obtained under the assumption of a linear relation 
between shearing stress and shearing strain. If plastic deformations 
occur, they will result in values of the maximum stress lower than 
those indicated by Eq. (3.25).

†W. D. Pilkey, Peterson’s Stress Concentration Factors, 2nd ed., John Wiley & Sons, New 
York, 1997.

(a)

(b)
Fig. 3.27 Shaft examples.
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D
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D
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D
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D
d � 2

D
d  � 2.5

d

Fig. 3.29 Stress-concentration factors 
for fillets in circular shafts.†
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SAMPLE PROBLEM 3.6

The stepped shaft shown is to rotate at 900 rpm as it transmits power from a 
turbine to a generator. The grade of steel specified in the design has an allow-
able shearing stress of 8 ksi. (a) For the preliminary design shown, determine 
the maximum power that can be transmitted. (b) If in the final design the 
radius of the fillet is increased so that r 5 15

16 in., what will be the percent change, 
relative to the preliminary design, in the power that can be transmitted?

SOLUTION

 a. Preliminary Design. Using the notation of Fig. 3.32, we have: 
D 5 7.50 in., d 5 3.75 in., r 5 9

16 in. 5 0.5625 in.

D
d

5
7.50 in.
3.75 in.

5 2
  

r
d

5
0.5625 in.
3.75 in.

5 0.15

A stress-concentration factor K 5 1.33 is found from Fig. 3.29.

 Torque.  Recalling Eq. (3.25), we write

 
tmax 5 K

Tc
J   

T 5
J

c
 
tmax

K  
 (1)

where Jyc refers to the smaller-diameter shaft:

Jyc 5 1
2pc3 5 1

2p11.875 in.23 5 10.35 in3

and where
 

tmax

K
5

8 ksi
1.33

5 6.02 ksi

Substituting into Eq. (1), we find T 5 (10.35 in3)(6.02 ksi) 5 62.3 kip ? in.

 Power. Since f 5 1900 rpm2  1 Hz
60 rpm

5 15 Hz 5 15 s21, we write

 Pa 5 2p f T 5 2p(15 s21)(62.3 kip ? in.) 5 5.87 3 106 in. ? lb/s
 Pa 5 (5.87 3 106 in. ? lb/s)(1 hp/6600 in. ? lb/s) Pa 5 890 hp ◀

 b. Final Design. For r 5 15
16 in. 5 0.9375 in.,

D
d

5 2
  

r
d

5
0.9375 in.
3.75 in.

5 0.250
  

K 5 1.20

Following the procedure used above, we write

tmax

K
5

8 ksi
1.20

5 6.67 ksi

T 5
J

c
 
tmax

K
5 110.35 in32 16.67 ksi2 5 69.0 kip ? in.

Pb 5 2p f T 5 2p115 s212 169.0 kip ? in.2 5 6.50 3 106 in. ? lb/s
Pb 5 16.50 3 106 in. ? lb/s2 11 hp/6600 in. ? lb/s2 5 985 hp

 Percent Change in Power

 
Percent change 5 100 

Pb 2 Pa

Pa
5 100 

985 2 890
890

5 111%
 

◀

3.75 in. 9
16r �     in.

7.50 in.

K 6.02 ksi

9
16r in.�Ta 62.3 kip · in.�

� �
max�

m�

K 6.67 ksi

15
16r in.�Tb 69.0 kip · in.�

� �
max�

m�
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PROBLEMS
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 3.64 Determine the maximum shearing stress in a solid shaft of 
12-mm diameter as it transmits 2.5 kW at a frequency of (a) 25 Hz, 
(b) 50 Hz.

3.65 Determine the maximum shearing stress in a solid shaft of 
1.5-in. diameter as it transmits 75 hp at a speed of (a) 750 rpm, 
(b) 1500 rpm.

 3.66 Design a solid steel shaft to transmit 0.375 kW at a frequency of 
29 Hz, if the shearing stress in the shaft is not to exceed 35 MPa.

3.67 Design a solid steel shaft to transmit 100 hp at a speed of 1200 rpm, 
if the maximum shearing stress is not to exceed 7500 psi.

 3.68 Determine the required thickness of the 50-mm tubular shaft of 
Example 3.07, if it is to transmit the same power while rotating at 
a frequency of 30 Hz.

 3.69 While a steel shaft of the cross section shown rotates at 120 rpm, 
a stroboscopic measurement indicates that the angle of twist is 28 
in a 12-ft length. Using G 5 11.2 3 106 psi, determine the power 
being transmitted.

 3.70 The hollow steel shaft shown (G 5 77.2 GPa, tall 5 50 MPa) 
rotates at 240 rpm. Determine (a) the maximum power that can 
be transmitted, (b) the corresponding angle of twist of the shaft.

3 in.1.2 in.

Fig. P3.69

5 m

60 mm

25 mm

T

T'

Fig. P3.70 and P3.71

d240 mm

(a) (b)
Fig. P3.72

3.71 As the hollow steel shaft shown rotates at 180 rpm, a stroboscopic 
measurement indicates that the angle of twist of the shaft is 38. 
Knowing that G 5 77.2 GPa, determine (a) the power being trans-
mitted, (b) the maximum shearing stress in the shaft.

 3.72 The design of a machine element calls for a 40-mm-outer-diameter 
shaft to transmit 45 kW. (a) If the speed of rotation is 720 rpm, 
determine the maximum shearing stress in shaft a. (b) If the speed 
of rotation can be increased 50% to 1080 rpm, determine the larg-
est inner diameter of shaft b for which the maximum shearing 
stress will be the same in each shaft.
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182 Torsion  3.73 A steel pipe of 3.5-in. outer diameter is to be used to transmit a 
torque of 3000 lb ? ft without exceeding an allowable shearing 
stress of 8 ksi. A series of 3.5-in.-outer-diameter pipes is available 
for use. Knowing that the wall thickness of the available pipes var-
ies from 0.25 in. to 0.50 in. in 0.0625-in. increments, choose the 
lightest pipe that can be used.

 3.74 The two solid shafts and gears shown are used to transmit 16 hp from 
the motor at A operating at a speed of 1260 rpm to a machine tool 
at D. Knowing that the maximum allowable shearing stress is 8 ksi, 
determine the required diameter (a) of shaft AB, (b) of shaft CD.

3.5 in.

t

Fig. P3.73

C
5 in.

3 in.

D

A

B

Fig. P3.74 and P3.75

 3.75 The two solid shafts and gears shown are used to transmit 16 hp 
from the motor at A operating at a speed of 1260 rpm to a machine 
tool at D. Knowing that each shaft has a diameter of 1 in., determine 
the maximum shearing stress (a) in shaft AB, (b) in shaft CD.

 3.76 Three shafts and four gears are used to form a gear train that will 
transmit 7.5 kW from the motor at A to a machine tool at F. (Bear-
ings for the shafts are omitted in the sketch.) Knowing that the fre-
quency of the motor is 30 Hz and that the allowable stress for each 
shaft is 60 MPa, determine the required diameter of each shaft.

 3.77 Three shafts and four gears are used to form a gear train that will 
transmit power from the motor at A to a machine tool at F. (Bear-
ings for the shafts are omitted in the sketch.) The diameter of each 
shaft is as follows: dAB 5 16 mm, dCD 5 20 mm, dEF 5 28 mm. 
Knowing that the frequency of the motor is 24 Hz and that the 
allowable shearing stress for each shaft is 75 MPa, determine the 
maximum power that can be transmitted.

 3.78 A 1.5-m-long solid steel shaft of 48-mm diameter is to transmit 
36 kW between a motor and a machine tool. Determine the lowest 
speed at which the shaft can rotate, knowing that G 5 77.2 GPa, 
that the maximum shearing stress must not exceed 60 MPa, and 
the angle of twist must not exceed 2.58.

C
150 mm

60 mm

B

A

F

60 mm
D

150 mm

E

Fig. P3.76 and P3.77
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183Problems 3.79 A 2.5-m-long steel shaft of 30-mm diameter rotates at a frequency 
of 30 Hz. Determine the maximum power that the shaft can trans-
mit, knowing that G 5 77.2 GPa, that the allowable shearing stress 
is 50 MPa, and that the angle of twist must not exceed 7.58.

 3.80 A steel shaft must transmit 210 hp at a speed of 360 rpm. Knowing 
that G 5 11.2 3 106 psi, design a solid shaft so that the maximum 
shearing stress will not exceed 12 ksi and the angle of twist in an 
8.2-ft length will not exceed 38.

 3.81 The shaft-disk-belt arrangement shown is used to transmit 3 hp 
from point A to point D. (a) Using an allowable shearing stress of 
9500 psi, determine the required speed of shaft AB. (b) Solve part 
a, assuming that the diameters of shafts AB and CD are, respec-
tively, 0.75 in. and 0.625 in.

 3.82 A 1.6-m-long tubular steel shaft of 42-mm outer diameter d1 is to 
be made of a steel for which tall 5 75 MPa and G 5 77.2 GPa. 
Knowing that the angle of twist must not exceed 48 when the shaft 
is subjected to a torque of 900 N ? m, determine the largest inner 
diameter d2 that can be specified in the design.

B

C

D

A

3
4 in.

5
8 in.

1
2r � 4    in.

1
8r 1    in.�

Fig. P3.81

d1 � 42 mm d2

Fig. P3.82 and P3.83
2 in.

1.5 in.
r

T

T'

Fig. P3.84 and P3.85

90 mm
45 mm

r

Fig. P3.86

 3.83 A 1.6-m-long tubular steel shaft (G 5 77.2 GPa) of 42-mm outer 
diameter d1 and 30-mm inner diameter d2 is to transmit 120 kW 
between a turbine and a generator. Knowing that the allowable shear-
ing stress is 65 MPa and that the angle of twist must not exceed 38, 
determine the minimum frequency at which the shaft can rotate.

 3.84 Knowing that the stepped shaft shown transmits a torque of magni-
tude T 5 2.50 kip ? in., determine the maximum shearing stress in 
the shaft when the radius of the fillet is (a) r 5 1

8 in., (b) r 5 3
16 in.

 3.85 Knowing that the allowable shearing stress is 8 ksi for the stepped 
shaft shown, determine the magnitude T of the largest torque 
that can be transmitted by the shaft when the radius of the fillet 
is (a) r 5 3

16 in., (b) r 5 1
4 in.

 3.86 The stepped shaft shown must transmit 40 kW at a speed of 720 rpm. 
Determine the minimum radius r of the fillet if an allowable stress 
of 36 MPa is not to be exceeded.
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 3.87 The stepped shaft shown must transmit 45 kW. Knowing that the 
allowable shearing stress in the shaft is 40 MPa and that the radius 
of the fillet is r 5 6 mm, determine the smallest permissible speed 
of the shaft.

 3.88 The stepped shaft shown must rotate at a frequency of 50 Hz. 
Knowing that the radius of the fillet is r 5 8 mm and the allowable 
shearing stress is 45 MPa, determine the maximum power that can 
be transmitted.

 3.89 In the stepped shaft shown, which has a full quarter-circular fil-
let, D 5 1.25 in. and d 5 1 in. Knowing that the speed of the 
shaft is 2400 rpm and that the allowable shearing stress is 7500 psi, 
determine the maximum power that can be transmitted by the 
shaft.

 3.90 A torque of magnitude T 5 200 lb ? in. is applied to the stepped 
shaft shown, which has a full quarter-circular fillet. Knowing that 
D 5 1 in., determine the maximum shearing stress in the shaft 
when (a) d 5 0.8 in., (b) d 5 0.9 in.

 3.91 In the stepped shaft shown, which has a full quarter-circular fillet, 
the allowable shearing stress is 80 MPa. Knowing that D 5 30 mm, 
determine the largest allowable torque that can be applied to the 
shaft if (a) d 5 26 mm, (b) d 5 24 mm.

60 mm

30 mm

T

T'

Fig. P3.87 and P3.88

r � �

D

(D d)1
2

d

Full quarter-circular fillet
extends to edge of larger shaft.
Fig. P3.89, P3.90, and P3.91

*3.9 PLASTIC DEFORMATIONS IN CIRCULAR SHAFTS
When we derived Eqs. (3.10) and (3.16), which define, respectively, 
the stress distribution and the angle of twist for a circular shaft 
subjected to a torque T, we assumed that Hooke’s law applied 
throughout the shaft. If the yield strength is exceeded in some 
portion of the shaft, or if the material involved is a brittle material 
with a nonlinear shearing-stress-strain diagram, these relations 
cease to be valid. The purpose of this section is to develop a more 
general method—which may be used when Hooke’s law does not 
apply—for determining the distribution of stresses in a solid circu-
lar shaft, and for computing the torque required to produce a given 
angle of twist.
 We first recall that no specific stress-strain relationship was 
assumed in Sec. 3.3, when we proved that the shearing strain g varies 
linearly with the distance r from the axis of the shaft (Fig. 3.30). Thus, 
we may still use this property in our present analysis and write

 
g 5

r

c
 gmax 

(3.4)

where c is the radius of the shaft.

O
�

�

c

max�

Fig. 3.30 Shearing 
strain variation.

184 Torsion
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185 Assuming that the maximum value tmax of the shearing stress t 
has been specified, the plot of t versus r may be obtained as follows. We 
first determine from the shearing-stress-strain diagram the value of gmax 
corresponding to tmax (Fig. 3.31), and carry this value into Eq. (3.4). 
Then, for each value of r, we determine the corresponding value of g 
from Eq. (3.4) or Fig. 3.30 and obtain from the stress-strain diagram 
of Fig. 3.31 the shearing stress t corresponding to this value of g. Plot-
ting t against r yields the desired distribution of stresses (Fig. 3.32).
 We now recall that, when we derived Eq. (3.1) in Sec. 3.2, we 
assumed no particular relation between shearing stress and strain. 
We may therefore use Eq. (3.1) to determine the torque T corre-
sponding to the shearing-stress distribution obtained in Fig. 3.32. 
Considering an annular element of radius r and thickness dr, we 
express the element of area in Eq. (3.1) as dA 5 2pr dr and 
write

T 5 #
c

0

rt12pr dr2
or

 
T 5 2p#

c

0

r2t dr (3.26)

where t is the function of r plotted in Fig. 3.32.
 If t is a known analytical function of g, Eq. (3.4) may be used 
to express t as a function of r, and the integral in (3.26) may be 
determined analytically. Otherwise, the torque T may be obtained 
through a numerical integration. This computation becomes more 
meaningful if we note that the integral in Eq. (3.26) represents the 
second moment, or moment of inertia, with respect to the vertical 
axis of the area in Fig. 3.32 located above the horizontal axis and 
bounded by the stress-distribution curve.
 An important value of the torque is the ultimate torque TU 
which causes failure of the shaft. This value may be determined from 
the ultimate shearing stress tU of the material by choosing tmax 5 tU 
and carrying out the computations indicated earlier. However, it is 
found more convenient in practice to determine TU experimentally 
by twisting a specimen of a given material until it breaks. Assuming 
a fictitious linear distribution of stresses, Eq. (3.9) is then used to 
determine the corresponding maximum shearing stress RT:

 
RT 5

TU 
c

J
 (3.27)

The fictitious stress RT is called the modulus of rupture in torsion of 
the given material. It may be used to determine the ultimate torque 
TU of a shaft made of the same material, but of different dimensions, 
by solving Eq. (3.27) for TU. Since the actual and the fictitious linear 
stress distributions shown in Fig. 3.33 must yield the same value TU 
for the ultimate torque, the areas they define must have the same 
moment of inertia with respect to the vertical axis. It is thus clear 
that the modulus of rupture RT will always be larger than the actual 
ultimate shearing stress tU.

3.9 Plastic Deformations in Circular Shafts

� � f(   )

�

�

�

max�

max�

Fig. 3.31 Nonlinear, shear stress-
strain diagram.

�

O �c

max�

Fig. 3.32 Shearing strain variation for 
shaft with nonlinear stress-strain diagram. 

O �

�

U�

c

RT

Fig. 3.33 Shaft at failure.
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186 Torsion  In some cases, we may wish to determine the stress distribu-
tion and the torque T corresponding to a given angle of twist f. 
This may be done by recalling the expression obtained in Sec. 3.3 
for the shearing strain g in terms of f, r, and the length L of the 
shaft:

 
g 5

rf

L
 (3.2)

With f and L given, we may determine from Eq. (3.2) the value of 
g corresponding to any given value of r. Using the stress-strain dia-
gram of the material, we may then obtain the corresponding value 
of the shearing stress t and plot t against r. Once the shearing-stress 
distribution has been obtained, the torque T may be determined 
analytically or numerically as explained earlier.

*3.10  CIRCULAR SHAFTS MADE OF AN 
ELASTOPLASTIC MATERIAL

Further insight into the plastic behavior of a shaft in torsion is 
obtained by considering the idealized case of a solid circular shaft 
made of an elastoplastic material. The shearing-stress-strain diagram 
of such a material is shown in Fig. 3.34. Using this diagram, we can 
proceed as indicated earlier and find the stress distribution across a 
section of the shaft for any value of the torque T.
 As long as the shearing stress t does not exceed the yield 
strength tY, Hooke’s law applies, and the stress distribution across 
the section is linear (Fig. 3.35a), with tmax given by Eq. (3.9):

 
tmax 5

Tc
J

 (3.9)

Y�

�

�

Fig. 3.34 Elastoplastic stress-
strain diagram.

O

(b)

�

�

�max �  Y�

c
O

(d)

�

�c

�Y

Fig. 3.35 Stress-strain diagrams for shaft made of elastoplastic material.

O

(a)

�

�

�max   Y�

c O

(c)

�

�c

�Y

Y�

As the torque increases, tmax eventually reaches the value tY (Fig. 
3.35b). Substituting this value into Eq. (3.9), and solving for the cor-
responding value of T, we obtain the value TY of the torque at the 
onset of yield:

 
TY 5

J
c

 tY (3.28)
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187The value obtained is referred to as the maximum elastic torque, 
since it is the largest torque for which the deformation remains 
fully elastic. Recalling that for a solid circular shaft Jyc 5 1

2 
pc3, we 

have

 TY 5 1
2 
pc3tY (3.29)

 As the torque is further increased, a plastic region develops 
in the shaft, around an elastic core of radius rY (Fig. 3.35c). In 
the plastic region the stress is uniformly equal to tY, while in the 
elastic core the stress varies linearly with r and may be expressed 
as

 
t 5
tY

rY
 r (3.30)

As T is increased, the plastic region expands until, at the limit, the 
deformation is fully plastic (Fig. 3.35d).
 Equation (3.26) will be used to determine the value of the 
torque T corresponding to a given radius rY of the elastic core. 
Recalling that t is given by Eq. (3.30) for 0 # r # rY, and is equal 
to tY for rY # r # c, we write

 T 5 2p#
rY

0

r2 atY

rY
 rb dr 1 2p#

c

rY

 
r2tY dr

 5
1
2

 pr3
Y 
tY 1

2
3

 pc3tY 2
2
3

 pr3
Y 
tY

 
 T 5

2
3

 pc3tY a1 2
1
4

 
r3

Y

c3 b  (3.31)

or, in view of Eq. (3.29),

 
T 5

4
3

 TY a1 2
1
4

 
r3

Y

c3 b (3.32)

where TY is the maximum elastic torque. We note that, as rY 
approaches zero, the torque approaches the limiting value

 
Tp 5

4
3

 TY (3.33)

This value of the torque, which corresponds to a fully plastic defor-
mation (Fig. 3.35d), is called the plastic torque of the shaft consid-
ered. We note that Eq. (3.33) is valid only for a solid circular shaft 
made of an elastoplastic material.
 Since the distribution of strain across the section remains linear 
after the onset of yield, Eq. (3.2) remains valid and can be used to 
express the radius rY of the elastic core in terms of the angle of twist 
f. If f is large enough to cause a plastic deformation, the radius rY 
of the elastic core is obtained by making g equal to the yield strain 
gY in Eq. (3.2) and solving for the corresponding value rY of the 
distance r. We have

 
rY 5

LgY

f
 (3.34)

3.10 Circular Shafts Made of an Elastoplastic 
Material
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188 Torsion Let us denote by fY the angle of twist at the onset of yield, i.e., when 
rY 5 c. Making f 5 fY and rY 5 c in Eq. (3.34), we have

 
c 5

LgY

fY
 (3.35)

Dividing (3.34) by (3.35), member by member, we obtain the follow-
ing relation:†

 
r Y

c
5
fY

f
 (3.36)

 If we carry into Eq. (3.32) the expression obtained for rYyc, we 
express the torque T as a function of the angle of twist f,

 
T 5

4
3

TY a1 2
1
4

 
f3

Y

f3b (3.37)

where TY and fY represent, respectively, the torque and the angle 
of twist at the onset of yield. Note that Eq. (3.37) may be used 
only for values of f larger than fY. For f , fY, the relation 
between T and f is linear and given by Eq. (3.16). Combining 
both equations, we obtain the plot of T against f represented in 
Fig. 3.39. We check that, as f increases indefinitely, T approaches 
the limiting value Tp 5 4

3 
TY corresponding to the case of a fully 

developed plastic zone (Fig. 3.35d). While the value Tp cannot 
actually be reached, we note from Eq. (3.37) that it is rapidly 
approached as f increases. For f 5 2fY, T is within about 3% of 
Tp, and for f 5 3fY within about 1%.
 Since the plot of T against f that we have obtained for an ideal-
ized elastoplastic material (Fig. 3.36) differs greatly from the  shearing-
stress-strain diagram of that material (Fig. 3.34), it is clear that the 
shearing-stress-strain diagram of an actual material cannot be 
obtained directly from a torsion test carried out on a solid circular 
rod made of that material. However, a fairly accurate diagram may 
be obtained from a torsion test if the specimen used incorporates a 
portion consisting of a thin circular tube.‡ Indeed, we may assume 
that the shearing stress will have a constant value t in that portion. 
Equation (3.1) thus reduces to

T 5 rAt

where r denotes the average radius of the tube and A its cross-
sectional area. The shearing stress is thus proportional to the 
torque, and successive values of t can be easily computed from 
the corresponding values of T. On the other hand, the values 
of the shearing strain g may be obtained from Eq. (3.2) and from 
the values of f and L measured on the tubular portion of the 
specimen.

†Equation (3.36) applies to any ductile material with a well-defined yield point, since its 
derivation is independent of the shape of the stress-strain diagram beyond the yield 
point.
‡In order to minimize the possibility of failure by buckling, the specimen should be made 
so that the length of the tubular portion is no longer than its diameter.

0

Y

3  Y

TY

Tp �  4 TY

T

� �Y� 2  Y�

3

Fig. 3.36 Load displacement relation for 
elastoplastic material.
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EXAMPLE 3.08A solid circular shaft, 1.2 m long and 50 mm in diameter, is subjected to 
a 4.60 kN ? m torque at each end (Fig. 3.37). Assuming the shaft to be 
made of an elastoplastic material with a yield strength in shear of 150 MPa 
and a modulus of rigidity of 77 GPa, determine (a) the radius of the elastic 
core, (b) the angle of twist of the shaft.

 (a) Radius of Elastic Core. We first determine the torque TY at 
the onset of yield. Using Eq. (3.28) with tY 5 150 MPa, c 5 25 mm, and

J 5 1
2pc4 5 1

2p125 3 1023 m24 5 614 3 1029 m4

we write

TY 5
JtY

c
5
1614 3 1029 m42 1150 3 106 Pa2

25 3 1023 m
5 3.68 kN ? m

Solving Eq. (3.32) for (rYyc)3 and substituting the values of T and TY, we 
have

 
arY

c
b3

5 4 2
3T
TY

5 4 2
314.60 kN ? m2

3.68 kN ? m
5 0.250

 
rY

c
5 0.630

  
rY 5 0.630125 mm2 5 15.8 mm

 (b) Angle of Twist. We first determine the angle of twist fY at 
the onset of yield from Eq. (3.16):

fY 5
TYL
JG

5
13.68 3 103 N ? m2 11.2 m2
1614 3 1029 m42 177 3 109 Pa2 5 93.4 3 1023 rad

Solving Eq. (3.36) for f and substituting the values obtained for fY and 
rYyc, we write

f 5
fY

rYyc
5

93.4 3 1023 rad
0.630

5 148.3 3 1023 rad

or

f 5 1148.3 3 1023 rad2a 360°
2p rad

b 5 8.50°

1.2 m

50 mm

4.60 kN · m

4.60 kN · m

Fig. 3.37

*3.11 RESIDUAL STRESSES IN CIRCULAR SHAFTS
In the two preceding sections, we saw that a plastic region will develop 
in a shaft subjected to a large enough torque, and that the shearing 
stress t at any given point in the plastic region may be obtained from 
the shearing-stress-strain diagram of Fig. 3.31. If the torque is 
removed, the resulting reduction of stress and strain at the point 
considered will take place along a straight line (Fig. 3.38). As you will 
see further in this section, the final value of the stress will not, in 
general, be zero. There will be a residual stress at most points, and 
that stress may be either positive or negative. We note that, as was 
the case for the normal stress, the shearing stress will keep decreasing 
until it has reached a value equal to its maximum value at C minus 
twice the yield strength of the material.
 Consider again the idealized case of the elastoplastic material 
characterized by the shearing-stress-strain diagram of Fig. 3.34. 

0

Y

C
�

�

�

2  Y

Y�

Fig. 3.38 Unloading of shaft 
with nonlinear stress-strain 
diagram.
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190 Torsion  Assuming that the relation between t and g at any point of the shaft 
remains linear as long as the stress does not decrease by more than 2tY, 
we can use Eq. (3.16) to obtain the angle through which the shaft 
untwists as the torque decreases back to zero. As a result, the unloading 
of the shaft will be represented by a straight line on the T-f diagram 
(Fig. 3.39). We note that the angle of twist does not return to zero after 
the torque has been removed. Indeed, the loading and unloading of the 
shaft result in a permanent deformation characterized by the angle

 fp 5 f 2 f9 (3.38)

where f corresponds to the loading phase and may be obtained from 
T by solving Eq. (3.38), and where f9 corresponds to the unloading 
phase and may be obtained from Eq. (3.16).
 The residual stresses in an elastoplastic material are obtained by 
applying the principle of superposition in a manner similar to that 
described in Sec. 2.20 for an axial loading. We consider, on one hand, the 
stresses due to the application of the given torque T and, on the other, 
the stresses due to the equal and opposite torque which is applied to 
unload the shaft. The first group of stresses reflects the elastoplastic 
behavior of the material during the loading phase (Fig. 3.40a), and the 
second group the linear behavior of the same material during the 
unloading phase (Fig. 3.40b). Adding the two groups of stresses, we 
obtain the distribution of the residual stresses in the shaft (Fig. 3.40c).

0

T

T

TY

�

�
p� � �

Fig. 3.39 Unloading of shaft 
with elastoplastic material.

�

Y

Y

�
Y�

0 0 0

(a) (b) (c)

� � �

� � �c cc

�
Tc
J

�'m

Fig. 3.40 Stress distributions for unloading of shaft with elastoplastic material.

 We note from Fig. 3.40c that some residual stresses have the same 
sense as the original stresses, while others have the opposite sense. This 
was to be expected since, according to Eq. (3.1), the relation

 er1t dA2 5 0 (3.39)

must be verified after the torque has been removed.

EXAMPLE 3.09 For the shaft of Example 3.08 determine (a) the permanent twist, (b) the 
distribution of residual stresses, after the 4.60 kN ? m torque has been 
removed.

 (a) Permanent Twist. We recall from Example 3.08 that the angle 
of twist corresponding to the given torque is f 5 8.508. The angle f9 
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through which the shaft untwists as the torque is removed is obtained 
from Eq. (3.16). Substituting the given data,

 T 5 4.60 3 103 N ? m
 L 5 1.2 m
 G 5 77 3 109 Pa

and the value J 5 614 3 1029 m4 obtained in the solution of Example 3.08, 
we have

 f¿ 5
TL
JG

5
14.60 3 103 N ? m2 11.2 m2
1614 3 1029 m42 177 3 109 Pa2

 5 116.8 3 1023 rad
or

f¿ 5 1116.8 3 1023 rad2  360°
2p rad

5 6.69°

The permanent twist is therefore

fp 5 f 2 f¿ 5 8.50° 2 6.69° 5 1.81°

 (b) Residual Stresses. We recall from Example 3.08 that the 
yield strength is tY 5 150 MPa and that the radius of the elastic core 
corresponding to the given torque is rY 5 15.8 mm. The distribution of 
the stresses in the loaded shaft is thus as shown in Fig. 3.41a.

The distribution of stresses due to the opposite 4.60 kN ? m torque 
required to unload the shaft is linear and as shown in Fig. 3.41b. The 
maximum stress in the distribution of the reverse stresses is obtained from 
Eq. (3.9):

 t¿max 5
Tc
J

5
14.60 3 103 N ? m2 125 3 1023 m2

614 3 1029 m4

 5 187.3 MPa

Superposing the two distributions of stresses, we obtain the residual 
stresses shown in Fig. 3.41c. We check that, even though the reverse 
stresses exceed the yield strength tY, the assumption of a linear distribu-
tion of these stresses is valid, since they do not exceed 2tY.

0 0 0

150

15.8 mm 15.8 mm

25 mm

–187.3

31.6

–37.3

–118.4

(b) (c)

(MPa)� (MPa)� (MPa)�

� � �

(a)

Fig. 3.41
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SOLUTION

 Geometric Properties
The geometric properties of the cross section are

c1 5 1
2 11.5 in.2 5 0.75 in.    c2 5 1

2 12.25 in.2 5 1.125 in.
 J 5 1

2p1c4
2 2 c4

12 5 1
2p 3 11.125 in.24 2 10.75 in.24 4 5 2.02 in4

 a. Onset of Yield. For tmax 5 tY 5 21 ksi, we find

TY 5
tYJ

c2
5
121 ksi2 12.02 in42

1.125 in.

TY 5 37.7 kip ? in. ◀

Making r 5 c2 and g 5 gY in Eq. (3.2) and solving for f, we obtain the 
value of fY:

fY 5
gYL
c2

5
tYL
c2G

5
121 3 103 psi2 160 in.2
11.125 in.2 111.2 3 106 psi2 5 0.100 rad

fY 5 5.738 ◀

 b. Fully Plastic Deformation. When the plastic zone reaches the inner 
surface, the stresses are uniformly distributed as shown. Using Eq. (3.26), 
we write

 Tp 5 2ptY#
c2

c1

 
r2 dr 5 2

3ptY1c3
2 2 c3

12
 5 2

3p121 ksi2 3 11.125 in.23 2 10.75 in.23 4
Tp 5 44.1 kip ? in. ◀

When yield first occurs on the inner surface, the deformation is fully plastic; 
we have from Eq. (3.2):

ff 5
gYL
c1

5
tYL
c1G

5
121 3 103 psi2 160 in.2
10.75 in.2 111.2 3 106 psi2 5 0.150 rad

ff 5 8.598 ◀

For larger angles of twist, the torque remains constant; the T-f diagram of 
the shaft is as shown.

SAMPLE PROBLEM 3.7

Shaft AB is made of a mild steel that is assumed to be elastoplastic with 
G 5 11.2 3 106 psi and tY 5 21 ksi. A torque T is applied and gradually 
increased in magnitude. Determine the magnitude of T and the correspond-
ing angle of twist (a) when yield first occurs, (b) when the deformation has 
become fully plastic.

T´

2.25 in.

1.5 in.

60 in.

B

A

T

21

(ksi)�

�

TY  37.7 kip · in.
Y  21 ksi

Y 5.73

c2  1.125 in.

c1  0.75 in.

�

�

Tp  44.1 kip · in. Y  21 ksi

f 8.59�

TY

Tp

T

Y f� � �
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SOLUTION

Referring to Sample Prob. 3.7, we recall that when the plastic zone first 
reached the inner surface, the applied torque was Tp 5 44.1 kip ? in. and 
the corresponding angle of twist was ff 5 8.598. These values are shown in 
Fig. 1.

 Elastic Unloading. We unload the shaft by applying a 44.1 kip ? in. 
torque in the sense shown in Fig. 2. During this unloading, the behavior of 
the material is linear. Recalling from Sample Prob. 3.7 the values found for 
c1, c2, and J, we obtain the following stresses and angle of twist:

 tmax 5
Tc2

J
5
144.1 kip ? in.2 11.125 in.2

2.02 in4 5 24.56 ksi

 tmin 5 tmax
c1

c2
5 124.56 ksi2  0.75 in.

1.125 in.
5 16.37 ksi

 f¿ 5
TL
JG

5
144.1 3 103 psi2 160 in.2
12.02 in42 111.2 3 106 psi2 5 0.1170 rad 5 6.70°

 Residual Stresses and Permanent Twist. The results of the loading 
(Fig. 1) and the unloading (Fig. 2) are superposed (Fig. 3) to obtain the 
residual stresses and the permanent angle of twist fp.

SAMPLE PROBLEM 3.8

For the shaft of Sample Prob. 3.7, determine the residual stresses and the 
permanent angle of twist after the torque Tp 5 44.1 kip ? in. has been 
removed.

(1) (2) (3)

Tp � 44.1 kip · in.

44.1 kip · in.

44.1 kip · in.

44.1 kip · in.

16.37 ksi

6.70�' 1.89�p24.56 ksi

2  3.56 ksi

1  4.63 ksi

Y  21 ksi

f 8.59�
Tp � 44.1 kip · in.

44.1 kip · in.

� � �� � �
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PROBLEMS
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 3.92 A 30-mm diameter solid rod is made of an elastoplastic material with 
tY 5 3.5 MPa. Knowing that the elastic core of the rod is 25 mm 
in diameter, determine the magnitude of the applied torque T.

 3.93 The solid circular shaft shown is made of a steel that is assumed 
to be elastoplastic with tY 5 21 ksi. Determine the magnitude 
T of the applied torques when the plastic zone is (a) 0.8 in. deep, 
(b) 1.2 in. deep.

 3.94 The solid circular shaft shown is made of a steel that is assumed 
to be elastoplastic with tY 5 145 MPa. Determine the magnitude 
T of the applied torque when the plastic zone is (a) 16 mm deep, 
(b) 24 mm deep.

 3.95 The solid shaft shown is made of a mild steel that is assumed to 
be elastoplastic with G 5 11.2 3 106 psi and tY 5 21 ksi. Deter-
mine the maximum shearing stress and the radius of the elastic 
core caused by the application of a torque of magnitude (a) T 5
100 kip ? in., (b) T 5 140 kip ? in.

 3.96 It is observed that a straightened paper clip can be twisted through 
several revolutions by the application of a torque of approximately 
60 mN ? m. Knowing that the diameter of the wire in the paper 
clip is 0.9 mm, determine the approximate value of the yield stress 
of the steel.

 3.97 The solid shaft shown is made of a mild steel that is assumed to 
be elastoplastic with tY 5 145 MPa. Determine the radius of the 
elastic core caused by the application of a torque equal to 1.1 TY, 
where TY is the magnitude of the torque at the onset of yield.

 3.98 For the solid circular shaft of Prob. 3.95, determine the angle of 
twist caused by the application of a torque of magnitude (a) T 5
80 kip ? in., (b) T 5 130 kip ? in.

 3.99 The solid shaft shown is made of a mild steel that is assumed to 
be elastoplastic with G 5 77.2 GPa and tY 5 145 MPa. Determine 
the angle of twist caused by the application of a torque of magni-
tude (a) T 5 600 N ? m, (b) T 5 1000 N ? m.

c � 1.5 in. 

T

T'

Fig. P3.93

3 in. T

4 ft

Fig. P3.95

T

30 mm

1.2 m

Fig. P3.97

1.2 m

15 mm

B
T

A

Fig. P3.99
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195Problems 3.100 A 3-ft-long solid shaft has a diameter of 2.5 in. and is made of a 
mild steel that is assumed to be elastoplastic with tY 5 21 ksi and 
G 5 11.2 3 106 psi. Determine the torque required to twist the 
shaft through an angle of (a) 2.58, (b) 58.

 3.101 For the solid shaft of Prob. 3.99, determine (a) the magnitude of 
the torque T required to twist the shaft through an angle of 158, 
(b) the radius of the corresponding elastic core.

 3.102 The shaft AB is made of a material that is elastoplastic with tY 5 12 ksi 
and G 5 4.5 3 106 psi. For the loading shown, determine (a) the 
radius of the elastic core of the shaft, (b) the angle of twist at end B.

 3.103 A 1.25-in.-diameter solid circular shaft is made of a material that is 
assumed to be elastoplastic with tY 5 18 ksi and G 5 11.2 3 106 psi. 
For an 8-ft length of the shaft, determine the maximum shearing 
stress and the angle of twist caused by a 7.5-kip ? in. torque.

 3.104 An 18-mm-diameter solid circular shaft is made of a material that 
is assumed to be elastoplastic with tY 5 145 MPa and G 5 77 GPa. 
For an 1.2-m length of the shaft, determine the maximum shearing 
stress and the angle of twist caused by a 200 N ? m-torque.

 3.105 A solid circular rod is made of a material that is assumed to be 
elastoplastic. Denoting by TY and fY, respectively, the torque and 
the angle of twist at the onset of yield, determine the angle of 
twist if the torque is increased to (a) T 5 1.1 TY, (b) T 5 1.25 TY, 
(c) T 5 1.3 TY.

 3.106 The hollow shaft shown is made of steel that is assumed to be elas-
toplastic with tY 5 145 MPa and G 5 77.2 GPa. Determine the 
magnitude T of the torque and the corresponding angle of twist 
(a) at the onset of yield, (b) when the plastic zone is 10 mm deep.

6.4 ft 
B

T

A

� 2560 lb · in.

in.1
2

Fig. P3.102

5 m

25 mm

60 mm

T

T'

Fig. P3.106 

2.5 in.

3 in.

A

B

C

D

E

x
5 in.

T

T'

Fig. P3.108

 3.107 For the shaft of Prob. 3.106, determine (a) angle of twist at which 
the section first becomes fully plastic, (b) the corresponding magni-
tude T of the applied torque. Sketch the T-f curve for the shaft.

 3.108 A steel rod is machined to the shape shown to form a tapered solid 
shaft to which torques of magnitude T 5 75 kip ? in. are applied.
Assuming the steel to be elastoplastic with tY 5 21 ksi and G 5 11.2 
3 106 psi, determine (a) the radius of the elastic core in  portion AB 
of the shaft, (b) the length of portion CD that remains fully elastic.

 3.109 If the torques applied to the tapered shaft of Prob. 3.108 are slowly 
increased, determine (a) the magnitude T of the largest torques 
that can be applied to the shaft, (b) the length of the portion CD 
that remains fully elastic.
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196 Torsion  3.110 A hollow shaft of outer and inner diameters respectively equal to 
0.6 in. and 0.2 in. is fabricated from an aluminum alloy for which the 
stress-strain diagram is given in the diagram shown. Determine the 
torque required to twist a 9-in. length of the shaft through 108.

 3.111 Using the stress-strain diagram shown, determine (a) the torque 
that causes a maximum shearing stress of 15 ksi in a 0.8-in.-diameter 
solid rod, (b) the corresponding angle of twist in a 20-in. length of 
the rod.

 3.112 A 50-mm-diameter cylinder is made of a brass for which the stress-
strain diagram is as shown. Knowing that the angle of twist is 58 in 
a 725-mm length, determine by approximate means the magnitude 
T of torque applied to the shaft.

 3.113 Three points on the nonlinear stress-strain diagram used in Prob. 
3.112 are (0, 0), (0.0015, 55 MPa), and (0.003, 80MPa). By fitting 
the polynomial T 5 A 1 Bg 1 Cg2 through these points, the fol-
lowing approximate relation has been obtained.

  T 5 46.7 3 109g 2 6.67 3 1012g2

  Solve Prob. 3.112 using this relation, Eq. (3.2), and Eq. (3.26).

 3.114 The solid circular drill rod AB is made of a steel that is assumed to 
be elastoplastic with tY 5 22 ksi and G 5 11.2 3 106 psi. Knowing 
that a torque T 5 75 kip ? in. is applied to the rod and then removed, 
determine the maximum residual shearing stress in the rod.

0

4

8

12

16

0.002 0.004 0.006 0.008 0.010

� (ksi)

�

Fig. P3.110 and P3.111

0

20

40

60

80

100

0.001 0.002 0.003

� (MPa)

�

725 mm

d � 50 mm T'

T

Fig. P3.112 

 3.115 In Prob. 3.114, determine the permanent angle of twist of the rod.

 3.116 The solid shaft shown is made of a steel that is assumed to be elas-
toplastic with tY 5 145 MPa and G 5 77.2 GPa. The torque is 
increased in magnitude until the shaft has been twisted through 68; 
the torque is then removed. Determine (a) the magnitude and loca-
tion of the maximum residual shearing stress, (b) the permanent 
angle of twist.

1.2 in.

35 ft

B

A
T

Fig. P3.114

16 mm

0.6 m

B

T

A

Fig. P3.116
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 3.117 After the solid shaft of Prob. 3.116 has been loaded and unloaded 
as described in that problem, a torque T1 of sense opposite to 
the original torque T is applied to the shaft. Assuming no change 
in the value of fY, determine the angle of twist f1 for which 
yield is initiated in this second loading and compare it with the 
angle fY for which the shaft started to yield in the original 
loading.

 3.118 The hollow shaft shown is made of a steel that is assumed to be 
elastoplastic with tY 5 145 MPa and G 5 77.2 GPa. The magni-
tude T of the torques is slowly increased until the plastic zone first 
reaches the inner surface of the shaft; the torques are then removed. 
Determine the magnitude and location of the maximum residual 
shearing stress in the rod.

 3.119 In Prob. 3.118, determine the permanent angle of twist of the rod.

 3.120 A torque T applied to a solid rod made of an elastoplastic material 
is increased until the rod is fully plastic and then removed. 
(a) Show that the distribution of residual shearing stresses is as 
represented in the figure. (b) Determine the magnitude of the 
torque due to the stresses acting on the portion of the rod located 
within a circle of radius c0.

5 m

25 mm

60 mm

T

T'

Fig. P3.118

Y

Y

c

c0

�

�1
3

Fig. P3.120

*3.12 TORSION OF NONCIRCULAR MEMBERS
The formulas obtained in Secs. 3.3 and 3.4 for the distributions of 
strain and stress under a torsional loading apply only to members with 
a circular cross section. Indeed, their derivation was based on the 
assumption that the cross section of the member remained plane and 
undistorted, and we saw in Sec. 3.3 that the validity of this assumption 
depends upon the axisymmetry of the member, i.e., upon the fact 
that its appearance remains the same when it is viewed from a fixed 
position and rotated about its axis through an arbitrary angle.
 A square bar, on the other hand, retains the same appearance 
only when it is rotated through 908 or 1808. Following a line of 
reasoning similar to that used in Sec. 3.3, one could show that the 
diagonals of the square cross section of the bar and the lines joining 
the midpoints of the sides of that section remain straight (Fig. 3.42). 
However, because of the lack of axisymmetry of the bar, any other 
line drawn in its cross section will deform when the bar is twisted, 
and the cross section itself will be warped out of its original 
plane.
 It follows that Eqs. (3.4) and (3.6), which define, respectively, 
the distributions of strain and stress in an elastic circular shaft, cannot 
be used for noncircular members. For example, it would be wrong 
to assume that the shearing stress in the cross section of a square bar 
varies linearly with the distance from the axis of the bar and is, there-
fore, largest at the corners of the cross section. As you will see pres-
ently, the shearing stress is actually zero at these points.

T

T'

Fig. 3.42 Twisting of shaft with 
square cross section.

1973.12 Torsion of Noncircular Members
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198 Torsion  Consider a small cubic element located at a corner of the cross 
section of a square bar in torsion and select coordinate axes parallel 
to the edges of the element (Fig. 3.43a). Since the face of the ele-
ment perpendicular to the y axis is part of the free surface of the 
bar, all stresses on this face must be zero. Referring to Fig. 3.43b, 
we write

 tyx 5 0  tyz 5 0 (3.40)

For the same reason, all stresses on the face of the element perpen-
dicular to the z axis must be zero, and we write

 tzx 5 0  tzy 5 0 (3.41)

It follows from the first of Eqs. (3.40) and the first of Eqs. (3.41) 
that

 txy 5 0  txz 5 0 (3.42)

Thus, both components of the shearing stress on the face of the  element 
perpendicular to the axis of the bar are zero. We conclude that there 
is no shearing stress at the corners of the cross section of the bar.
 By twisting a rubber model of a square bar, one easily verifies 
that no deformations—and, thus, no stresses—occur along the edges 
of the bar, while the largest deformations—and, thus, the largest 
stresses—occur along the center line of each of the faces of the bar 
(Fig. 3.44).

y

x

zy� xy�

xz�

yz�
yx�

zx�

(a)

(b)

z

x
z

y

Fig. 3.43 Corner element.

max�

max� T
T'

Fig. 3.44 Deformation of square bar.

†See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed., McGraw-Hill, New 
York, 1969, sec. 109.

L

a

b

max�
T

T'

Fig. 3.45 Shaft with rectangular cross 
section.

 The determination of the stresses in noncircular members sub-
jected to a torsional loading is beyond the scope of this text. How-
ever, results obtained from the mathematical theory of elasticity for 
straight bars with a uniform rectangular cross section will be indi-
cated here for convenience.† Denoting by L the length of the bar, 
by a and b, respectively, the wider and narrower side of its cross 
section, and by T the magnitude of the torques applied to the bar 
(Fig. 3.45), we find that the maximum shearing stress occurs along 
the center line of the wider face of the bar and is equal to

 
tmax 5

T
c1ab2 (3.43)

The angle of twist, on the other hand, may be expressed as

 
f 5

TL
c2ab3G

 (3.44)
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199The coefficients c1 and c2 depend only upon the ratio ayb and are 
given in Table 3.1 for a number of values of that ratio. Note that 
Eqs. (3.43) and (3.44) are valid only within the elastic range.
 We note from Table 3.1 that for ayb $ 5, the coefficients c1 and 
c2 are equal. It may be shown that for such values of ayb, we have

 c1 5 c2 5 1
3 11 2 0.630bya2  (for ayb % 5 only) (3.45)

 The distribution of shearing stresses in a noncircular member 
may be visualized more easily by using the membrane analogy. A homo-
geneous elastic membrane attached to a fixed frame and subjected to 
a uniform pressure on one of its sides happens to constitute an analog 
of the bar in torsion, i.e., the determination of the deformation of the 
membrane depends upon the solution of the same partial differential 
equation as the determination of the shearing stresses in the bar.† More 
specifically, if Q is a point of the cross section of the bar and Q9 the 
corresponding point of the membrane (Fig. 3.46), the shearing stress 
t at Q will have the same direction as the horizontal tangent to the 
membrane at Q9, and its magnitude will be proportional to the maxi-
mum slope of the membrane at Q9.‡ Furthermore, the applied torque 
will be proportional to the volume between the membrane and the 
plane of the fixed frame. In the case of the membrane of Fig. 3.46, 
which is attached to a rectangular frame, the steepest slope occurs at 
the midpoint N9 of the larger side of the frame. Thus, we verify that 
the maximum shearing stress in a bar of rectangular cross section will 
occur at the midpoint N of the larger side of that section.
 The membrane analogy may be used just as effectively to visu-
alize the shearing stresses in any straight bar of uniform, noncircular 
cross section. In particular, let us consider several thin-walled mem-
bers with the cross sections shown in Fig. 3.47, which are subjected 

TABLE 3.1. Coefficients for 
Rectangular Bars in Torsion

 a/b c1 c2

 1.0 0.208 0.1406
 1.2 0.219 0.1661
 1.5 0.231 0.1958
 2.0 0.246 0.229
 2.5 0.258 0.249
 3.0 0.267 0.263
 4.0 0.282 0.281
 5.0 0.291 0.291
10.0 0.312 0.312
 ` 0.333 0.333

†See ibid. Sec. 107.
‡This is the slope measured in a direction perpendicular to the horizontal tangent at Q9.

N'

Rectangular frame
Tangent of
max. slope

Membrane Horizontal
tangent

N
Q

b

a

a

Q'

�b

T

Fig. 3.46 Application of membrane 
analogy to shaft with rectangular cross 
section.

a

ab
b

a
b

Fig. 3.47 Various thin-walled members.

3.12 Torsion of Noncircular Members
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200 Torsion to the same torque. Using the membrane analogy to help us visualize 
the shearing stresses, we note that, since the same torque is applied 
to each member, the same volume will be located under each mem-
brane, and the maximum slope will be about the same in each case. 
Thus, for a thin-walled member of uniform thickness and arbitrary 
shape, the maximum shearing stress is the same as for a rectangular 
bar with a very large value of ayb and may be determined from Eq. 
(3.43) with c1 5 0.333.†

*3.13 THIN-WALLED HOLLOW SHAFTS
In the preceding section we saw that the determination of stresses 
in noncircular members generally requires the use of advanced 
mathematical methods. In the case of thin-walled hollow noncircular 
shafts, however, a good approximation of the distribution of stresses 
in the shaft can be obtained by a simple computation.
 Consider a hollow cylindrical member of noncircular section 
subjected to a torsional loading (Fig. 3.48).‡ While the thickness t 
of the wall may vary within a transverse section, it will be assumed 
that it remains small compared to the other dimensions of the mem-
ber. We now detach from the member the colored portion of wall 
AB bounded by two transverse planes at a distance Dx from each 
other, and by two longitudinal planes perpendicular to the wall. Since 
the portion AB is in equilibrium, the sum of the forces exerted on 
it in the longitudinal x direction must be zero (Fig. 3.49). But the 
only forces involved are the shearing forces FA and FB exerted on 
the ends of portion AB. We have therefore

oFx 5 0: FA 2 FB 5 0 (3.46)

 We now express FA as the product of the longitudinal shearing 
stress tA on the small face at A and of the area tA Dx of that face:

FA 5 tA(tA Dx)

We note that, while the shearing stress is independent of the x coor-
dinate of the point considered, it may vary across the wall; thus, tA 
represents the average value of the stress computed across the wall. 
Expressing FB in a similar way and substituting for FA and FB into 
(3.46), we write

tA(tA Dx) 2 tB(tB Dx) 5 0

or tAtA 5 tBtB (3.47)

Since A and B were chosen arbitrarily, Eq. (3.47) expresses that the 
product tt of the longitudinal shearing stress t and of the wall thick-
ness t is constant throughout the member. Denoting this product by 
q, we have

 q 5 tt 5 constant (3.48)

†It could also be shown that the angle of twist may be determined from Eq. (3.44) with 
c2 5 0.333.
‡The wall of the member must enclose a single cavity and must not be slit open. In other 
words, the member should be topologically equivalent to a hollow circular shaft.

x

�x

A

t
B

T'

T

Fig. 3.48 Thin-walled hollow shaft.

xtA

tB

FA

FB

�x

A

B

Fig. 3.49 Segment of 
thin-walled hollow shaft.
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201 We now detach a small element from the wall portion AB (Fig. 
3.50). Since the upper and lower faces of this element are part of 
the free surface of the hollow member, the stresses on these faces 
are equal to zero. Recalling relations (1.21) and (1.22) of Sec. 1.12, 
it follows that the stress components indicated on the other faces by 
dashed arrows are also zero, while those represented by solid arrows 
are equal. Thus, the shearing stress at any point of a transverse sec-
tion of the hollow member is parallel to the wall surface (Fig. 3.51) 
and its average value computed across the wall satisfies Eq. (3.48).
 At this point we can note an analogy between the distribution 
of the shearing stresses t in the transverse section of a thin-walled 
hollow shaft and the distribution of the velocities v in water flowing 
through a closed channel of unit depth and variable width. While 
the velocity v of the water varies from point to point on account of 
the variation in the width t of the channel, the rate of flow, q 5 vt, 
remains constant throughout the channel, just as tt in Eq. (3.48). 
Because of this analogy, the product q 5 tt is referred to as the shear 
flow in the wall of the hollow shaft.
 We will now derive a relation between the torque T applied to 
a hollow member and the shear flow q in its wall. We consider a 
small element of the wall section, of length ds (Fig. 3.52). The area 
of the element is dA 5 t ds, and the magnitude of the shearing force 
dF exerted on the element is

 dF 5 t dA 5 t(t ds) 5 (tt) ds 5 q ds (3.49)

The moment dMO of this force about an arbitrary point O within the 
cavity of the member may be obtained by multiplying dF by the per-
pendicular distance p from O to the line of action of dF. We have

 dMO 5 p dF 5 p(q ds) 5 q(p ds) (3.50)

But the product p ds is equal to twice the area dA of the colored 
triangle in Fig. 3.53. We thus have

 dMO 5 q(2dA) (3.51)

Since the integral around the wall section of the left-hand member 
of Eq. (3.51) represents the sum of the moments of all the elemen-
tary shearing forces exerted on the wall section, and since this sum 
is equal to the torque T applied to the hollow member, we have

T 5 A  dMO 5 Aq12dA2
The shear flow q being a constant, we write

 T 5 2qA (3.52)

where A is the area bounded by the center line of the wall cross 
section (Fig. 3.54).
 The shearing stress t at any given point of the wall may be 
expressed in terms of the torque T if we substitute for q from (3.48) 
into (3.52) and solve for t the equation obtained. We have

 
t 5

T
2tA  (3.53)

x

t

�x

�s
�

�

Fig. 3.50 Small element 
from segment.

t

�

Fig. 3.51 Direction of shearing 
stress on cross section.

3.13 Thin-Walled Hollow Shafts

O

pds

t

dF

Fig. 3.52

d

ds

O

p

dF

Fig. 3.53

�

t

Fig. 3.54 Area for shear flow.
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202 Torsion where t is the wall thickness at the point considered and A the area 
bounded by the center line. We recall that t represents the average 
value of the shearing stress across the wall. However, for elastic 
deformations the distribution of stresses across the wall may be 
assumed uniform, and Eq. (3.53) will yield the actual value of the 
shearing stress at a given point of the wall.
 The angle of twist of a thin-walled hollow shaft may be obtained 
by using the method of energy (Chap. 11). Assuming an elastic defor-
mation, it may be shown† that the angle of twist of a thin-walled 
shaft of length L and modulus of rigidity G is

 
f 5

TL
4A 

2G
 
C

 
ds
t

 (3.54)

where the integral is computed along the center line of the wall 
section.

EXAMPLE 3.10 Structural aluminum tubing of 2.5 3 4-in. rectangular cross section was 
fabricated by extrusion. Determine the shearing stress in each of the four 
walls of a portion of such tubing when it is subjected to a torque of 
24 kip ? in., assuming (a) a uniform 0.160-in. wall thickness (Fig. 3.55a), 
(b) that, as a result of defective fabrication, walls AB and AC are 0.120-in. 
thick, and walls BD and CD are 0.200-in. thick (Fig. 3.55b).

 (a) Tubing of Uniform Wall Thickness. The area bounded by 
the center line (Fig. 3.56) is

A 5 (3.84 in.)(2.34 in.) 5 8.986 in2

Since the thickness of each of the four walls is t 5 0.160 in., we find from 
Eq. (3.53) that the shearing stress in each wall is

t 5
T

2tA
5

24 kip ? in.

210.160 in.2 18.986 in22 5 8.35 ksi

3.84 in.

2.34 in. t � 0.160 in.

t � 0.160 in.

D

B

C

A

Fig. 3.56

0.160 in.

4 in.

4 in.

0.160 in.

0.120 in.

0.200 in.

2.5 in.

2.5 in.

D

D

C

C

B

B

A

A

(a)

(b)
Fig. 3.55

†See Prob. 11.70.

 (b) Tubing with Variable Wall Thickness. Observing that the area 
A bounded by the center line is the same as in part a, and substituting 
successively t 5 0.120 in. and t 5 0.200 in. into Eq. (3.53), we have

tAB 5 tAC 5
24 kip ? in.

210.120 in.2 18.986 in22 5 11.13 ksi

and

tBD 5 tCD 5
24 kip ? in.

210.200 in.2 18.986 in22 5 6.68 ksi

We note that the stress in a given wall depends only upon its thickness.
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203

SOLUTION

 1. Bar with Square Cross Section. For a solid bar of rectangular 
cross section the maximum shearing stress is given by Eq. (3.43)

tmax 5
T

c1ab2

where the coefficient c1 is obtained from Table 3.1 in Sec. 3.12. We have

a 5 b 5 0.040 m
  

a
b

5 1.00
  

c1 5 0.208

For tmax 5 tall 5 40 MPa, we have

 
tmax 5

T1

c1ab2  
40 MPa 5

T1

0.20810.040 m23  T1 5 532 N ? m ◀

 2. Bar with Rectangular Cross Section. We now have

a 5 0.064 m  b 5 0.025 m  
a
b

5 2.56

Interpolating in Table 3.1: c1 5 0.259

tmax 5
T2

c1ab2  
40 MPa 5

T2

0.25910.064 m2 10.025 m22 
T2 5 414 N ? m ◀

 3. Square Tube. For a tube of thickness t, the shearing stress is given 
by Eq. (3.53)

t 5
T

2tA

where A is the area bounded by the center line of the cross section. We 
have

A 5 10.034 m2 10.034 m2 5 1.156 3 1023 m2

We substitute t 5 tall 5 40 MPa and t 5 0.006 m and solve for the allow-
able torque:

t 5
T

2tA    
40 MPa 5

T3

210.006 m2 11.156 3 1023 m22  T3 5 555 N ? m ◀

SAMPLE PROBLEM 3.9

Using tall 5 40 MPa, determine the largest torque that may 
be applied to each of the brass bars and to the brass tube 
shown. Note that the two solid bars have the same cross-
sectional area, and that the square bar and square tube have 
the same outside dimensions.

40 mm40 mm

64 mm25 mm

40 mm
40 mm t  6 mm

T3

T2

T1

(1)

(2)

(3)

a

L

b

T

34 mm

34 mm

40 mm

40 mm

t � 6 mm
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PROBLEMS

204

 3.121 Determine the largest torque T that can be applied to each of the 
two brass bars shown and the corresponding angle of twist at B, 
knowing that tall 5 12 ksi and G 5 5.6 3 106 psi.

 3.122 Each of the two brass bars shown is subjected to a torque of mag-
nitude T 5 12.5 kip ? in. Knowing that G 5 5.6 3 106 psi, determine 
for each bar the maximum shearing stress and the angle of twist 
at B.

 3.123 Each of the two aluminum bars shown is subjected to a torque of 
magnitude T 5 1800 N ? m. Knowing that G 5 26 GPa, determine 
for each bar the maximum shearing stress and the angle of twist 
at B.

25 in.

2.4 in.

1.6 in.

1 in.

4 in.

B

B

A

A

T

T

(b)

(a)

Fig. P3.121 and P3.122

 3.124 Determine the largest torque T that can be applied to each of the 
two aluminum bars shown and the corresponding angle of twist at 
B, knowing that tall 5 50 MPa and G 5 26 GPa.

 3.125 Determine the largest allowable square cross section of a steel 
shaft of length 20 ft if the maximum shearing stress is not to exceed 
10 ksi when the shaft is twisted through one complete revolution. 
Use G 5 11.2 3 106 psi.

 3.126 Determine the largest allowable length of a stainless steel shaft of 
3
8 3 3

4-in. cross section if the shearing stress is not to exceed 15 ksi 
when the shaft is twisted through 158. Use G 5 11.2 3 106 psi.

300 mm

38 mm

60 mm

60 mm

95 mm

A

A
B

B

T

T

(a)

(b)

Fig. P3.123 and P3.124
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205Problems 3.127 The torque T causes a rotation of 28 at end B of the stainless steel 
bar shown. Knowing that b 5 20 mm and G 5 75 GPa, determine 
the maximum shearing stress in the bar.

 3.128 The torque T causes a rotation of 0.68 at end B of the aluminum 
bar shown. Knowing that b 5 15 mm and G 5 26 GPa, determine 
the maximum shearing stress in the bar.

 3.129 Two shafts are made of the same material. The cross section of 
shaft A is a square of side b and that of shaft B is a circle of diam-
eter b. Knowing that the shafts are subjected to the same torque, 
determine the ratio tAytB of maximum shearing stresses occurring 
in the shafts.

30 mm
750 mm

B

b
A

T

Fig. P3.127 and P3.128
bb

b

A B
Fig. P3.129

 3.130 Shafts A and B are made of the same material and have the same 
cross-sectional area, but A has a circular cross section and B has a 
square cross section. Determine the ratio of the maximum shearing 
stresses occurring in A and B, respectively, when the two shafts are 
subjected to the same torque (TA 5 TB). Assume both deformations 
to be elastic.

TA

TB

A

B

Fig. P3.130, P3.131 and P3.132

 3.131 Shafts A and B are made of the same material and have the same 
cross-sectional area, but A has a circular cross section and B has a 
square cross section. Determine the ratio of the maximum torques 
TA and TB that can be safely applied to A and B, respectively.

 3.132 Shafts A and B are made of the same material and have the same 
length and cross-sectional area, but A has a circular cross section 
and B has a square cross section. Determine the ratio of the maxi-
mum values of the angles fA and fB through which shafts A and 
B, respectively, can be twisted.

bee80288_ch03_140-219.indd Page 205  9/21/10  9:17:25 PM user-f499bee80288_ch03_140-219.indd Page 205  9/21/10  9:17:25 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03



206 Torsion  3.133 Each of the three aluminum bars shown is to be twisted through 
an angle of 28. Knowing that b 5 30 mm, tall 5 50 MPa, and G 5 
27 GPa, determine the shortest allowable length of each bar.

 3.134 Each of the three steel bars is subjected to a torque as shown. 
Knowing that the allowable shearing stress is 8 ksi and that b 5 
1.4 in., determine the maximum torque T that can be applied to 
each bar.

 3.135 A 36-kip ? in. torque is applied to a 10-ft-long steel angle with an 
L8 3 8 3 1 cross section. From Appendix C we find that the 
thickness of the section is 1 in. and that its area is 15 in2. Knowing 
that G 5 11.2 3 106 psi, determine (a) the maximum shearing 
stress along line a-a, (b) the angle of twist.

(a)

b b

b

1.2b

(b)

(c)

T

T

T

Fig. P3.133 and P3.134

1 in.

a

a

L8 � 8 � 1

8 in.

8 in.

Fig. P3.135

 3.136 A 3-m-long steel angle has an L203 3 152 3 12.7 cross section. From 
Appendix C we find that the thickness of the section is 12.7 mm and 
that its area is 4350 mm2. Knowing that tall 5 50 MPa and that 
G 5 77.2 GPa, and ignoring the effect of stress concentrations, deter-
mine (a) the largest torque T that can be applied, (b) the correspond-
ing angle of twist.

3 m

T
L203 � 152 � 12.7
Fig. P3.136

b b

a

a

W8 � 31
Fig. P3.137

 3.137 An 8-ft-long steel member with a W8 3 31 cross section is sub-
jected to a 5-kip ? in. torque. The properties of the rolled-steel 
section are given in Appendix C. Knowing that G 5 11.2 3 106 psi, 
determine (a) the maximum shearing stress along line a-a, (b) the 
maximum shearing stress along line b-b, (c) the angle of twist. (Hint: 
consider the web and flanges separately and obtain a relation 
between the torques exerted on the web and a flange, respectively, 
by expressing that the resulting angles of twist are equal.)
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207Problems 3.138 A 4-m-long steel member has a W310 3 60 cross section. Knowing 
that G 5 77.2 GPa and that the allowable shearing stress is 40 MPa, 
determine (a) the largest torque T that can be applied, (b) the cor-
responding angle of twist. Refer to Appendix C for the dimensions 
of the cross section and neglect the effect of stress concentrations. 
(See hint of Prob. 3.137.)

 3.139 A torque T 5 750 kN ? m is applied to the hollow shaft shown that 
has a uniform 8-mm wall thickness. Neglecting the effect of stress 
concentrations, determine the shearing stress at points a and b.

T

W310 � 60

Fig. P3.138

90 mm

60�

a

b

Fig. P3.139

 3.140 A torque T 5 5 kN ? m is applied to a hollow shaft having the 
cross section shown. Neglecting the effect of stress concentrations, 
determine the shearing stress at points a and b.

a

b

125 mm
6 mm

10 mm

75 mm

10 mm

6 mm

Fig. P3.140

b
40 mm

2 mm

4 mm

a4 mm

55 mm

55 mm

Fig. P3.141

 3.141 A 90-N ? m torque is applied to a hollow shaft having the cross 
section shown. Neglecting the effect of stress concentrations, 
determine the shearing stress at points a and b.
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208 Torsion  3.142 A 5.6 kN ? m-torque is applied to a hollow shaft having the cross 
section shown. Neglecting the effect of stress concentrations, 
determine the shearing stress at points a and b.

 3.143 A hollow member having the cross section shown is formed from 
sheet metal of 2-mm thickness. Knowing that the shearing stress 
must not exceed 3 MPa, determine the largest torque that can be 
applied to the member.

100 mm

8 mm

5 mm

5 mm

50 mm

a

b

Fig. P3.142

20 mm

20 mm

50 mm

50 mm

Fig. P3.143

 3.144 A hollow brass shaft has the cross section shown. Knowing that the 
shearing stress must not exceed 12 ksi and neglecting the effect of 
stress concentrations, determine the largest torque that can be 
applied to the shaft.

 3.145 and 3.146 A hollow member having the cross section shown 
is to be formed from sheet metal of 0.06-in. thickness. Knowing 
that a 1250 lb ? in.-torque will be applied to the member, deter-
mine the smallest dimension d that can be used if the shearing 
stress is not to exceed 750 psi.

0.5 in.

5 in.

0.2 in.

0.2 in.

0.2 in.

0.2 in.
0.5 in.

6 in.
1.5 in.

1.5 in.

Fig. P3.144

2 in. d

2 in.

2 in.

3 in.

Fig. P3.145

2 in.

2 in.

2 in.

d

3 in.

Fig. P3.146

 3.147 A hollow cylindrical shaft was designed to have a uniform wall 
thickness of 0.1 in. Defective fabrication, however, resulted in the 
shaft having the cross section shown. Knowing that a 15 kip ? in.-
torque is applied to the shaft, determine the shearing stresses at 
points a and b.

1.1 in.

0.12 in.

0.08 in.

2.4 in.

a

b

Fig. P3.147 
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209Problems 3.148 A cooling tube having the cross section shown is formed from a 
sheet of stainless steel of 3-mm thickness. The radii c1 5 150 mm 
and c2 5 100 mm are measured to the center line of the sheet 
metal. Knowing that a torque of magnitude T 5 3 kN ? m is applied 
to the tube, determine (a) the maximum shearing stress in the 
tube, (b) the magnitude of the torque carried by the outer circular 
shell. Neglect the dimension of the small opening where the outer 
and inner shells are connected.

 3.149 A hollow cylindrical shaft of length L, mean radius cm, and uni-
form thickness t is subjected to a torque of magnitude T. Con-
sider, on the one hand, the values of the average shearing stress 
tave and the angle of twist f obtained from the elastic torsion 
formulas developed in Secs. 3.4 and 3.5 and, on the other hand, 
the corresponding values obtained from the formulas developed 
in Sec. 3.13 for thin-walled shafts. (a) Show that the relative error 
introduced by using the thin-walled-shaft formulas rather than the 
elastic torsion formulas is the same for tave and f and that the rela-
tive error is positive and proportional to the ratio tycm. (b) Compare 
the percent error corresponding to values of the ratio tycm of 0.1, 
0.2, and 0.4.

c1

O

c2

Fig. P3.148 

L

t

cm

T

T'

Fig. P3.149

 3.150 Equal torques are applied to thin-walled tubes of the same length 
L, same thickness t, and same radius c. One of the tubes has been 
slit lengthwise as shown. Determine (a) the ratio tbyta of the maxi-
mum shearing stresses in the tubes, (b) the ratio fbyfa of the 
angles of twist of the tubes.

T T

T'T'

(a) (b)
Fig. P3.150

bee80288_ch03_140-219.indd Page 209  9/21/10  3:10:06 PM user-f499bee80288_ch03_140-219.indd Page 209  9/21/10  3:10:06 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03



210

REVIEW AND SUMMARY

This chapter was devoted to the analysis and design of shafts sub-
jected to twisting couples, or torques. Except for the last two sections 
of the chapter, our discussion was limited to circular shafts.
 In a preliminary discussion [Sec. 3.2], it was pointed out that 
the distribution of stresses in the cross section of a circular shaft is 
statically indeterminate. The determination of these stresses, there-
fore, requires a prior analysis of the deformations occurring in the 
shaft [Sec. 3.3]. Having demonstrated that in a circular shaft sub-
jected to torsion, every cross section remains plane and undistorted,
we derived the following expression for the shearing strain in a small 
element with sides parallel and perpendicular to the axis of the shaft 
and at a distance r from that axis:

g 5
rf

L  
(3.2)

where f is the angle of twist for a length L of the shaft (Fig. 3.57). 
Equation (3.2) shows that the shearing strain in a circular shaft var-
ies linearly with the distance from the axis of the shaft. It follows 
that the strain is maximum at the surface of the shaft, where r is 
equal to the radius c of the shaft. We wrote

gmax 5
cf
L
   g 5

r

c
  gmax 

(3.3, 4)

Considering shearing stresses in a circular shaft within the elastic 
range [Sec. 3.4] and recalling Hooke’s law for shearing stress and 
strain, t 5 Gg, we derived the relation

t 5
r

c
  tmax 

(3.6)

which shows that within the elastic range, the shearing stress t in a 
circular shaft also varies linearly with the distance from the axis of 
the shaft. Equating the sum of the moments of the elementary forces 
exerted on any section of the shaft to the magnitude T of the torque 
applied to the shaft, we derived the elastic torsion formulas

tmax 5
Tc
J   

t 5
Tr
J

 (3.9, 10)

where c is the radius of the cross section and J its centroidal polar 
moment of inertia. We noted that J 5 1

2 pc4 for a solid shaft and 
J 5 1

2 p 1c4
2 2 c4

12  for a hollow shaft of inner radius c1 and outer 
radius c2.

Deformations in circular shafts

L

L

(a)

(b)

(c)

L

B

O
�

c

�

B

B

A
�

O

O
A'

A
�

�

Fig. 3.57

Shearing stresses in elastic range
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211 We noted that while the element a in Fig. 3.58 is in pure shear, 
the element c in the same figure is subjected to normal stresses of 
the same magnitude, TcyJ, two of the normal stresses being tensile 
and two compressive. This explains why in a torsion test ductile 
materials, which generally fail in shear, will break along a plane per-
pendicular to the axis of the specimen, while brittle materials, which 
are weaker in tension than in shear, will break along surfaces forming 
a 458 angle with that axis.

In Sec. 3.5, we found that within the elastic range, the angle of twist 
f of a circular shaft is proportional to the torque T applied to it (Fig. 
3.59). Expressing f in radians, we wrote

 
f 5

TL
JG   

(3.16)

where  L 5 length of shaft
 J 5 polar moment of inertia of cross section
 G 5 modulus of rigidity of material

If the shaft is subjected to torques at locations other than its ends 
or consists of several parts of various cross sections and possibly of 
different materials, the angle of twist of the shaft must be expressed 
as the algebraic sum of the angles of twist of its component parts 
[Sample Prob. 3.3]:

 
f 5 a

i

TiLi

JiGi   
(3.17)

 We observed that when both ends of a shaft BE rotate (Fig. 3.60), 
the angle of twist of the shaft is equal to the difference between the 
angles of rotation fB and fE of its ends. We also noted that when 
two shafts AD and BE are connected by gears A and B, the torques 
applied, respectively, by gear A on shaft AD and by gear B on shaft 
BE are directly proportional to the radii rA and rB of the two gears—
since the forces applied on each other by the gear teeth at C are 
equal and opposite. On the other hand, the angles fA and fB through 
which the two gears rotate are inversely proportional to rA and rB—
since the arcs CC9 and CC0 described by the gear teeth are equal 
[Example 3.04 and Sample Prob. 3.4].

If the reactions at the supports of a shaft or the internal torques 
cannot be determined from statics alone, the shaft is said to be stati-
cally indeterminate [Sec. 3.6]. The equilibrium equations obtained 
from free-body diagrams must then be complemented by relations 
involving the deformations of the shaft and obtained from the geom-
etry of the problem [Example 3.05, Sample Prob. 3.5].

In Sec. 3.7, we discussed the design of transmission shafts. We first 
observed that the power P transmitted by a shaft is

 P 5 2p f T (3.20)

where T is the torque exerted at each end of the shaft and f the fre-
quency or speed of rotation of the shaft. The unit of frequency is 

Review and Summary

Angle of twist

Statically indeterminate shafts

Fig. 3.59

L

T
c

�

�max

C''

T

E�

B�

C

Fixed end

B

L

A

D

A�

C'

E

Fig. 3.60

�
Tc
J

max� ��
Tc
J

45	


a

T

T'

c

Fig. 3.58

Transmission shafts
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212 Torsion the revolution per second (s21) or hertz (Hz). If SI units are used, 
T is expressed in newton-meters (N ? m) and P in watts (W). If U.S. 
customary units are used, T is expressed in lb ? ft or lb ? in., and P 
in ft ? lb/s or in ? lb/s; the power may then be converted into horse-
power (hp) through the use of the relation

1 hp 5 550 ft ? lb/s 5 6600 in ? lb/s

To design a shaft to transmit a given power P at a frequency f, you 
should first solve Eq. (3.20) for T. Carrying this value and the maxi-
mum allowable value of t for the material used into the elastic for-
mula (3.9), you will obtain the corresponding value of the parameter 
Jyc, from which the required diameter of the shaft may be calculated 
[Examples 3.06 and 3.07].

In Sec. 3.8, we discussed stress concentrations in circular shafts. 
We saw that the stress concentrations resulting from an abrupt 
change in the diameter of a shaft can be reduced through the use 
of a fillet (Fig. 3.61). The maximum value of the shearing stress at 
the fillet is

 
tmax 5 K

Tc
J

 (3.25)

where the stress TcyJ is computed for the smaller-diameter shaft, and 
where K is a stress-concentration factor. Values of K were plotted in 
Fig. 3.29 on p. 179 against the ratio ryd, where r is the radius of the 
fillet, for various values of Dyd.

Sections 3.9 through 3.11 were devoted to the discussion of plastic 
deformations and residual stresses in circular shafts. We first recalled 
that even when Hooke’s law does not apply, the distribution of strains 
in a circular shaft is always linear [Sec. 3.9]. If the shearing-stress-
strain diagram for the material is known, it is then possible to plot 
the shearing stress t against the distance r from the axis of the shaft 
for any given value of tmax (Fig. 3.62). Summing the contributions to 
the torque of annular elements of radius r and thickness dr, we 
expressed the torque T as

 
T 5 #

c

0

rt12pr dr2 5 2p#
c

0

r2t dr (3.26)

where t is the function of r plotted in Fig. 3.62.

An important value of the torque is the ultimate torque TU which 
causes failure of the shaft. This value can be determined, either 
experimentally, or by carrying out the computations indicated 
above with tmax chosen equal to the ultimate shearing stress tU of 
the material. From TU, and assuming a linear stress distribution 
(Fig 3.63), we determined the corresponding fictitious stress RT 5 
TU cyJ, known as the modulus of rupture in torsion of the given 
material.
 Considering the idealized case of a solid circular shaft made of 
an elastoplastic material [Sec. 3.10], we first noted that, as long as 

Stress concentrations

D

d

A

Fig. 3.61

Plastic deformations
�

O �c

max�

Fig. 3.62

O �

�

U�

c

RT

Fig. 3.63

Modulus of rupture
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213tmax does not exceed the yield strength tY of the material, the stress 
distribution across a section of the shaft is linear (Fig. 3.64a). The 
torque TY corresponding to tmax 5 tY (Fig. 3.64b) is known as the 
maximum elastic torque; for a solid circular shaft of radius c, we 
have

 TY 5 1
2pc3tY (3.29)

Review and Summary

O

(a)

�

�

�max  Y�

c O

(b)

�

�

�max �  Y�

c O

(c)

�

�c

�Y

Y� O

(d)

�

�c

�Y

Fig. 3.64

As the torque increases, a plastic region develops in the shaft around 
an elastic core of radius rY. The torque T corresponding to a given 
value of rY was found to be

 
T 5

4
3

 TY a1 2
1
4

 
r3

Y

c3 b (3.32)

We noted that as rY approaches zero, the torque approaches a limit-
ing value Tp, called the plastic torque of the shaft considered:

 
Tp 5

4
3

 TY (3.33)

 Plotting the torque T against the angle of twist f of a solid 
circular shaft (Fig. 3.65), we obtained the segment of straight line 
0Y defined by Eq. (3.16), followed by a curve approaching the 
straight line T 5 Tp and defined by the equation

 
T 5

4
3

TY a1 2
1
4

 
f3

Y

f3b (3.37)

0

Y

3  Y

TY

Tp �  4 TY

T

� �Y� 2  Y�

3

Fig. 3.65

Solid shaft of elastoplastic material
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214 Torsion Loading a circular shaft beyond the onset of yield and unloading it 
[Sec. 3.11] results in a permanent deformation characterized by the 
angle of twist fp 5 f 2 f9, where f corresponds to the loading 
phase described in the previous paragraph, and f9 to the unloading 
phase represented by a straight line in Fig. 3.66. There will also be 
residual stresses in the shaft, which can be determined by adding the 
maximum stresses reached during the loading phase and the reverse 
stresses corresponding to the unloading phase [Example 3.09].

Permanent deformation.
Residual stresses

0

T

T

TY

�

�
p� � �

Fig. 3.66

The last two sections of the chapter dealt with the torsion of noncir-
cular members. We first recalled that the derivation of the formulas 
for the distribution of strain and stress in circular shafts was based on 
the fact that due to the axisymmetry of these members, cross sections 
remain plane and undistorted. Since this property does not hold for 
noncircular members, such as the square bar of Fig. 3.67, none of the 
formulas derived earlier can be used in their analysis [Sec. 3.12].

It was indicated in Sec. 3.12 that in the case of straight bars with a 
uniform rectangular cross section (Fig. 3.68), the maximum shearing 
stress occurs along the center line of the wider face of the bar. For-
mulas for the maximum shearing stress and the angle of twist were 
given without proof. The membrane analogy for visualizing the dis-
tribution of stresses in a noncircular member was also discussed.

We next analyzed the distribution of stresses in noncircular thin-walled 
hollow shafts [Sec. 3.13]. We saw that the shearing stress is parallel to 
the wall surface and varies both across the wall and along the wall cross 
section. Denoting by t the average value of the shearing stress  computed 
across the wall at a given point of the cross section, and by t the thick-
ness of the wall at that point (Fig. 3.69), we showed that the product 
q 5 tt, called the shear flow, is constant along the cross section.
 Furthermore, denoting by T the torque applied to the hollow 
shaft and by A the area bounded by the center line of the wall cross 
section, we expressed as follows the average shearing stress t at any 
given point of the cross section:

 
t 5

T
2tA

 (3.53)

Torsion of noncircular members

T

T'

Fig. 3.67

Bars of rectangular cross section

L

a

b

max�
T

T'

Fig. 3.68

Thin-walled hollow shafts

�

t

Fig. 3.69
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215

REVIEW PROBLEMS

 3.151 The ship at A has just started to drill for oil on the ocean floor 
at a depth of 5000 ft. Knowing that the top of the 8-in.-diameter 
steel drill pipe (G 5 11.2 3 106 psi) rotates through two complete 
revolutions before the drill bit at B starts to operate, determine 
the maximum shearing stress caused in the pipe by torsion.

3.152 The shafts of the pulley assembly shown are to be designed. Knowing 
that the allowable shearing stress in each shaft is 8.5 ksi, determine 
the smallest allowable diameter of (a) shaft AB, (b) shaft BC.

5000 ft

A

B

Fig. P3.151

6.8 kip · in.

72 in.

C
10.4 kip · in.

3.6 kip · in.

B

48 in.A

Fig. P3.152

 3.153 A steel pipe of 12-in. outer diameter is fabricated from 1
4-in.-thick 

plate by welding along a helix that forms an angle of 458 with a 
plane perpendicular to the axis of the pipe. Knowing that the 
maximum allowable tensile stress in the weld is 12 ksi, determine 
the largest torque that can be applied to the pipe.

12 in.

 in.1
4

45�

T

T'

Fig. P3.153
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216 Torsion  3.154 For the gear train shown, the diameters of the three solid shafts 
are:

dAB 5 20 mm  dCD 5 25 mm  dEF 5 40 mm

  Knowing that for each shaft the allowable shearing stress is 60 MPa, 
determine the largest torque T that can be applied.

 3.155 Two solid steel shafts (G 5 77.2 GPa) are connected to a cou-
pling disk B and to fixed supports at A and C. For the loading 
shown, determine (a) the reaction at each support, (b) the maxi-
mum shearing stress in shaft AB, (c) the maximum shearing stress 
in shaft BC.

 3.156 In the bevel-gear system shown, a 5 18.438. Knowing that the 
allowable shearing stress is 8 ksi in each shaft and that the system 
is in equilibrium, determine the largest torque TA that can be 
applied at A.

B

C

75 mm

A

D

E

F

30 mm

90 mm

T

30 mm

Fig. P3.154

250 mm

38 mm

1.4 kN · m
50 mm

C 
200 mm

B

A

Fig. P3.155

B

C
A

TB

TA

�
�

0.625 in.

0.5 in.

Fig. P3.156
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217Review Problems 3.157 Three solid shafts, each of 3
4-in. diameter, are connected by the 

gears as shown. Knowing that G 5 11.2 3 106 psi, determine (a) the 
angle through which end A of shaft AB rotates, (b) the angle 
through which end E of shaft EF rotates.

A 4 in.6 in.

2 in.

B

3 ft

4 ft

C

E

D

F

r � 1.5 in.

TA � 100 lb · in.

TE � 200 lb · in.

Fig. P3.157

 3.158 The design specifications of a 1.2-m-long solid transmission shaft 
require that the angle of twist of the shaft not exceed 48 when a torque 
of 750 N ? m is applied. Determine the required diameter of the shaft, 
knowing that the shaft is made of a steel with an allowable shearing 
stress of 90 MPa and a modulus of rigidity of 77.2 GPa.

 3.159 The stepped shaft shown rotates at 450 rpm. Knowing that r 5 
0.5 in., determine the maximum power that can be transmitted 
without exceeding an allowable shearing stress of 7500 psi.

 3.160 A 750-N ? m torque is applied to a hollow shaft having the cross 
section shown and a uniform 6-mm wall thickness. Neglecting the 
effect of stress concentrations, determine the shearing stress at 
points a and b.

 3.161 The composite shaft shown is twisted by applying a torque T at end 
A. Knowing that the maximum shearing stress in the steel shell is 
150 MPa, determine the corresponding maximum shearing stress in 
the aluminum core. Use G 5 77.2 GPa for steel and G 5 27 GPa 
for aluminum.

 3.162 Two solid brass rods AB and CD are brazed to a brass sleeve EF. 
Determine the ratio d2yd1 for which the same maximum shearing 
stress occurs in the rods and in the sleeve.

6 in.5 in.

r
Fig. P3.159

30 mm

60 mm

30 mm

a

b

Fig. P3.160

2 m

30 mm

40 mm

Steel

Aluminum

B

A

T

Fig. P3.161

C

B

F

E

D

A

d2

d1

T

T'

Fig. P3.162
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218

COMPUTER PROBLEMS

The following problems are designed to be solved with a computer. Write each 
program so that it can be used with either SI or U.S. customary units.

 3.C1 Shaft AB consists of n homogeneous cylindrical elements, which can 
be solid or hollow. Its end A is fixed, while its end B is free, and it is subjected 
to the loading shown. The length of element i is denoted by Li, its outer 
diameter by ODi, its inner diameter by IDi, its modulus of rigidity by Gi, and 
the torque applied to its right end by Ti, the magnitude Ti of this torque being 
assumed to be positive if Ti is observed as counterclockwise from end B and 
negative otherwise. (Note that IDi 5 0 if the element is solid.) (a) Write a 
computer program that can be used to determine the maximum shearing 
stress in each element, the angle of twist of each element, and the angle of 
twist of the entire shaft. (b) Use this program to solve Probs. 3.35 and 3.38.

Element 1

Element n

B

A

Tn

T1

Fig. P3.C1

 3.C2 The assembly shown consists of n cylindrical shafts, which can be 
solid or hollow, connected by gears and supported by brackets (not shown). 
End A1 of the first shaft is free and is subjected to a torque T0, while end 
Bn of the last shaft is fixed. The length of shaft AiBi is denoted by Li, its 
outer diameter by ODi, its inner diameter by IDi, and its modulus of rigidity 
by Gi. (Note that IDi 5 0 if the element is solid.) The radius of gear Ai is 
denoted by ai, and the radius of gear Bi by bi. (a) Write a computer program 
that can be used to determine the maximum shearing stress in each shaft, 
the angle of twist of each shaft, and the angle through which end Ai rotates. 
(b) Use this program to solve Probs. 3.41 and 3.44.

 3.C3 Shaft AB consists of n homogeneous cylindrical elements, which can 
be solid or hollow. Both of its ends are fixed, and it is subjected to the load-
ing shown. The length of element i is denoted by Li, its outer diameter by 
ODi, its inner diameter by IDi, its modulus of rigidity by Gi, and the torque 
applied to its right end by Ti, the magnitude Ti of this torque being assumed 
to be positive if Ti is observed as counterclockwise from end B and negative 
otherwise. Note that IDi 5 0 if the element is solid and also that T1 5 0. 
Write a computer program that can be used to determine the reactions at A 
and B, the maximum shearing stress in each element, and the angle of twist 
of each element. Use this program (a) to solve Prob. 3.155, (b) to determine 
the maximum shearing stress in the shaft of Example 3.05.

A1
b1

A2

a2

B2

B1

An

an

Bn

bn –1

T0

Fig. P3.C2

Element 1

Element n

A

B
T2

Tn

Fig. P3.C3

bee80288_ch03_140-219.indd Page 218  9/21/10  3:13:00 PM user-f499bee80288_ch03_140-219.indd Page 218  9/21/10  3:13:00 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch03



219Computer Problems 3.C4 The homogeneous, solid cylindrical shaft AB has a length L, a 
diameter d, a modulus of rigidity G, and a yield strength tY. It is subjected 
to a torque T that is gradually increased from zero until the angle of twist 
of the shaft has reached a maximum value fm and then decreased back to 
zero. (a) Write a computer program that, for each of 16 values of fm equally 
spaced over a range extending from 0 to a value 3 times as large as the 
angle of twist at the onset of yield, can be used to determine the maximum 
value Tm of the torque, the radius of the elastic core, the maximum shearing 
stress, the permanent twist, and the residual shearing stress both at the 
surface of the shaft and at the interface of the elastic core and the plastic 
region. (b) Use this program to obtain approximate answers to Probs. 3.114, 
3.115, 3.116.

 3.C5 The exact expression is given in Prob. 3.61 for the angle of twist of 
the solid tapered shaft AB when a torque T is applied as shown. Derive an 
approximate expression for the angle of twist by replacing the tapered shaft 
by n cylindrical shafts of equal length and of radius ri 5 1n 1 i 2 1

2 2(cyn), 
where i 5 1, 2, . . ., n. Using for T, L, G, and c values of your choice, deter-
mine the percentage error in the approximate expression when (a) n 5 4, 
(b) n 5 8, (c) n 5 20, (d) n 5 100.

B

L

A

T
Fig. P3.C4
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2c
B

c

B

L

A

2c

r1L/n

ri

rn

T

A

T

c

Fig. P3.C5

 3.C6 A torque T is applied as shown to the long, hollow, tapered shaft AB 
of uniform thickness t. Derive an approximate expression for the angle of twist 
by replacing the tapered shaft by n cylindrical rings of equal length and of radius 
ri 5 1n 1 i 2 1

2 2(cyn), where i 5 1, 2, . . ., n. Using for T, L, G, c, and t values 
of your choice, determine the percentage error in the approximate expression 
when (a) n 5 4, (b) n 5 8, (c) n 5 20, (d) n 5 100.
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L

A

c

2c
B

T

Fig. P3.C6
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The athlete shown holds the barbell 

with his hands placed at equal 

distances from the weights. This results 

in pure bending in the center portion 

of the bar. The normal stresses and the 

curvature resulting from pure bending 

will be determined in this chapter.
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Chapter 4 Pure Bending
 4.1 Introduction
 4.2 Symmetric Member in Pure 

Bending
 4.3  Deformations in a Symmetric 

Member in Pure Bending
 4.4  Stresses and Deformations in 

the Elastic Range
 4.5  Deformations in a Transverse 

Cross Section
 4.6  Bending of Members Made 

of Several Materials
 4.7 Stress Concentrations
 *4.8 Plastic Deformations
 *4.9  Members Made of Elastoplastic 

Material
 *4.10  Plastic Deformations of Members 

with a Single Plane of Symmetry
 *4.11 Residual Stresses
 4.12  Eccentric Axial Loading in a 

Plane of Symmetry
 4.13 Unsymmetric Bending
 4.14 General Case of Eccentric Axial 

Loading
 *4.15 Bending of Curved Members

4.1 INTRODUCTION
In the preceding chapters you studied how to determine the stresses 
in prismatic members subjected to axial loads or to twisting couples. 
In this chapter and in the following two you will analyze the stresses 
and strains in prismatic members subjected to bending. Bending is 
a major concept used in the design of many machine and structural 
components, such as beams and girders.
 This chapter will be devoted to the analysis of prismatic mem-
bers subjected to equal and opposite couples M and M9 acting in 
the same longitudinal plane. Such members are said to be in pure 
bending. In most of the chapter, the members will be assumed to 
possess a plane of symmetry and the couples M and M9 to be acting 
in that plane (Fig. 4.1).

Fig. 4.1 Member in pure bending.

A

B

M

M'

12 in. 26 in. 12 in.

A B

M' = 960 lb · in.M = 960 lb · in.

C D

C D

RC = 80 lb

80 lb80 lb

RD = 80 lb
(a)

(b)

Fig. 4.2 Beam in which portion CD 
is in pure bending.

Photo 4.1 For the sport buggy 
shown, the center portion of the rear 
axle is in pure bending.

An example of pure bending is provided by the bar of a typical bar-
bell as it is held overhead by a weight lifter as shown in the opening 
photo for this chapter. The bar carries equal weights at equal dis-
tances from the hands of the weight lifter. Because of the symmetry 
of the free-body diagram of the bar (Fig. 4.2a), the reactions at the 
hands must be equal and opposite to the weights. Therefore, as far 
as the middle portion CD of the bar is concerned, the weights and 
the reactions can be replaced by two equal and opposite 960-lb ? in. 
couples (Fig. 4.2b), showing that the middle portion of the bar is in 
pure bending. A similar analysis of the axle of a small sport buggy 
(Photo 4.1) would show that, between the two points where it is 
attached to the frame, the axle is in pure bending.
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223 As interesting as the direct applications of pure bending may 
be, devoting an entire chapter to its study would not be justified if 
it were not for the fact that the results obtained will be used in the 
analysis of other types of loadings as well, such as eccentric axial 
loadings and transverse loadings.
 Photo 4.2 shows a 12-in. steel bar clamp used to exert 150-lb 
forces on two pieces of lumber as they are being glued together. Fig-
ure 4.3a shows the equal and opposite forces exerted by the lumber 
on the clamp. These forces result in an eccentric loading of the straight 
portion of the clamp. In Fig. 4.3b a section CC9 has been passed 
through the clamp and a free-body diagram has been drawn of the 
upper half of the clamp, from which we conclude that the internal 
forces in the section are equivalent to a 150-lb axial tensile force P 
and a 750-lb ? in. couple M. We can thus combine our knowledge of 
the stresses under a centric load and the results of our forthcoming 
analysis of stresses in pure bending to obtain the distribution of stresses 
under an eccentric load. This will be further discussed in Sec. 4.12.

4.1 Introduction

Photo 4.2 Clamp used to glue lumber 
pieces together.

5 in.

C C' C C'
P' � 150 lb

P � 150 lb

P' � 150 lb

M � 750 lb · in.
P � 150 lb

5 in.

(a) (b)

Fig. 4.3 Forces exerted on clamp.

 The study of pure bending will also play an essential role in the 
study of beams, i.e., the study of prismatic members subjected to 
various types of transverse loads. Consider, for instance, a cantilever 
beam AB supporting a concentrated load P at its free end (Fig. 4.4a). 
If we pass a section through C at a distance x from A, we observe 
from the free-body diagram of AC (Fig. 4.4b) that the internal forces 
in the section consist of a force P9 equal and opposite to P and a 
couple M of magnitude M 5 Px. The distribution of normal stresses 
in the section can be obtained from the couple M as if the beam 
were in pure bending. On the other hand, the shearing stresses in 
the section depend on the force P9, and you will learn in Chap. 6 
how to determine their distribution over a given section.
 The first part of the chapter is devoted to the analysis of the 
stresses and deformations caused by pure bending in a homogeneous 
member possessing a plane of symmetry and made of a material fol-
lowing Hooke’s law. In a preliminary discussion of the stresses due 
to bending (Sec. 4.2), the methods of statics will be used to derive 

L 

x 

P

P

B 

C 

C 

A 

A 

P'

M

(a)

(b)

Fig. 4.4 Cantilever beam, not in 
pure bending.
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224 Pure Bending three fundamental equations which must be satisfied by the normal 
stresses in any given cross section of the member. In Sec. 4.3, it will 
be proved that transverse sections remain plane in a member sub-
jected to pure bending, while in Sec. 4.4 formulas will be developed 
that can be used to determine the normal stresses, as well as the 
radius of curvature for that member within the elastic range.
 In Sec. 4.6, you will study the stresses and deformations in com-
posite members made of more than one material, such as reinforced-
concrete beams, which utilize the best features of steel and concrete 
and are extensively used in the construction of buildings and bridges. 
You will learn to draw a transformed section representing the section 
of a member made of a homogeneous material that undergoes the 
same deformations as the composite member under the same load-
ing. The transformed section will be used to find the stresses and 
deformations in the original composite member. Section 4.7 is 
devoted to the determination of the stress concentrations occurring 
at locations where the cross section of a member undergoes a sudden 
change.
 In the next part of the chapter you will study plastic deforma-
tions in bending, i.e., the deformations of members which are made 
of a material which does not follow Hooke’s law and are subjected 
to bending. After a general discussion of the deformations of such 
members (Sec. 4.8), you will investigate the stresses and deforma-
tions in members made of an elastoplastic material (Sec. 4.9). Start-
ing with the maximum elastic moment MY, which corresponds to the 
onset of yield, you will consider the effects of increasingly larger 
moments until the plastic moment Mp is reached, at which time the 
member has yielded fully. You will also learn to determine the per-
manent deformations and residual stresses that result from such load-
ings (Sec. 4.11). It should be noted that during the past half-century 
the elastoplastic property of steel has been widely used to produce 
designs resulting in both improved safety and economy.
 In Sec. 4.12, you will learn to analyze an eccentric axial loading 
in a plane of symmetry, such as the one shown in Fig. 4.4, by super-
posing the stresses due to pure bending and the stresses due to a 
centric axial loading.
 Your study of the bending of prismatic members will conclude 
with the analysis of unsymmetric bending (Sec. 4.13), and the study 
of the general case of eccentric axial loading (Sec. 4.14). The final 
section of the chapter will be devoted to the determination of the 
stresses in curved members (Sec. 4.15).

4.2 SYMMETRIC MEMBER IN PURE BENDING
Consider a prismatic member AB possessing a plane of symmetry 
and subjected to equal and opposite couples M and M9 acting in that 
plane (Fig. 4.5a). We observe that if a section is passed through the 
member AB at some arbitrary point C, the conditions of equilibrium 
of the portion AC of the member require that the internal forces in 
the section be equivalent to the couple M (Fig. 4.5b). Thus, the 
internal forces in any cross section of a symmetric member in pure 
bending are equivalent to a couple. The moment M of that couple 

A

C

M

M'

(b)

Fig. 4.5 Member in pure bending.

A

B
C

M

M'

(a)
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225is referred to as the bending moment in the section. Following the 
usual convention, a positive sign will be assigned to M when the 
member is bent as shown in Fig. 4.5a, i.e., when the concavity of 
the beam faces upward, and a negative sign otherwise.
 Denoting by sx the normal stress at a given point of the cross 
section and by txy and txz the components of the shearing stress, we 
express that the system of the elementary internal forces exerted on 
the section is equivalent to the couple M (Fig. 4.6).

x

z

y 

M

x
z

z
y

y 

xydA�

xzdA�

xdA�

=

Fig. 4.6

 We recall from statics that a couple M actually consists of two 
equal and opposite forces. The sum of the components of these 
forces in any direction is therefore equal to zero. Moreover, the 
moment of the couple is the same about any axis perpendicular to 
its plane, and is zero about any axis contained in that plane. Selecting 
arbitrarily the z axis as shown in Fig. 4.6, we express the equivalence 
of the elementary internal forces and of the couple M by writing that 
the sums of the components and of the moments of the elementary 
forces are equal to the corresponding components and moments of 
the couple M:

 x components: esx dA 5 0 (4.1)

 moments about y axis: ezsx dA 5 0 (4.2)

 moments about z axis: e(2ysx dA) 5 M (4.3)

Three additional equations could be obtained by setting equal to zero 
the sums of the y components, z components, and moments about 
the x axis, but these equations would involve only the components 
of the shearing stress and, as you will see in the next section, the 
components of the shearing stress are both equal to zero.
 Two remarks should be made at this point: (1) The minus sign 
in Eq. (4.3) is due to the fact that a tensile stress (sx . 0) leads to 
a negative moment (clockwise) of the normal force sx dA about the 
z axis. (2) Equation (4.2) could have been anticipated, since the 
application of couples in the plane of symmetry of member AB will 
result in a distribution of normal stresses that is symmetric about the 
y axis.
 Once more, we note that the actual distribution of stresses in 
a given cross section cannot be determined from statics alone. It is 
statically indeterminate and may be obtained only by analyzing the 
deformations produced in the member.

4.2 Symmetric Member in Pure Bending
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226 Pure Bending 4.3  DEFORMATIONS IN A SYMMETRIC MEMBER 
IN PURE BENDING

Let us now analyze the deformations of a prismatic member possess-
ing a plane of symmetry and subjected at its ends to equal and oppo-
site couples M and M9 acting in the plane of symmetry. The member 
will bend under the action of the couples, but will remain symmetric 
with respect to that plane (Fig. 4.7). Moreover, since the bending 
moment M is the same in any cross section, the member will bend 
uniformly. Thus, the line AB along which the upper face of the mem-
ber intersects the plane of the couples will have a constant curvature. 
In other words, the line AB, which was originally a straight line, will 
be transformed into a circle of center C, and so will the line A9B9 
(not shown in the figure) along which the lower face of the member 
intersects the plane of symmetry. We also note that the line AB will 
decrease in length when the member is bent as shown in the figure, 
i.e., when M . 0, while A9B9 will become longer.

C

D

A
B

M M

B 

�

�

Fig. 4.7 Deformation of member in 
pure bending.

 Next we will prove that any cross section perpendicular to the 
axis of the member remains plane, and that the plane of the section 
passes through C. If this were not the case, we could find a point E 
of the original section through D (Fig. 4.8a) which, after the member 
has been bent, would not lie in the plane perpendicular to the plane 
of symmetry that contains line CD (Fig. 4.8b). But, because of the 
symmetry of the member, there would be another point E9 that would 
be transformed exactly in the same way. Let us assume that, after the 
beam has been bent, both points would be located to the left of the 
plane defined by CD, as shown in Fig. 4.8b. Since the bending moment 
M is the same throughout the member, a similar situation would pre-
vail in any other cross section, and the points corresponding to E and 
E9 would also move to the left. Thus, an observer at A would conclude 
that the loading causes the points E and E9 in the various cross sec-
tions to move forward (toward the observer). But an observer at B, to 
whom the loading looks the same, and who observes the points E and 
E9 in the same positions (except that they are now inverted) would 
reach the opposite conclusion. This inconsistency leads us to conclude 
that E and E9 will lie in the plane defined by CD and, therefore, that 
the section remains plane and passes through C. We should note, 

D

D

E
A B

A B

M' M

E�
E E�

C

EE�

(a)

(b)

Fig. 4.8
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227however, that this discussion does not rule out the possibility of defor-
mations within the plane of the section (see Sec. 4.5).
 Suppose that the member is divided into a large number of 
small cubic elements with faces respectively parallel to the three coor-
dinate planes. The property we have established requires that these 
elements be transformed as shown in Fig. 4.9 when the member is 
subjected to the couples M and M9. Since all the faces represented 
in the two projections of Fig. 4.9 are at 908 to each other, we conclude 
that gxy 5 gzx 5 0 and, thus, that txy 5 txz 5 0. Regarding the three 
stress components that we have not yet discussed, namely, sy, sz, and 
tyz, we note that they must be zero on the surface of the member. 
Since, on the other hand, the deformations involved do not require 
any interaction between the elements of a given transverse cross sec-
tion, we can assume that these three stress components are equal to 
zero throughout the member. This assumption is verified, both from 
experimental evidence and from the theory of elasticity, for slender 
members undergoing small deformations.† We conclude that the only 
nonzero stress component exerted on any of the small cubic elements 
considered here is the normal component sx. Thus, at any point of a 
slender member in pure bending, we have a state of uniaxial stress. 
Recalling that, for M . 0, lines AB and A9B9 are observed, respec-
tively, to decrease and increase in length, we note that the strain Px 
and the stress sx are negative in the upper portion of the member 
(compression) and positive in the lower portion (tension).
 It follows from the above that there must exist a surface parallel 
to the upper and lower faces of the member, where Px and sx are zero. 
This surface is called the neutral surface. The neutral surface intersects 
the plane of symmetry along an arc of circle DE (Fig. 4.10a), and it 
intersects a transverse section along a straight line called the neutral 
axis of the section (Fig. 4.10b). The origin of coordinates will now be 
selected on the neutral surface, rather than on the lower face of the 
member as done earlier, so that the distance from any point to the 
neutral surface will be measured by its coordinate y.

†Also see Prob. 4.32.
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Fig. 4.10 Deformation with respect to neutral axis.
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Fig. 4.9 Member subject to pure 
bending.

4.3 Deformations in a Symmetric
Member in Pure Bending
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228 Pure Bending  Denoting by r the radius of arc DE (Fig. 4.10a), by u the cen-
tral angle corresponding to DE, and observing that the length of DE 
is equal to the length L of the undeformed member, we write

 L 5 ru (4.4)

Considering now the arc JK located at a distance y above the neutral 
surface, we note that its length L9 is

 L9 5 (r 2 y)u (4.5)

Since the original length of arc JK was equal to L, the deformation 
of JK is
 d 5 L9 2 L (4.6)

or, if we substitute from (4.4) and (4.5) into (4.6),

 d 5 (r 2 y)u 2 ru 5 2yu (4.7)

The longitudinal strain Px in the elements of JK is obtained by divid-
ing d by the original length L of JK. We write

Px 5
d

L
5

2yu
ru

or

 
Px 5 2  

y
r  

(4.8)

The minus sign is due to the fact that we have assumed the bending 
moment to be positive and, thus, the beam to be concave upward.
 Because of the requirement that transverse sections remain 
plane, identical deformations will occur in all planes parallel to the 
plane of symmetry. Thus the value of the strain given by Eq. (4.8) is 
valid anywhere, and we conclude that the longitudinal normal strain 
Px varies linearly with the distance y from the neutral surface.
 The strain Px reaches its maximum absolute value when y itself is 
largest. Denoting by c the largest distance from the neutral surface (which 
corresponds to either the upper or the lower surface of the member), 
and by Pm the maximum absolute value of the strain, we have

 
Pm 5

c
r  

(4.9)

Solving (4.9) for r and substituting the value obtained into (4.8), we 
can also write

 
Px 5 2 

y
c

 Pm 
(4.10)

 We conclude our analysis of the deformations of a member in 
pure bending by observing that we are still unable to compute the strain 
or stress at a given point of the member, since we have not yet located 
the neutral surface in the member. In order to locate this surface, we 
must first specify the stress-strain relation of the material used.†

†Let us note, however, that if the member possesses both a vertical and a horizontal plane 
of symmetry (e.g., a member with a rectangular cross section), and if the stress-strain 
curve is the same in tension and compression, the neutral surface will coincide with the 
plane of symmetry (cf. Sec. 4.8).
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2294.4  STRESSES AND DEFORMATIONS IN THE
ELASTIC RANGE

We now consider the case when the bending moment M is such that 
the normal stresses in the member remain below the yield strength sY. 
This means that, for all practical purposes, the stresses in the member 
will remain below the proportional limit and the elastic limit as well. 
There will be no permanent deformation, and Hooke’s law for uniaxial 
stress applies. Assuming the material to be homogeneous, and denoting 
by E its modulus of elasticity, we have in the longitudinal x direction

 sx 5 EPx (4.11)

 Recalling Eq. (4.10), and multiplying both members of that 
equation by E, we write

EPx 5 2 
y
c
1EPm2

or, using (4.11),

 
sx 5 2 

y
c

 sm 
(4.12)

where sm denotes the maximum absolute value of the stress. This 
result shows that, in the elastic range, the normal stress varies lin-
early with the distance from the neutral surface (Fig. 4.11).
 It should be noted that, at this point, we do not know the loca-
tion of the neutral surface, nor the maximum value sm of the stress. 
Both can be found if we recall the relations (4.1) and (4.3) which 
were obtained earlier from statics. Substituting first for sx from (4.12) 
into (4.1), we write

#sx  dA 5 #a2  

y
c

  smb dA 5 2  

sm

c
 #y dA 5 0

from which it follows that

 #y dA 5 0 (4.13)

This equation shows that the first moment of the cross section about 
its neutral axis must be zero.† In other words, for a member subjected 
to pure bending, and as long as the stresses remain in the elastic 
range, the neutral axis passes through the centroid of the section.
 We now recall Eq. (4.3), which was derived in Sec. 4.2 with 
respect to an arbitrary horizontal z axis,

 # 12ysx dA 2 5 M (4.3)

Specifying that the z axis should coincide with the neutral axis of the 
cross section, we substitute for sx from (4.12) into (4.3) and write

# 12y 2 a2
y
c

 smb
 
 dA 5 M

4.4 Stresses and Deformations in the
Elastic Range

†See Appendix A for a discussion of the moments of areas.

y

c

m�

x�
Neutral surface

Fig. 4.11 Bending stresses.
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230 Pure Bending or

 
sm

c
 #y2

 dA 5 M (4.14)

Recalling that in the case of pure bending the neutral axis passes 
through the centroid of the cross section, we note that I is the 
moment of inertia, or second moment, of the cross section with 
respect to a centroidal axis perpendicular to the plane of the couple 
M. Solving (4.14) for sm, we write therefore†

 sm 5
Mc
I

 (4.15)

 Substituting for sm from (4.15) into (4.12), we obtain the nor-
mal stress sx at any distance y from the neutral axis:

 sx 5 2  
My

I
 (4.16)

Equations (4.15) and (4.16) are called the elastic flexure formulas, 
and the normal stress sx caused by the bending or “flexing” of the 
member is often referred to as the flexural stress. We verify that the 
stress is compressive (sx , 0) above the neutral axis (y . 0) when 
the bending moment M is positive, and tensile (sx . 0) when M is 
negative.
 Returning to Eq. (4.15), we note that the ratio Iyc depends only 
upon the geometry of the cross section. This ratio is called the elastic 
section modulus and is denoted by S. We have

 Elastic section modulus 5 S 5
I
c
 (4.17)

Substituting S for Iyc into Eq. (4.15), we write this equation in the 
alternative form

 sm 5
M
S

 (4.18)

Since the maximum stress sm is inversely proportional to the elastic 
section modulus S, it is clear that beams should be designed with as 
large a value of S as practicable. For example, in the case of a wooden 
beam with a rectangular cross section of width b and depth h, we 
have

 
S 5

I
c

5
1

12 bh3

hy2
5 1

6 bh2 5 1
6 Ah (4.19)

†We recall that the bending moment was assumed to be positive. If the bending moment 
is negative, M should be replaced in Eq. (4.15) by its absolute value |M|.
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231where A is the cross-sectional area of the beam. This shows that, of 
two beams with the same cross-sectional area A (Fig. 4.12), the beam 
with the larger depth h will have the larger section modulus and, 
thus, will be the more effective in resisting bending.†
 In the case of structural steel, American standard beams 
(S-beams) and wide-flange beams (W-beams), Photo 4.3, are preferred 

4.4 Stresses and Deformations in the
Elastic Range

to other shapes because a large portion of their cross section is 
located far from the neutral axis (Fig. 4.13). Thus, for a given cross-
sectional area and a given depth, their design provides large values 

Photo 4.3 Wide-flange steel beams form the frame 
of many buildings.

c

c

(a) S-beam (b) W-beam

N. A.

Fig. 4.13 Steel beam cross sections.

†However, large values of the ratio hyb could result in lateral instability of the beam.

h � 6 in. h � 8 in.

b � 4 in.
b � 3 in.

A � 24 in2

Fig. 4.12 Wood beam cross sections.
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232

A steel bar of 0.8 3 2.5-in. rectangular cross section is subjected to two 
equal and opposite couples acting in the vertical plane of symmetry of 
the bar (Fig. 4.14). Determine the value of the bending moment M that 
causes the bar to yield. Assume sY 5 36 ksi.

Since the neutral axis must pass through the centroid C of the cross 
section, we have c 5 1.25 in. (Fig. 4.15). On the other hand, the centroi-
dal moment of inertia of the rectangular cross section is

I 5 1
12 bh3 5 1

12  10.8 in.2 12.5 in.23 5 1.042 in4

Solving Eq. (4.15) for M, and substituting the above data, we have

 M 5
I
c
sm 5

1.042 in4

1.25 in.
136 ksi2

 M 5 30 kip ? in.

EXAMPLE 4.01

M' M

0.8 in.

2.5 in.

Fig. 4.14

1.25 in.

0.8 in.

N. A.

C
2.5 in.

Fig. 4.15

of I and, consequently, of S. Values of the elastic section modulus of 
commonly manufactured beams can be obtained from tables listing 
the various geometric properties of such beams. To determine the 
maximum stress sm in a given section of a standard beam, the engi-
neer needs only to read the value of the elastic section modulus S 
in a table, and divide the bending moment M in the section by S.
 The deformation of the member caused by the bending moment 
M is measured by the curvature of the neutral surface. The curvature 
is defined as the reciprocal of the radius of curvature r, and can be 
obtained by solving Eq. (4.9) for 1yr:

 
1
r

5
Pm

c
 (4.20)

But, in the elastic range, we have Pm 5 smyE. Substituting for Pm 
into (4.20), and recalling (4.15), we write

1
r

5
sm

Ec
5

1
Ec

 
Mc
I

or

 
1
r

5
M
EI

 (4.21)

bee80288_ch04_220-313.indd Page 232  10/27/10  5:46:11 PM user-f499bee80288_ch04_220-313.indd Page 232  10/27/10  5:46:11 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch04/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch04



4.5  DEFORMATIONS IN A TRANSVERSE
CROSS SECTION

When we proved in Sec. 4.3 that the transverse cross section of a 
member in pure bending remains plane, we did not rule out the 
possibility of deformations within the plane of the section. That such 
deformations will exist is evident, if we recall from Sec. 2.11 that 
elements in a state of uniaxial stress, sx ? 0, sy 5 sz 5 0, are 
deformed in the transverse y and z directions, as well as in the axial 
x direction. The normal strains Py and Pz depend upon Poisson’s ratio 
n for the material used and are expressed as

Py 5 2nPx  Pz 5 2nPx

or, recalling Eq. (4.8),

 
Py 5

ny
r   

Pz 5
ny
r

 (4.22)

r � 12 mm

Fig. 4.16

N. A.
c

y
C

Fig. 4.17

EXAMPLE 4.02An aluminum rod with a semicircular cross section of radius r 5 12 mm 
(Fig. 4.16) is bent into the shape of a circular arc of mean radius r 5 2.5 m. 
Knowing that the flat face of the rod is turned toward the center of curvature 
of the arc, determine the maximum tensile and compressive stress in the 
rod. Use E 5 70 GPa.

We could use Eq. (4.21) to determine the bending moment M cor-
responding to the given radius of curvature r, and then Eq. (4.15) to 
determine sm. However, it is simpler to use Eq. (4.9) to determine Pm, 
and Hooke’s law to obtain sm.

The ordinate y of the centroid C of the semicircular cross section is

y 5
4r
3p

5
4 112 mm 2

3p
5 5.093 mm

The neutral axis passes through C (Fig. 4.17) and the distance c to the 
point of the cross section farthest away from the neutral axis is

c 5 r 2 y 5 12 mm 2 5.093 mm 5 6.907 mm

Using Eq. (4.9), we write

Pm 5
c
r

5
6.907 3 1023 m

2.5 m
5 2.763 3 1023

and, applying Hooke’s law,

sm 5 EPm 5 170 3 109 Pa2 12.763 3 10232 5 193.4 MPa

Since this side of the rod faces away from the center of curvature, the 
stress obtained is a tensile stress. The maximum compressive stress occurs 
on the flat side of the rod. Using the fact that the stress is proportional 
to the distance from the neutral axis, we write

 scomp 5 2 
y

c
 sm 5 2 

5.093 mm
6.907 mm

1193.4 MPa2
 5 2142.6 MPa

233
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234 Pure Bending  The relations we have obtained show that the elements 
located above the neutral surface (y . 0) will expand in both the 
y and z directions, while the elements located below the neutral 
surface (y , 0) will contract. In the case of a member of rectan-
gular cross section, the expansion and contraction of the various 
elements in the vertical direction will compensate, and no change 
in the vertical dimension of the cross section will be observed. As 
far as the deformations in the horizontal transverse z direction are 
concerned, however, the expansion of the elements located above 
the neutral surface and the corresponding contraction of the ele-
ments located below that surface will result in the various hori-
zontal lines in the section being bent into arcs of circle (Fig. 4.18). 
The situation observed here is similar to that observed earlier in 
a longitudinal cross section. Comparing the second of Eqs. (4.22) 
with Eq. (4.8), we conclude that the neutral axis of the transverse 
section will be bent into a circle of radius r9 5 ryn. The center 
C9 of this circle is located below the neutral surface (assuming M 
. 0), i.e., on the side opposite to the center of curvature C of the 
member. The reciprocal of the radius of curvature r9 represents 
the curvature of the transverse cross section and is called the anti-
clastic curvature. We have

 
Anticlastic curvature 5

1
r¿

5
n

r
 (4.23)

 In our discussion of the deformations of a symmetric member 
in pure bending, in this section and in the preceding ones, we have 
ignored the manner in which the couples M and M9 were actually 
applied to the member. If all transverse sections of the member, 
from one end to the other, are to remain plane and free of shearing 
stresses, we must make sure that the couples are applied in such a 
way that the ends of the member themselves remain plane and free 
of shearing stresses. This can be accomplished by applying the cou-
ples M and M9 to the member through the use of rigid and smooth 
plates (Fig. 4.19). The elementary forces exerted by the plates on 
the member will be normal to the end sections, and these sections, 
while remaining plane, will be free to deform as described earlier in 
this section.
 We should note that these loading conditions cannot be actually 
realized, since they require each plate to exert tensile forces on the 
corresponding end section below its neutral axis, while allowing the 
section to freely deform in its own plane. The fact that the rigid-end-
plates model of Fig. 4.19 cannot be physically realized, however, does 
not detract from its importance, which is to allow us to visualize the 
loading conditions corresponding to the relations derived in the pre-
ceding sections. Actual loading conditions may differ appreciably 
from this idealized model. By virtue of Saint-Venant’s principle, how-
ever, the relations obtained can be used to compute stresses in engi-
neering situations, as long as the section considered is not too close 
to the points where the couples are applied.

Neutral
surface

x
z

Neutral axis of
transverse section

C�

C

y

�
�

� �   /�� �

Fig. 4.18 Deformation of transverse 
cross section.

MM'

Fig. 4.19 Deformation of longitudinal 
segment.

bee80288_ch04_220-313.indd Page 234  10/27/10  5:46:13 PM user-f499bee80288_ch04_220-313.indd Page 234  10/27/10  5:46:13 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch04/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch04



235

SAMPLE PROBLEM 4.1

The rectangular tube shown is extruded from an aluminum alloy for which 
sY 5 40 ksi, sU 5 60 ksi, and E 5 10.6 3 106 psi. Neglecting the effect 
of fillets, determine (a) the bending moment M for which the factor of 
safety will be 3.00, (b) the corresponding radius of curvature of the tube.

5 in. C

t

t

t

t � 0.25 in.
3.25 in.

t

x

M

x

SOLUTION

 Moment of Inertia. Considering the cross-sectional area of the tube 
as the difference between the two rectangles shown and recalling the for-
mula for the centroidal moment of inertia of a rectangle, we write

I 5 1
12 13.25 2 15 23 2 1

12 12.75 2 14.5 23    I 5 12.97 in4

 Allowable Stress. For a factor of safety of 3.00 and an ultimate stress 
of 60 ksi, we have

sall 5
sU

F.S.
5

60 ksi
3.00

5 20 ksi

Since sall , sY, the tube remains in the elastic range and we can apply the 
results of Sec. 4.4.

 a. Bending Moment. With c 5 1
2 15 in.2 5 2.5 in., we write

 
sall 5

Mc
I
  M 5

I
c
sall 5

12.97 in4

2.5 in.
 120 ksi2 M 5 103.8 kip ? in. ◀

 b. Radius of Curvature.  Recalling that E 5 10.6 3 106 psi, we substi-
tute this value and the values obtained for I and M into Eq. (4.21) and find

1
r

5
M
EI

5
103.8 3 103 lb ? in.

110.6 3 106 psi2 112.97 in42 5 0.755 3 1023 in21

 r 5 1325 in. r 5 110.4 ft ◀

 Alternative Solution. Since we know that the maximum stress is sall 
5 20 ksi, we can determine the maximum strain Pm and then use Eq. (4.9),

Pm 5
sall

E
5

20 ksi
10.6 3 106 psi

5 1.887 3 1023 in./in.

Pm 5
c
r    r 5

c
Pm

5
2.5 in.

1.887 3 1023 in./in.
 r 5 1325 in. r 5 110.4 ft ◀

C

3.25 in.

5 in. 4.5 in.x

2.75 in.

= −

O

M

c

c

�
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SAMPLE PROBLEM 4.2

A cast-iron machine part is acted upon by the 3 kN ? m couple shown. 
Knowing that E 5 165 GPa and neglecting the effect of fillets, determine 
(a) the maximum tensile and compressive stresses in the casting, (b) the 
radius of curvature of the casting.

90 mm

30 mm

20 mm

40 mm M � 3 kN · m

SOLUTION

 Centroid. We divide the T-shaped cross section into the two rectan-
gles shown and write

 Area, mm2 y, mm yA, mm3

1 1202 1902 5 1800 50         90 3 103 Y©A 5 ©yA
2 1402 1302 5 1200 20         24 3 103 Y 130002 5 114 3 106

     ©A 5 3000  ©yA 5 114 3 103 Y 5 38 mm

 Centroidal Moment of Inertia.  The parallel-axis theorem is used to 
determine the moment of inertia of each rectangle with respect to the axis 
x9 that passes through the centroid of the composite section. Adding the 
moments of inertia of the rectangles, we write

 Ix¿ 5 © 1I 1 Ad 
22 5 © 1 1

12 bh3 1 Ad 
22

 5 1
12 190 2 120 23 1 190 3 20 2 112 22 1 1

12 130 2 140 23 1 130 3 40 2 118 22
 5 868 3 103 mm4

 I 5 868 3 1029 m4

 a. Maximum Tensile Stress.  Since the applied couple bends the cast-
ing downward, the center of curvature is located below the cross section. 
The maximum tensile stress occurs at point A, which is farthest from the 
center of curvature.

 
sA 5

McA

I
5
13 kN ? m2 10.022 m2

868 3 1029 m4   sA 5 176.0 MPa  b

 Maximum Compressive Stress.  This occurs at point B; we have

 
sB 5 2 

McB

I
5 2 

13 kN ? m2 10.038 m2
868 3 1029 m4   sB 5 2131.3 MPa  b

 b. Radius of Curvature.  From Eq. (4.21), we have

 
1
r

5
M
EI

5
3 kN ? m

1165 GPa2 1868 3 1029 m42
  5 20.95 3 1023 m21   r 5 47.7 m  b

90 mm

y1 � 50 mm

y2 � 20 mm

40 mm
2

1

30 mm

20 mm

�

x'

x

C

12 mm

18 mm

22 mm

� 38 mm�

x'

2

1
C

cA � 0.022 m
A

B�

C

Center of curvature

cB � 0.038 m
x'

bee80288_ch04_220-313.indd Page 236  11/11/10  3:03:10 PM user-f499bee80288_ch04_220-313.indd Page 236  11/11/10  3:03:10 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch04/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch04



PROBLEMS

237

 4.1 and 4.2 Knowing that the couple shown acts in a vertical plane, 
determine the stress at (a) point A, (b) point B.

2 in.

2 in.

1.5 in.

2 in.

2 in.2 in.

A

B

M � 25 kip · in.

Fig. P4.1

M � 15 kN · m

Dimensions in mm

B

20 40 20

20

20

80

A

Fig. P4.2 4.3 Using an allowable stress of 16 ksi, determine the largest couple 
that can be applied to each pipe.

 4.4 A nylon spacing bar has the cross section shown. Knowing that the 
allowable stress for the grade of nylon used is 24 MPa, determine 
the largest couple Mz that can be applied to the bar.

M2

M1

0.1 in.

0.2 in.

0.5 in.

0.5 in.

(a)

(b)

Fig. P4.3

Mz

100 mm

80 mmz C

r � 25 mm

y

Fig. P4.4

 4.5 A beam of the cross section shown is extruded from an aluminum 
alloy for which sY 5 250 MPa and sU 5 450 MPa. Using a factor 
of safety of 3.00, determine the largest couple that can be applied 
to the beam when it is bent about the z axis.

24 mm

80 mm

24 mm

16 mm

z

y

CMz

Fig. P4.5

 4.6 Solve Prob. 4.5, assuming that the beam is bent about the y axis.
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238 Pure Bending  4.7 and 4.8 Two W4 3 13 rolled sections are welded together as 
shown. Knowing that for the steel alloy used, sY 5 36 ksi and sU 5 
58 ksi and using a factor of safety of 3.0, determine the largest couple 
that can be applied when the assembly is bent about the z axis.

y

z
C

Fig. P4.7

y

z C

Fig. P4.8

 4.9 through 4.11 Two vertical forces are applied to a beam of the 
cross section shown. Determine the maximum tensile and com-
pressive stresses in portion BC of the beam.

CBA

300 mm 300 mm

25 mm

25 mm

4 kN4 kN

Fig. P4.9

DCBA

25 kips 25 kips

20 in. 20 in.
60 in.

4 in.

1 in.

1 in.

1 in.

6 in.

8 in.

Fig. P4.11

10 mm 10 mm

50 mm

10 mm

150 mm 150 mm

A D

B C

10 kN 10 kN

250 mm
50 mm

Fig. P4.10

 4.12 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 6 kN ? m, deter-
mine the total force acting on the top flange.

 4.13 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 6 kN ? m, deter-
mine the total force acting on the shaded portion of the web.

72 mm

216 mm

36 mm54 mm

108 mm

y

z  C

Fig. P4.12 and P4.13
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239Problems 4.14 Knowing that a beam of the cross section shown is bent about a 
horizontal axis and that the bending moment is 50 kip ? in., deter-
mine the total force acting (a) on the top flange (b) on the shaded 
portion of the web.

 4.15 The beam shown is made of a nylon for which the allowable stress 
is 24 MPa in tension and 30 MPa in compression. Determine the 
largest couple M that can be applied to the beam.

z C

y

1.5 in.

1.5 in.

4 in.

2 in.
6 in.

Fig. P4.14

M

15 mm

d � 30 mm

20 mm

40 mm

Fig. P4.15

 4.16 Solve Prob. 4.15, assuming that d 5 40 mm.

 4.17 Knowing that for the extruded beam shown the allowable stress is 
12 ksi in tension and 16 ksi in compression, determine the largest 
couple M that can be applied.

 4.18 Knowing that for the casting shown the allowable stress is 5 ksi in 
tension and 18 ksi in compression, determine the largest couple M 
that can be applied.

M

1.5 in.

0.5 in.

1.5 in. 1.5 in.

0.5 in. 0.5 in.

0.5 in.

Fig. P4.17

0.5 in.
0.5 in.
0.5 in.

0.5 in.0.5 in.
1 in.

M

Fig. P4.18

 4.19 and 4.20 Knowing that for the extruded beam shown the 
allowable stress is 120 MPa in tension and 150 MPa in compres-
sion, determine the largest couple M that can be applied.

50 mm

125 mm

125 mm

150 mm
M

Fig. P4.19

54 mm

40 mm

80 mm

M

Fig. P4.20
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240 Pure Bending  4.21 A steel band saw blade, that was originally straight, passes over 
8-in.-diameter pulleys when mounted on a band saw. Determine 
the maximum stress in the blade, knowing that it is 0.018 in. thick 
and 0.625 in. wide. Use E 5 29 3 106 psi.

 4.22 Straight rods of 0.30-in. diameter and 200-ft length are sometimes 
used to clear underground conduits of obstructions or to thread 
wires through a new conduit. The rods are made of high-strength 
steel and, for storage and transportation, are wrapped on spools of 
5-ft diameter. Assuming that the yield strength is not exceeded, 
determine (a) the maximum stress in a rod, when the rod, which 
is initially straight, is wrapped on a spool, (b) the corresponding 
bending moment in the rod. Use E 5 29 3 106 psi.

0.018 in.

Fig. P4.21

 4.23 A 900-mm strip of steel is bent into a full circle by two couples 
applied as shown. Determine (a) the maximum thickness t of the 
strip if the allowable stress of the steel is 420 MPa, (b) the corre-
sponding moment M of the couples. Use E 5 200 GPa.

 4.24 A 60-N ? m couple is applied to the steel bar shown. (a) Assuming 
that the couple is applied about the z axis as shown, determine the 
maximum stress and the radius of curvature of the bar. (b) Solve 
part a, assuming that the couple is applied about the y axis. Use 
E 5 200 GPa.

5 ft

Fig. P4.22

900 mm

8 mm

t
r

MM'

Fig. P4.23

20 mm

12 mm

60 N · m

z

y

Fig. P4.24

 4.25 A couple of magnitude M is applied to a square bar of side a. For 
each of the orientations shown, determine the maximum stress and 
the curvature of the bar.

(a) (b)

a
M M

Fig. P4.25
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241Problems 4.26 A portion of a square bar is removed by milling, so that its cross 
section is as shown. The bar is then bent about its horizontal axis 
by a couple M. Considering the case where h 5 0.9h0, express 
the maximum stress in the bar in the form sm 5 ks0 where s0 
is the maximum stress that would have occurred if the original 
square bar had been bent by the same couple M, and determine 
the value of k.

 4.27 In Prob. 4.26, determine (a) the value of h for which the maximum 
stress sm is as small as possible, (b) the corresponding value of k.

 4.28 A couple M will be applied to a beam of rectangular cross section 
that is to be sawed from a log of circular cross section. Determine 
the ratio dyb for which (a) the maximum stress sm will be as small 
as possible, (b) the radius of curvature of the beam will be 
maximum.

 4.29 For the aluminum bar and loading of Sample Prob. 4.1, determine 
(a) the radius of curvature r9 of a transverse cross section, (b) the 
angle between the sides of the bar that were originally vertical. Use 
E 5 10.6 3 106 psi and n 5 0.33.

 4.30 For the bar and loading of Example 4.01, determine (a) the radius 
of curvature r, (b) the radius of curvature r9 of a transverse cross 
section, (c) the angle between the sides of the bar that were origi-
nally vertical. Use E 5 29 3 106 psi and n 5 0.29.

 4.31 A W200 3 31.3 rolled-steel beam is subjected to a couple M of 
moment 45 kN ? m. Knowing that E 5 200 GPa and n 5 0.29, 
determine (a) the radius of curvature r, (b) the radius of curvature 
r9 of a transverse cross section.

h

h

C

h0

h0

M

Fig. P4.26

b

d

M'
M

Fig. P4.28

 4.32 It was assumed in Sec. 4.3 that the normal stresses sy in a member 
in pure bending are negligible. For an initially straight elastic 
member of rectangular cross section, (a) derive an approximate 
expression for sy as a function of y, (b) show that (sy)max 5 
2(cy2r)(sx)max and, thus, that sy can be neglected in all practical 
situations. (Hint: Consider the free-body diagram of the portion of 
beam located below the surface of ordinate y and assume that the 
distribution of the stress sx is still linear.)

z

x

y

C

A

M

Fig. P4.31

2
�

2
�

2
�

2
�

�

y

y � �c

y � �c
y

�x�x

�y

Fig. P4.32
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242 Pure Bending 4.6  BENDING OF MEMBERS MADE OF 
SEVERAL MATERIALS

The derivations given in Sec. 4.4 were based on the assumption of 
a homogeneous material with a given modulus of elasticity E. If the 
member subjected to pure bending is made of two or more materials 
with different moduli of elasticity, our approach to the determination 
of the stresses in the member must be modified.
 Consider, for instance, a bar consisting of two portions of differ-
ent materials bonded together as shown in cross section in Fig. 4.20. 
This composite bar will deform as described in Sec. 4.3, since its cross 
section remains the same throughout its entire length, and since no 
assumption was made in Sec. 4.3 regarding the stress-strain relation-
ship of the material or materials involved. Thus, the normal strain Px 
still varies linearly with the distance y from the neutral axis of the 
section (Fig. 4.21a and b), and formula (4.8) holds:

 Px 5 2  

y
r  (4.8)

M

1

2

Fig. 4.20 Cross 
section with two 
materials.

1

2

N. A.

x � – — 

x

�

� x�

�
y

2 � – —– � �
E2y

1 � – —– � �
E1y

y y

(a) (b) (c)

Fig. 4.21 Strain and stress distribution in bar made of two materials.

However, we cannot assume that the neutral axis passes through the 
centroid of the composite section, and one of the goals of the present 
analysis will be to determine the location of this axis.
 Since the moduli of elasticity E1 and E2 of the two materials 
are different, the expressions obtained for the normal stress in each 
material will also be different. We write

 s1 5 E1Px 5 2  

E1y
r

 
 s2 5 E2Px 5 2  

E2y
r  

(4.24)

and obtain a stress-distribution curve consisting of two segments of 
straight line (Fig. 4.21c). It follows from Eqs. (4.24) that the force 
dF1 exerted on an element of area dA of the upper portion of the 
cross section is

 dF1 5 s1 dA 5 2  

E1y
r  dA (4.25)
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243while the force dF2 exerted on an element of the same area dA of the 
lower portion is

 dF2 5 s2 dA 5 2  

E2y
r  dA (4.26)

But, denoting by n the ratio E2yE1 of the two moduli of elasticity, we can 
express dF2 as

 dF2 5 2  

1nE12y
r  dA 5 2  

E1y
r  1n dA 2 (4.27)

Comparing Eqs. (4.25) and (4.27), we note that the same force dF2 
would be exerted on an element of area n dA of the first material. In 
other words, the resistance to bending of the bar would remain the 
same if both portions were made of the first material, provided that 
the width of each element of the lower portion were multiplied by the 
factor n. Note that this widening (if n . 1), or narrowing (if n , 1), 
must be effected in a direction parallel to the neutral axis of the sec-
tion, since it is essential that the distance y of each element from the 
neutral axis remain the same. The new cross section obtained in this 
way is called the transformed section of the member (Fig. 4.22).
 Since the transformed section represents the cross section of a 
member made of a homogeneous material with a modulus of elastic-
ity E1, the method described in Sec. 4.4 can be used to determine 
the neutral axis of the section and the normal stress at various points 
of the section. The neutral axis will be drawn through the centroid 
of the transformed section (Fig. 4.23), and the stress sx at any point 
of the corresponding fictitious homogeneous member will be obtained 
from Eq. (4.16)

 sx 5 2  

My

I
 (4.16)

where y is the distance from the neutral surface, and I the moment of 
inertia of the transformed section with respect to its centroidal axis.
 To obtain the stress s1 at a point located in the upper portion of 
the cross section of the original composite bar, we simply compute the 
stress sx at the corresponding point of the transformed section.  However, 
to obtain the stress s2 at a point in the lower portion of the cross  section, 
we must multiply by n the stress sx computed at the corresponding point 
of the transformed section. Indeed, as we saw earlier, the same elemen-
tary force dF2 is applied to an element of area n dA of the transformed 
section and to an element of area dA of the original section. Thus, the 
stress s2 at a point of the original section must be n times larger than 
the stress at the corresponding point of the transformed section.
 The deformations of a composite member can also be deter-
mined by using the transformed section. We recall that the trans-
formed section represents the cross section of a member, made of a 
homogeneous material of modulus E1, which deforms in the same 
manner as the composite member. Therefore, using Eq. (4.21), we 
write that the curvature of the composite member is

1
r

5
M

E1I

where I is the moment of inertia of the transformed section with 
respect to its neutral axis.

4.6 Bending of Members Made 
of Several Materials

b

dA ndA

nbb

b

=

Fig. 4.22 Transformed section for 
composite bar.

C
N. A.

x � – —– �
My
I

yy

�x

Fig. 4.23 Distribution of stresses in 
transformed section.
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244 

A bar obtained by bonding together pieces of steel (Es 5 29 3 106 psi) and 
brass (Eb 5 15 3 106 psi) has the cross section shown (Fig. 4.24). Deter-
mine the maximum stress in the steel and in the brass when the bar is in 
pure bending with a bending moment M 5 40 kip ? in.

EXAMPLE 4.03

1.45 in.

2.25 in.

0.4 in. 0.4 in.

3 in.

c � 1.5 in.

All brass

N. A.

Fig. 4.25

0.75 in.
0.4 in. 0.4 in.

3 in.

Steel

Brass Brass

Fig. 4.24

The transformed section corresponding to an equivalent bar made 
entirely of brass is shown in Fig. 4.25. Since

n 5
Es

Eb
5

29 3 106 psi

15 3 106 psi
5 1.933

the width of the central portion of brass, which replaces the original steel 
portion, is obtained by multiplying the original width by 1.933, we have

(0.75 in.)(1.933) 5 1.45 in.

Note that this change in dimension occurs in a direction parallel to the 
neutral axis. The moment of inertia of the transformed section about its 
centroidal axis is

I 5 1
12 bh3 5 1

12 12.25 in.2 13 in.23 5 5.063 in4

and the maximum distance from the neutral axis is c 5 1.5 in. Using 
Eq. (4.15), we find the maximum stress in the transformed section:

sm 5
Mc

I
5
140 kip ? in.2 11.5 in.2

5.063 in4 5 11.85 ksi

The value obtained also represents the maximum stress in the brass por-
tion of the original composite bar. The maximum stress in the steel por-
tion, however, will be larger than the value obtained for the transformed 
section, since the area of the central portion must be reduced by the 
factor n 5 1.933 when we return from the transformed section to the 
original one. We thus conclude that

 1sbrass2max 5 11.85 ksi
 1ssteel2max 5 11.933 2 111.85 ksi2 5 22.9 ksi
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245 An important example of structural members made of two dif-
ferent materials is furnished by reinforced concrete beams (Photo 
4.4). These beams, when subjected to positive bending moments, are 
reinforced by steel rods placed a short distance above their lower 
face (Fig. 4.26a). Since concrete is very weak in tension, it will crack 
below the neutral surface and the steel rods will carry the entire 
tensile load, while the upper part of the concrete beam will carry 
the compressive load.
 To obtain the transformed section of a reinforced concrete 
beam, we replace the total cross-sectional area As of the steel bars 
by an equivalent area nAs, where n is the ratio EsyEc of the moduli 
of elasticity of steel and concrete (Fig. 4.26b). On the other hand, 
since the concrete in the beam acts effectively only in compression, 
only the portion of the cross section located above the neutral axis 
should be used in the transformed section.

Photo 4.4 Reinforced concrete building.

bb

d

1
2 x

x

N. A.

d – x

C

nAs Fs

�

(a) (b) (c)

Fig. 4.26 Reinforced concrete beam.

 The position of the neutral axis is obtained by determining the 
distance x from the upper face of the beam to the centroid C of the 
transformed section. Denoting by b the width of the beam, and by 
d the distance from the upper face to the center line of the steel 
rods, we write that the first moment of the transformed section with 
respect to the neutral axis must be zero. Since the first moment of 
each of the two portions of the transformed section is obtained by 
multiplying its area by the distance of its own centroid from the 
neutral axis, we have

1bx2  x
2

2 nAs 1d 2 x2 5 0

or

 
1
2

 bx2 1 nAs x 2 nAsd 5 0 (4.28)

Solving this quadratic equation for x, we obtain both the position of 
the neutral axis in the beam, and the portion of the cross section of 
the concrete beam that is effectively used.
 The determination of the stresses in the transformed section is 
carried out as explained earlier in this section (see Sample Prob. 4.4). 
The distribution of the compressive stresses in the concrete and 
the resultant Fs of the tensile forces in the steel rods are shown in 
Fig. 4.26c.

4.6 Bending of Members Made 
of Several Materials
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246 Pure Bending 4.7 STRESS CONCENTRATIONS
The formula sm 5 McyI was derived in Sec. 4.4 for a member with a 
plane of symmetry and a uniform cross section, and we saw in Sec. 4.5 
that it was accurate throughout the entire length of the member only 
if the couples M and M9 were applied through the use of rigid and 
smooth plates. Under other conditions of application of the loads, stress 
concentrations will exist near the points where the loads are applied.
 Higher stresses will also occur if the cross section of the mem-
ber undergoes a sudden change. Two particular cases of interest have 
been studied,† the case of a flat bar with a sudden change in width, 
and the case of a flat bar with grooves. Since the distribution of 
stresses in the critical cross sections depends only upon the geometry 
of the members, stress-concentration factors can be determined for 
various ratios of the parameters involved and recorded as shown in 
Figs. 4.27 and 4.28. The value of the maximum stress in the critical 
cross section can then be expressed as

 
sm 5 K 

Mc
I

 (4.29)

where K is the stress-concentration factor, and where c and I refer to 
the critical section, i.e., to the section of width d in both of the cases 
considered here. An examination of Figs. 4.27 and 4.28 clearly shows the 
importance of using fillets and grooves of radius r as large as practical.
 Finally, we should point out that, as was the case for axial load-
ing and torsion, the values of the factors K have been computed under 
the assumption of a linear relation between stress and strain. In many 
applications, plastic deformations will occur and result in values of 
the maximum stress lower than those indicated by Eq. (4.29).

3.0

2.8

2.6

2.4

2.2

2.0K

1.8

1.6

1.4

1.2

1.0
0 0.05 0.10 0.15 0.20 0.25 0.3

r/d

d

r

D

D
d � 3

2

1.5
1.2

1.1

1.02
1.01

MM'

Fig. 4.27 Stress-concentration factors for flat bars with 
fillets under pure bending.†

3.0

2.8

2.6

2.4

2.2

2.0K

1.8

1.6

1.4

1.2

1.0
0 0.05 0.10 0.15 0.20 0.25 0.30

r/d

D
d � 2

D d

2r

r

1.5

1.2

1.1
1.05

MM'

Fig. 4.28 Stress-concentration factors for flat bars with 
grooves under pure bending.†

†W. D. Pilkey, Peterson’s Stress Concentration Factors, 2d ed., John Wiley & Sons, New 
York, 1997.
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EXAMPLE 4.04Grooves 10 mm deep are to be cut in a steel bar which is 60 mm wide 
and 9 mm thick (Fig. 4.29). Determine the smallest allowable width of 
the grooves if the stress in the bar is not to exceed 150 MPa when the 
bending moment is equal to 180 N ? m.

d

10 mm

10 mm

D � 60 mm

b � 9 mm
2r

r 

(a) (b)

c

Fig. 4.29

 We note from Fig. 4.29a that

 d 5 60 mm 2 2110 mm2 5 40 mm
 c 5 1

2d 5 20 mm    b 5 9 mm

The moment of inertia of the critical cross section about its neutral 
axis is

 I 5 1
12 

bd3 5 1
12 19 3 1023 m2 140 3 1023 m23

 5 48 3 1029 m4

The value of the stress McyI is thus

Mc
I

5
1180 N ? m2 120 3 1023 m2

48 3 1029 m4 5 75 MPa

Substituting this value for McyI into Eq. (4.29) and making sm 5 150 MPa, 
we write

150 MPa 5 K(75 MPa)
K 5 2

We have, on the other hand,

D
d

5
60 mm
40 mm

5 1.5

Using the curve of Fig. 4.32 corresponding to Dyd 5 1.5, we find that 
the value K 5 2 corresponds to a value of ryd equal to 0.13. We have, 
therefore,

r
d

5 0.13

r 5 0.13d 5 0.13(40 mm) 5 5.2 mm

The smallest allowable width of the grooves is thus

2r 5 2(5.2 mm) 5 10.4 mm
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SAMPLE PROBLEM 4.3

Two steel plates have been welded together to form a beam in the shape of 
a T that has been strengthened by securely bolting to it the two oak timbers 
shown. The modulus of elasticity is 12.5 GPa for the wood and 200 GPa for 
the steel. Knowing that a bending moment M 5 50 kN ? m is applied to the 
composite beam, determine (a) the maximum stress in the wood, (b) the 
stress in the steel along the top edge.

200 mm

20 mm

300 mm

20 mm
75 mm75 mm

SOLUTION

 Transformed Section.  We first compute the ratio

n 5
Es

Ew
5

200 GPa
12.5 GPa

5 16

Multiplying the horizontal dimensions of the steel portion of the section by 
n 5 16, we obtain a transformed section made entirely of wood.

 Neutral Axis.  The neutral axis passes through the centroid of the 
transformed section. Since the section consists of two rectangles, we have

Y 5
©yA

©A
5

10.160 m2 13.2 m 3 0.020 m2 1 0

3.2 m 3 0.020 m 1 0.470 m 3 0.300 m
5 0.050 m

 Centroidal Moment of Inertia.  Using the parallel-axis theorem:

 I 5 1
12 10.470 2 10.300 23 1 10.470 3 0.300 2 10.050 22

 1 1
12 13.2 2 10.020 23 1 13.2 3 0.020 2 10.160 2 0.050 22

 I 5 2.19 3 1023 m4

 a. Maximum Stress in Wood.  The wood farthest from the neutral 
axis is located along the bottom edge, where c2 5 0.200 m.

sw 5
Mc2

I
5
150 3 103 N ? m2 10.200 m2

2.19 3 1023 m4

 sw 5 4.57 MPa  b

 b. Stress in Steel.  Along the top edge c1 5 0.120 m. From the trans-
formed section we obtain an equivalent stress in wood, which must be mul-
tiplied by n to obtain the stress in steel.

ss 5 n 

Mc1

I
5 1162  150 3 103 N ? m2 10.120 m2

2.19 3 1023 m4  

 ss 5 43.8 MPa  b 

16(0.200 m) � 3.2 m

0.150 m

0.150 m

0.020 m y

Y
C

O

0.160 m

16(0.020 m) � 0.32 m
0.075 m0.075 m

z

N. A.

0.050 m

y

C

O

c1 � 0.120 m

c2 � 0.200 m
z

248
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SOLUTION

 Transformed Section.  We consider a portion of the slab 12 in. wide, in 
which there are two 5

8-in.-diameter rods having a total cross-sectional area

As 5 2 c p
4

 a5
8

 in.b2 d 5 0.614 in2

Since concrete acts only in compression, all the tensile forces are carried by 
the steel rods, and the transformed section consists of the two areas shown. 
One is the portion of concrete in compression (located above the neutral 
axis), and the other is the transformed steel area nAs. We have

 n 5
Es

Ec
5

29 3 106 psi

3.6 3 106 psi
5 8.06

 nAs 5 8.0610.614 in22 5 4.95 in2

 Neutral Axis.  The neutral axis of the slab passes through the centroid 
of the transformed section. Summing moments of the transformed area 
about the neutral axis, we write

12xa x
2
b 2 4.95 14 2 x2 5 0    x 5 1.450 in.

 Moment of Inertia.  The centroidal moment of inertia of the trans-
formed area is

I 5 1
3 112 2 11.450 23 1 4.95 14 2 1.450 22 5 44.4 in4

 a. Maximum Stress in Concrete.  At the top of the slab, we have 
c1 5 1.450 in. and

 
sc 5

Mc1

I
5
140 kip ? in.2 11.450 in.2

44.4 in4   
sc 5 1.306 ksi  b

 b. Stress in Steel.  For the steel, we have c2 5 2.55 in., n 5 8.06 and

 
ss 5 n 

Mc2

I
5 8.06 

140 kip ? in.2 12.55 in.2
44.4 in4   

ss 5 18.52 ksi  b

SAMPLE PROBLEM 4.4

A concrete floor slab is reinforced by 5
8-in.-diameter steel rods placed 1.5 in. 

above the lower face of the slab and spaced 6 in. on centers. The modulus 
of elasticity is 3.6 3 106 psi for the concrete used and 29 3 106 psi for the 
steel. Knowing that a bending moment of 40 kip ? in. is applied to each 1-ft 
width of the slab, determine (a) the maximum stress in the concrete, (b) the 
stress in the steel.

6 in.

6 in.
6 in.

6 in.

5.5 in.

4 in.

nAs � 4.95 in2

4 in.

12 in.

N. A.

4 � x

x
C

4.95 in2

4 in.

12 in.

c2 � 4 � x � 2.55 in.

c1 � x � 1.450 in.

�c � 1.306 ksi

�s � 18.52 ksi
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PROBLEMS

250

 4.33 and 4.34 A bar having the cross section shown has been 
formed by securely bonding brass and aluminum stock. Using the 
data given below, determine the largest permissible bending 
moment when the composite bar is bent about a horizontal axis.

32 mm

32 mm
8 mm 8 mm

8 mm

8 mm

AluminumBrass

Fig. P4.34

 Aluminum Brass

Modulus of elasticity  70 GPa 105 GPa
Allowable stress 100 MPa 160 MPa

32 mm

32 mm
8 mm 8 mm

Aluminum Brass

Fig. P4.33

4.35 and 4.36 For the composite bar indicated, determine the larg-
est permissible bending moment when the bar is bent about a 
vertical axis.

   4.35 Bar of Prob. 4.33.
   4.36 Bar of Prob. 4.34.

 4.37 and 4.38 Wooden beams and steel plates are securely bolted 
together to form the composite member shown. Using the data 
given below, determine the largest permissible bending moment 
when the member is bent about a horizontal axis.

10 in.

6 in.

 in.1
25 	

 in.1
25 	

Fig. P4.38Fig. P4.37

10 in.

3 in.

 in.

3 in.
1
2

 Wood Steel

Modulus of elasticity 2 3 106 psi 29 3 106 psi
Allowable stress 2000 psi 22 ksi
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251Problems 4.39 and 4.40 A steel bar and an aluminum bar are bonded together 
to form the composite beam shown. The modulus of elasticity for 
aluminum is 70 GPa and for steel is 200 GPa. Knowing that the 
beam is bent about a horizontal axis by a couple of moment M 5 
1500 N ? m, determine the maximum stress in (a) the aluminum, 
(b) the steel.

M

Steel

Aluminum

20 mm

40 mm

30 mm

Fig. P4.39

M

Aluminum

Steel

20 mm

40 mm

30 mm

Fig. P4.40

 4.41 and 4.42 The 6 3 12-in. timber beam has been strengthened 
by bolting to it the steel reinforcement shown. The modulus of 
elasticity for wood is 1.8 3 106 psi and for steel is 29 3 106 psi. 
Knowing that the beam is bent about a horizontal axis by a couple 
of moment M 5 450 kip ? in., determine the maximum stress in 
(a) the wood, (b) the steel.

in.5 	 1
2

6 in.

12 in.M

Fig. P4.41 Fig. P4.42

6 in.

12 in.

C8 	 11.5

M

 4.43 and 4.44 For the composite beam indicated, determine the 
radius of curvature caused by the couple of moment 1500 N ? m.

   4.43 Beam of Prob. 4.39.
   4.44 Beam of Prob. 4.40.

 4.45 and 4.46 For the composite beam indicated, determine the 
radius of curvature caused by the couple of moment 450 kip ? in.

   4.45 Beam of Prob. 4.41.
   4.46 Beam of Prob. 4.42.

 4.47 The reinforced concrete beam shown is subjected to a positive bend-
ing moment of 175 kN ? m. Knowing that the modulus of elasticity 
is 25 GPa for the concrete and 200 GPa for the steel, determine 
(a) the stress in the steel, (b) the maximum stress in the concrete.

 4.48 Solve Prob. 4.47, assuming that the 300-mm width is increased to 
350 mm.

300 mm

540 mm

60 mm

25-mm 
diameter

Fig. P4.47
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252 Pure Bending  4.49 A concrete slab is reinforced by 16-mm-diameter steel rods 
placed on 180-mm centers as shown. The modulus of elasticity is 
20 GPa for the concrete and 200 GPa for the steel. Using an 
allowable stress of 9 MPa for the concrete and 120 MPa for the 
steel, determine the largest bending moment in a portion of slab 
1 m wide.

 4.50 Solve Prob. 4.49, assuming that the spacing of the 16-mm-diameter 
rods is increased to 225 mm on centers.

 4.51 A concrete beam is reinforced by three steel rods placed as shown. 
The modulus of elasticity is 3 3 106 psi for the concrete and 29 3 
106 psi for the steel. Using an allowable stress of 1350 psi for the 
concrete and 20 ksi for the steel, determine the largest allowable 
positive bending moment in the beam.

180 mm

140 mm

16-mm diameter

100 mm

Fig. P4.49

Fig. P4.51

8 in.

2 in.

16 in. -in. diameter7
8

 4.52 Knowing that the bending moment in the reinforced concrete beam 
is 1100 kip ? ft and that the modulus of elasticity is 3.625 3 106 psi 
for the concrete and 29 3 106 psi for the steel, determine (a) the 
stress in the steel, (b) the maximum stress in the concrete.

 4.53 The design of a reinforced concrete beam is said to be balanced if 
the maximum stresses in the steel and concrete are equal, respec-
tively, to the allowable stresses ss and sc. Show that to achieve a 
balanced design the distance x from the top of the beam to the 
neutral axis must be

x 5
d

1 1
ssEc

scEs

  where Ec and Es are the moduli of elasticity of concrete and steel, 
respectively, and d is the distance from the top of the beam to the 
reinforcing steel.

 4.54 For the concrete beam shown, the modulus of elasticity is 3.5 3 
106 psi for the concrete and 29 3 106 psi for the steel. Knowing that 
b 5 8 in. and d 5 22 in., and using an allowable stress of 1800 psi 
for the concrete and 20 ksi for the steel, determine (a) the required 
area As of the steel reinforcement if the beam is to be balanced, 
(b) the largest allowable bending moment. (See Prob. 4.53 for defini-
tion of a balanced beam.)

12 in.

2.5 in.

20 in.

4 in.24 in.

1-in. 
diameter

Fig. P4.52

b

d

Fig. P4.53 and P4.54
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253Problems 4.55 and 4.56 Five metal strips, each 40 mm wide, are bonded 
together to form the composite beam shown. The modulus of elas-
ticity is 210 GPa for the steel, 105 GPa for the brass, and 70 GPa 
for the aluminum. Knowing that the beam is bent about a horizon-
tal axis by a couple of moment 1800 N ? m, determine (a) the 
maximum stress in each of the three metals, (b) the radius of cur-
vature of the composite beam.

Aluminum

Brass

Steel

Brass

Aluminum

40 mm

10 mm

10 mm

10 mm

10 mm

20 mm

Fig. P4.55

Brass

Steel

Aluminum

Steel

Brass

40 mm

10 mm

10 mm

10 mm

10 mm

20 mm

Fig. P4.56

 4.57 The composite beam shown is formed by bonding together a brass 
rod and an aluminum rod of semicircular cross sections. The mod-
ulus of elasticity is 15 3 106 psi for the brass and 10 3 106 psi for 
the aluminum. Knowing that the composite beam is bent about a 
horizontal axis by couples of moment 8 kip ? in., determine the 
maximum stress (a) in the brass, (b) in the aluminum.

Brass

Aluminum

0.8 in.

Fig. P4.57

Steel

38 mm

10 mmz

y

3 mm

6 mm

Aluminum

Fig. P4.58

50 mm

100 mm

��

��

Et � Ec
1
2

Ec

M

Fig. P4.59

 4.58 A steel pipe and an aluminum pipe are securely bonded together to 
form the composite beam shown. The modulus of elasticity is 200 GPa 
for the steel and 70 GPa for the aluminum. Knowing that the com-
posite beam is bent by a couple of moment 500 N ? m, determine 
the maximum stress (a) in the aluminum, (b) in the steel.

 4.59 The rectangular beam shown is made of a plastic for which the 
value of the modulus of elasticity in tension is one-half of its value 
in compression. For a bending moment M 5 600 N ? m, determine 
the maximum (a) tensile stress, (b) compressive stress.

 *4.60 A rectangular beam is made of material for which the modulus of 
elasticity is Et in tension and Ec in compression. Show that the 
curvature of the beam in pure bending is

1
r

5
M

Er 
I

  where

Er 5
4EtEc

11Et 1 1Ec 22
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254 Pure Bending  4.61 Semicircular grooves of radius r must be milled as shown in the 
sides of a steel member. Using an allowable stress of 60 MPa, 
determine the largest bending moment that can be applied to the 
member when (a) r 5 9 mm, (b) r 5 18 mm.

 4.62 Semicircular grooves of radius r must be milled as shown in the 
sides of a steel member. Knowing that M 5 450 N ? m, determine 
the maximum stress in the member when the radius r of the semi-
circular grooves is (a) r 5 9 mm, (b) r 5 18 mm.

 4.63 Knowing that the allowable stress for the beam shown is 90 MPa, 
determine the allowable bending moment M when the radius r of 
the fillets is (a) 8 mm, (b) 12 mm.

r

M
108 mm

18 mm

Fig. P4.61 and P4.62 

r

80 mm

40 mm

8 mm

M

Fig. P4.63 and P4.64

 4.64 Knowing that M 5 250 N ? m, determine the maximum stress in the 
beam shown when the radius r of the fillets is (a) 4 mm, (b) 8 mm.

 4.65 The allowable stress used in the design of a steel bar is 12 ksi. Deter-
mine the largest couple M that can be applied to the bar (a) if the 
bar is designed with grooves having semicircular portions of radius 
r 5 3

4 in., as shown in Fig. a, (b) if the bar is redesigned by removing 
the material above and below the dashed lines as shown in Fig. b.

7.5 in.

5 in.

 in.7
8

M

7.5 in.

5 in.

 in.7
8

M

(a) (b)

Fig. P4.65 and P4.66

 4.66 A couple of moment M 5 20 kip ? in. is to be applied to the end 
of a steel bar. Determine the maximum stress in the bar (a) if the 
bar is designed with grooves having semicircular portions of radius 
r 5 1

2 in., as shown in Fig. a, (b) if the bar is redesigned by removing 
the material above and below the dashed lines as shown in Fig. b.
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255*4.8 PLASTIC DEFORMATIONS
When we derived the fundamental relation sx 5 2MyyI in Sec. 4.4, 
we assumed that Hooke’s law applied throughout the member. If the 
yield strength is exceeded in some portion of the member, or if the 
material involved is a brittle material with a nonlinear stress-strain 
diagram, this relation ceases to be valid. The purpose of this section 
is to develop a more general method for the determination of the 
distribution of stresses in a member in pure bending, which can be 
used when Hooke’s law does not apply.
 We first recall that no specific stress-strain relationship was 
assumed in Sec. 4.3, when we proved that the normal strain Px varies 
linearly with the distance y from the neutral surface. Thus, we can 
still use this property in our present analysis and write

  
Px 5 2 

y
c

Pm 
(4.10)

where y represents the distance of the point considered from the 
neutral surface, and c the maximum value of y.
 However, we cannot assume anymore that, in a given section, 
the neutral axis passes through the centroid of that section, since 
this property was derived in Sec. 4.4 under the assumption of elastic 
deformations. In general, the neutral axis must be located by trial 
and error, until a distribution of stresses has been found, that satis-
fies Eqs. (4.1) and (4.3) of Sec. 4.2. However, in the particular case 
of a member possessing both a vertical and a horizontal plane of 
symmetry, and made of a material characterized by the same stress-
strain relation in tension and in compression, the neutral axis will 
coincide with the horizontal axis of symmetry of the section. Indeed, 
the properties of the material require that the stresses be symmetric 
with respect to the neutral axis, i.e., with respect to some horizontal 
axis, and it is clear that this condition will be met, and Eq. (4.1) 
satisfied at the same time, only if that axis is the horizontal axis of 
symmetry itself.
 Our analysis will first be limited to the special case we have 
just described. The distance y in Eq. (4.10) is thus measured from 
the horizontal axis of symmetry z of the cross section, and the dis-
tribution of strain Px is linear and symmetric with respect to that axis 
(Fig. 4.30). On the other hand, the stress-strain curve is symmetric 
with respect to the origin of coordinates (Fig. 4.31).
 The distribution of stresses in the cross section of the member, 
i.e., the plot of sx versus y, is obtained as follows. Assuming that smax 
has been specified, we first determine the corresponding value of Pm 
from the stress-strain diagram and carry this value into Eq. (4.10). 
Then, for each value of y, we determine the corresponding value of Px 
from Eq. (4.10) or Fig. 4.30, and obtain from the stress-strain diagram 
of Fig. 4.31 the stress sx corresponding to this value of Px. Plotting sx 
against y yields the desired distribution of stresses (Fig. 4.32).
 We now recall that, when we derived Eq. (4.3) in Sec. 4.2, we 
assumed no particular relation between stress and strain. We can there-
fore use Eq. (4.3) to determine the bending moment M corresponding 
to the stress distribution obtained in Fig. 4.32. Considering the particular 

4.8 Plastic Deformations

z

– c

– �m

�m

�x

MM'

y

c

Fig. 4.30 Linear strain distribution in 
beam.

0

�x

�m � x

�max

Fig. 4.31 Nonlinear stress-
strain material diagram.

y

c

– c �max

�x

Fig. 4.32 Nonlinear stress 
distribution in beam.
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256 Pure Bending case of a member with a rectangular cross section of width b, we 
express the element of area in Eq. (4.3) as dA 5 b dy and write

 
M 5 2b#

c

2c

ysx dy (4.30)

where sx is the function of y plotted in Fig. 4.32. Since sx is an odd 
function of y, we can write Eq. (4.30) in the alternative form

 
M 5 22b#

c

0

ysx dy (4.31)

 If sx is a known analytical function of Px, Eq. (4.10) can be 
used to express sx as a function of y, and the integral in (4.31) 
can be determined analytically. Otherwise, the bending moment 
M can be obtained through a numerical integration. This computa-
tion becomes more meaningful if we note that the integral in 
Eq. (4.31) represents the first moment with respect to the hori-
zontal axis of the area in Fig. 4.32 that is located above the hori-
zontal axis and is bounded by the stress-distribution curve and the 
vertical axis.
 An important value of the bending moment is the ultimate 
bending moment MU that causes failure of the member. This value 
can be determined from the ultimate strength sU of the material by 
choosing smax 5 sU and carrying out the computations indicated 
earlier. However, it is found more convenient in practice to deter-
mine MU experimentally for a specimen of a given material. Assum-
ing a fictitious linear distribution of stresses, Eq. (4.15) is then used 
to determine the corresponding maximum stress RB:

 
RB 5

MUc
I

 (4.32)

The fictitious stress RB is called the modulus of rupture in bending 
of the given material. It can be used to determine the ultimate bend-
ing moment MU of a member made of the same material and having 
a cross section of the same shape, but of different dimensions, by 
solving Eq. (4.32) for MU. Since, in the case of a member with a 
rectangular cross section, the actual and the fictitious linear stress 
distributions shown in Fig. 4.33 must yield the same value MU for the 
ultimate bending moment, the areas they define must have the same 
first moment with respect to the horizontal axis. It is thus clear that 
the modulus of rupture RB will always be larger than the actual ulti-
mate strength sU.

*4.9  MEMBERS MADE OF AN ELASTOPLASTIC MATERIAL
In order to gain a better insight into the plastic behavior of a mem-
ber in bending, let us consider the case of a member made of an 
elastoplastic material and first assume the member to have a rectan-
gular cross section of width b and depth 2c (Fig. 4.34). We recall 
from Sec. 2.17 that the stress-strain diagram for an idealized elasto-
plastic material is as shown in Fig. 4.35.

R

�x

�U

B

y

Fig. 4.33 Beam stress 
distribution at ultimate moment MU.

c

b

c
N. A.

Fig. 4.34 Beam with 
rectangular cross section.

�

�Y

�Y �

Y

Fig. 4.35 Idealized steel 
stress-strain diagram.
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257 As long as the normal stress sx does not exceed the yield strength 
sY, Hooke’s law applies, and the stress distribution across the section 
is linear (Fig. 4.36a). The maximum value of the stress is

 
sm 5

Mc
I

 (4.15)

As the bending moment increases, sm eventually reaches the value 
sY (Fig. 4.36b). Substituting this value into Eq. (4.15), and solving 
for the corresponding value of M, we obtain the value MY of the 
bending moment at the onset of yield:

 
MY 5

I
c
 sY (4.33)

The moment MY is referred to as the maximum elastic moment, since 
it is the largest moment for which the deformation remains fully elas-
tic. Recalling that, for the rectangular cross section considered here,

 
I
c

5
b12c23

12c
5

2
3

 bc2 (4.34)

we write

 
MY 5

2
3

 bc2sY (4.35)

 As the bending moment further increases, plastic zones develop in 
the member, with the stress uniformly equal to 2sY in the upper zone, 
and to 1sY in the lower zone (Fig. 4.36c). Between the plastic zones, 
an elastic core subsists, in which the stress sx varies linearly with y,

 
sx 5 2 

sY

yY
 y (4.36)

where yY represents half the thickness of the elastic core. As M 
increases, the plastic zones expand until, at the limit, the deformation 
is fully plastic (Fig. 4.36d).
 Equation (4.31) will be used to determine the value of the 
bending moment M corresponding to a given thickness 2yY of the 
elastic core. Recalling that sx is given by Eq. (4.36) for 0 # y # yY, 
and is equal to 2sY for yY # y # c, we write

 M 5 22b#
yY

0

ya2sY

yY
 yb dy 2 2b#

c

yY

y12sY2  dy

 5
2
3

 by2
YsY 1 bc2sY 2 by2

YsY

 
 M 5 bc2sYa1 2

1
3

 
y2

Y

c2 b  (4.37)

or, in view of Eq. (4.35),

 
M 5

3
2

MY a1 2
1
3

 
y2

Y

c2 b (4.38)

4.9 Members Made of an
Elastoplastic Material

�
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y

c
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��c
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�
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y

c
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�
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�

�
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�

PLASTIC

y

c

�c
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�

�

�

�(d) M Mp

�

c

Fig. 4.36 Bending stress distribution 
in beam for different moments.
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258 Pure Bending where MY is the maximum elastic moment. Note that as yY approaches 
zero, the bending moment approaches the limiting value

 
Mp 5

3
2

 MY (4.39)

This value of the bending moment, which corresponds to a fully 
plastic deformation (Fig. 4.36d), is called the plastic moment of the 
member considered. Note that Eq. (4.39) is valid only for a rectan-
gular member made of an elastoplastic material.
 You should keep in mind that the distribution of strain across the 
section remains linear after the onset of yield. Therefore, Eq. (4.8) of 
Sec. 4.3 remains valid and can be used to determine the half-thickness 
yY of the elastic core. We have

 yY 5 PYr (4.40)

where PY is the yield strain and r the radius of curvature correspond-
ing to a bending moment M $ MY. When the bending moment is 
equal to MY, we have yY 5 c and Eq. (4.40) yields

 c 5 PYrY (4.41)

where rY is the radius of curvature corresponding to the maximum 
elastic moment MY. Dividing (4.40) by (4.41) member by member, 
we obtain the relation†

 

yY

c
5
r

rY
 (4.42)

Substituting for yYyc from (4.42) into Eq. (4.38), we express the 
bending moment M as a function of the radius of curvature r of the 
neutral surface:

 
M 5

3
2

MY a1 2
1
3

 
r2

r2
Y
b (4.43)

Note that Eq. (4.43) is valid only after the onset of yield, i.e., for 
values of M larger than MY. For M , MY, Eq. (4.21) of Sec. 4.4 
should be used.
 We observe from Eq. (4.43) that the bending moment reaches 
the value Mp 5 3

2 MY only when r 5 0. Since we clearly cannot have 
a zero radius of curvature at every point of the neutral surface, we 
conclude that a fully plastic deformation cannot develop in pure bend-
ing. As you will see in Chap. 5, however, such a situation may occur 
at one point in the case of a beam under a transverse loading.
 The stress distributions in a rectangular member corresponding 
respectively to the maximum elastic moment MY and to the limiting 
case of the plastic moment Mp have been represented in three 
dimensions in Fig. 4.37. Since, in both cases, the resultants of the 
elementary tensile and compressive forces must pass through the 
centroids of the volumes representing the stress distributions and be 
equal in magnitude to these volumes, we check that

RY 5 1
2 bcsY

†Equation (4.42) applies to any member made of any ductile material with a well-defined 
yield point, since its derivation is independent of the shape of the cross section and of the 
shape of the stress-strain diagram beyond the yield point.

b

c

c
z 2c/3

2c/3

�Y�

�Y�m

�x

� 
R'Y

b

c

c
z

Rp

c/2

c/2

�Y�

�Y

�x

R'p

(a)

(b)

y

y

RY

Fig. 4.37 Stress distributions in beam 
at maximum elastic moment and at 
plastic moment.
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259and
Rp 5 bcsY

and that the moments of the corresponding couples are, respectively,

 MY 5 143 
c2RY 5 2

3bc2sY (4.44)
and
 Mp 5 cRp 5 bc2sY (4.45)

We thus verify that, for a rectangular member, Mp 5 3
2 
MY as required 

by Eq. (4.39).
 For beams of nonrectangular cross section, the computation of 
the maximum elastic moment MY and of the plastic moment Mp will 
usually be simplified if a graphical method of analysis is used, as shown 
in Sample Prob. 4.5. It will be found in this more general case that 
the ratio k 5 MpyMY is generally not equal to 3

2. For structural shapes 
such as wide-flange beams, for example, this ratio varies approximately 
from 1.08 to 1.14. Because it depends only upon the shape of the cross 
section, the ratio k 5 MpyMY is referred to as the shape factor of the 
cross section. We note that, if the shape factor k and the maximum 
elastic moment MY of a beam are known, the plastic moment Mp of 
the beam can be obtained by multiplying MY by k:

 Mp 5 kMY (4.46)

 The ratio MpysY obtained by dividing the plastic moment Mp 
of a member by the yield strength sY of its material is called the 
plastic section modulus of the member and is denoted by Z. When 
the plastic section modulus Z and the yield strength sY of a beam 
are known, the plastic moment Mp of the beam can be obtained by 
multiplying sY by Z:
 Mp 5 ZsY (4.47)

Recalling from Eq. (4.18) that MY 5 SsY, and comparing this relation 
with Eq. (4.47), we note that the shape factor k 5 MpyMY of a given 
cross section can be expressed as the ratio of the plastic and elastic 
section moduli:

 
k 5

Mp

MY
5

ZsY

SsY
5

Z
S

 (4.48)

 Considering the particular case of a rectangular beam of width 
b and depth h, we note from Eqs. (4.45) and (4.47) that the plastic 
section modulus of a rectangular beam is

Z 5
Mp

sY
5

bc2sY

sY
5 bc2 5 1

4 bh2

On the other hand, we recall from Eq. (4.19) of Sec. 4.4 that the 
elastic section modulus of the same beam is

S 5 1
6 bh2

Substituting into Eq. (4.48) the values obtained for Z and S, we verify 
that the shape factor of a rectangular beam is

k 5
Z
S

5
1
4 bh2

1
6 bh2 5

3
2

4.9 Members Made of an
Elastoplastic Material
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A member of uniform rectangular cross section 50 3 120 mm (Fig. 
4.38) is subjected to a bending moment M 5 36.8 kN ? m. Assuming 
that the member is made of an elastoplastic material with a yield 
strength of 240 MPa and a modulus of elasticity of 200 GPa, determine 
(a) the thickness of the elastic core, (b) the radius of curvature of the 
neutral surface.

 (a) Thickness of Elastic Core. We first determine the maximum 
elastic moment MY. Substituting the given data into Eq. (4.34), we have

 
I
c

5
2
3

 bc2 5
2
3

 150 3 1023 m2 160 3 1023 m22
 5 120 3 1026 m3

and carrying this value, as well as sY 5 240 MPa, into Eq. (4.33),

MY 5
I
c

 sY 5 1120 3 1026 m32 1240 MPa2 5 28.8 kN ? m

Substituting the values of M and MY into Eq. (4.38), we have

36.8 kN ? m 5
3
2

 128.8 kN ? m2a1 2
1
3

 
y2

Y

c2 b
ayY

c
b2

5 0.444
  

yY

c
5 0.666

and, since c 5 60 mm,

yY 5 0.666(60 mm) 5 40 mm

The thickness 2yY of the elastic core is thus 80 mm.

 (b) Radius of Curvature. We note that the yield strain is

PY 5
sY

E
5

240 3 106 Pa
200 3 109 Pa

5 1.2 3 1023

Solving Eq. (4.40) for r and substituting the values obtained for yY and 
PY, we write

r 5
yY

PY
5

40 3 1023 m
1.2 3 1023 5 33.3 m

EXAMPLE 4.05

c � 60 mm

c � 60 mm

b � 50 mm

yY

Fig. 4.38
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*4.10  PLASTIC DEFORMATIONS OF MEMBERS WITH 
A SINGLE PLANE OF SYMMETRY

In our discussion of plastic deformations, we have assumed so far 
that the member in bending had two planes of symmetry, one con-
taining the couples M and M9, and the other perpendicular to that 
plane. Let us now consider the more general case when the member 
possesses only one plane of symmetry containing the couples M and 
M9. However, our analysis will be limited to the situation where the 
deformation is fully plastic, with the normal stress uniformly equal 
to 2sY above the neutral surface, and to 1sY below that surface 
(Fig. 4.39a).
 As indicated in Sec. 4.8, the neutral axis cannot be assumed 
to coincide with the centroidal axis of the cross section when the 
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261cross section is not symmetric with respect to that axis. To locate 
the neutral axis, we consider the resultant R1 of the elementary 
compressive forces exerted on the portion A1 of the cross section 
located above the neutral axis, and the resultant R2 of the tensile 
forces exerted on the portion A2 located below the neutral axis 
(Fig. 4.39b). Since the forces R1 and R2 form a couple equivalent 
to the couple applied to the member, they must have the same 
magnitude. We have therefore R1 5 R2, or A1sY 5 A2sY, from 
which we conclude that A1 5 A2. In other words, the neutral axis 
divides the cross section into portions of equal areas. Note that the 
axis obtained in this fashion will not, in general, be a centroidal axis 
of the section.
 We also observe that the lines of action of the resultants R1 and 
R2 pass through the centroids C1 and C2 of the two portions we have 
just defined. Denoting by d the distance between C1 and C2, and by 
A the total area of the cross section, we express the plastic moment 
of the member as

Mp 5 112AsY2 d
An example of the actual computation of the plastic moment of 
a member with only one plane of symmetry is given in Sample 
Prob. 4.6.

*4.11 RESIDUAL STRESSES
We saw in the preceding sections that plastic zones will develop in 
a member made of an elastoplastic material if the bending moment 
is large enough. When the bending moment is decreased back to 
zero, the corresponding reduction in stress and strain at any given 
point can be represented by a straight line on the stress-strain dia-
gram, as shown in Fig. 4.40. As you will see presently, the final value 
of the stress at a point will not, in general, be zero. There will be a 
residual stress at most points, and that stress may or may not have 
the same sign as the maximum stress reached at the end of the load-
ing phase.
 Since the linear relation between sx and Px applies at all 
points of the member during the unloading phase, Eq. (4.16) can be 
used to obtain the change in stress at any given point. In other words, 
the  unloading phase can be handled by assuming the member to be 
fully elastic.
 The residual stresses are obtained by applying the principle of 
superposition in a manner similar to that described in Sec. 2.20 for 
an axial centric loading and used again in Sec. 3.11 for torsion. We 
consider, on one hand, the stresses due to the application of the 
given bending moment M and, on the other, the reverse stresses due 
to the equal and opposite bending moment 2M that is applied to 
unload the member. The first group of stresses reflect the elastoplas-
tic behavior of the material during the loading phase, and the second 
group the linear behavior of the same material during the unloading 
phase. Adding the two groups of stresses, we obtain the distribution 
of residual stresses in the member.

4.11 Residual Stresses

�Y�

Neutral
surface

(a)

(b)

R2

C1

C2

A2

A1

d R1

N.A.

�Y�

Fig. 4.39 Nonsymmetrical beam 
subject to plastic moment.

�Y

�Y �x

�x

�Y�

Fig. 4.40 Elastoplastic material 
stress-strain diagram.
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For the member of Example 4.05, determine (a) the distribution of the 
residual stresses, (b) the radius of curvature, after the bending moment has 
been decreased from its maximum value of 36.8 kN ? m back to zero.

 (a) Distribution of Residual Stresses. We recall from Example 
4.05 that the yield strength is sY 5 240 MPa and that the thickness of 
the elastic core is 2yY 5 80 mm. The distribution of the stresses in the 
loaded member is thus as shown in Fig. 4.41a.

The distribution of the reverse stresses due to the opposite 
36.8 kN ? m bending moment required to unload the member is linear 
and as shown in Fig. 4.41b. The maximum stress s9m in that distribution 
is obtained from Eq. (4.15). Recalling from Example 4.05 that Iyc 5 
120 3 1026 m3, we write

s¿m 5
Mc
I

5
36.8 kN ? m

120 3 1026 m3 5 306.7 MPa

Superposing the two distributions of stresses, we obtain the residual 
stresses shown in Fig. 4.41c. We check that, even though the reverse 
stresses exceed the yield strength sY, the assumption of a linear distribu-
tion of the reverse stresses is valid, since they do not exceed 2sY.

 (b) Radius of Curvature after Unloading. We can apply Hooke’s 
law at any point of the core |y| , 40 mm, since no plastic deformation 
has occurred in that portion of the member. Thus, the residual strain at 
the distance y 5 40 mm is

Px 5
sx

E
5

235.5 3 106 Pa
200 3 109 Pa

5 2177.5 3 1026

Solving Eq. (4.8) for r and substituting the appropriate values of y and 
Px, we write

r 5 2 
y

Px
5

40 3 1023 m
177.5 3 1026 5 225 m

The value obtained for r after the load has been removed represents a 
permanent deformation of the member.

EXAMPLE 4.06

–40

40

60

40

204.5 306.7 –35.5

–40

–60

40

66.7 (MPa)

60 60

–60 –60

–240 240

y(mm) y(mm) y(mm)

(a) (b) (c)

'm�

�x �x(MPa)�x

�Y

Fig. 4.41

262

bee80288_ch04_220-313.indd Page 262  11/11/10  3:03:15 PM user-f499bee80288_ch04_220-313.indd Page 262  11/11/10  3:03:15 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch04/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch04



263

SAMPLE PROBLEM 4.5

Beam AB has been fabricated from a high-strength low-alloy steel that is 
assumed to be elastoplastic with E 5 29 3 106 psi and sY 5 50 ksi. Neglect-
ing the effect of fillets, determine the bending moment M and the corre-
sponding radius of curvature (a) when yield first occurs, (b) when the flanges 
have just become fully plastic.

SOLUTION

 a. Onset of Yield. The centroidal moment of inertia of the section is

I 5 1
12 
112 in.2 116 in.23 2 1

12 
112 in. 2 0.75 in.2 114 in.23 5 1524 in4

 Bending Moment.  For smax 5 sY 5 50 ksi and c 5 8 in., we have

 
MY 5

sYI
c

5
150 ksi2 11524 in42

8 in.
  MY 5 9525 kip ? in. ◀

 Radius of Curvature.  Noting that, at c 5 8 in., the strain is PY 5 
sYyE 5 (50 ksi)/(29 3 106 psi) 5 0.001724, we have from Eq. (4.41)

 c 5 PYrY  8 in. 5 0.001724rY rY 5 4640 in. ◀

 b. Flanges Fully Plastic. When the flanges have just become fully plas-
tic, the strains and stresses in the section are as shown in the figure below.
 We replace the elementary compressive forces exerted on the top 
flange and on the top half of the web by their resultants R1 and R2, and 
similarly replace the tensile forces by R3 and R4.

 R1 5 R4 5 (50 ksi)(12 in.)(1 in.) 5 600 kips
R2 5 R3 5 1

2 150 ksi2 17 in.2 10.75 in.2 5 131.3 kips

B

A

16 in.

1 in.

in.

1 in.
12 in.

3
4

M

y

z C

E

O

� 50 ksi

1

�

�

Y

� 0.001724

8 in.

8 in.

Strain
distribution

Stress
distribution

� �
Y

� 0.001724�Y �Y

C

in.

1 in.
Strain 

distribution
Stress

distribution
Resultant

force

7 in.

7 in.

7 in.

7 in.
3
4

� 0.001724�Y

�Y

� 50 ksi

R4

R1

R2

R3

�Y
1 in.

7.5 in.

7.5 in.
4.67 in.

4.67 in.
z

 Bending Moment.  Summing the moments of R1, R2, R3, and R4 
about the z axis, we write

 M 5 2[R1(7.5 in.) 1 R2(4.67 in.)]
 5 2[(600)(7.5) 1 (131.3)(4.67)]  M 5 10,230 kip ? in. ◀

 Radius of Curvature.  Since yY 5 7 in. for this loading, we have from 
Eq. (4.40)

 yY 5 PYr  7 in. 5 (0.001724)r  r 5 4060 in. 5 338 ft ◀
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SAMPLE PROBLEM 4.6

Determine the plastic moment Mp of a beam with the cross section shown 
when the beam is bent about a horizontal axis. Assume that the material is 
elastoplastic with a yield strength of 240 MPa.

SOLUTION

 Neutral Axis.  When the deformation is fully plastic, the neutral axis 
divides the cross section into two portions of equal areas. Since the total 
area is

A 5 (100)(20) 1 (80)(20) 1 (60)(20) 5 4800 mm2

the area located above the neutral axis must be 2400 mm2. We write

(20)(100) 1 20y 5 2400  y 5 20 mm

Note that the neutral axis does not pass through the centroid of the cross 
section.

 Plastic Moment.  The resultant Ri of the elementary forces exerted on 
the partial area Ai is equal to

Ri 5 AisY

and passes through the centroid of that area. We have

 R1 5 A1sY 5 3 10.100 m2 10.020 m2 4240 MPa 5 480 kN
 R2 5 A2sY 5 3 10.020 m2 10.020 m2 4240 MPa 5 96 kN
 R3 5 A3sY 5 3 10.020 m2 10.060 m2 4240 MPa 5 288 kN
 R4 5 A4sY 5 3 10.060 m2 10.020 m2 4240 MPa 5 288 kN

The plastic moment Mp is obtained by summing the moments of the forces 
about the z axis.

 Mp 5 10.030 m2R1 1 10.010 m2R2 1 10.030 m2R3 1 10.070 m2R4

 5 10.030 m2 1480 kN2 1 10.010 m2 196 kN2
 1 10.030 m2 1288 kN2 1 10.070 m2 1288 kN2
 5 44.16 kN ? m Mp 5 44.2 kN ? m ◀

 Note: Since the cross section is not symmetric about the z axis, the sum 
of the moments of R1 and R2 is not equal to the sum of the moments of 
R3 and R4.

60 mm

100 mm

20 mm
80 mm

20 mm

20 mm

100 mm

20 mm
Neutral axis

20 mm
y

100 mm

60 mm

z

A3

A4

A2

A1

20 mm

20 mm

20 mm

60 mm

20 mm

30 mm

30 mm

70 mm

10 mm

R1

R2

R3

R4

x

y
� 240 MPa�Y

z
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SAMPLE PROBLEM 4.7

For the beam of Sample Prob. 4.5, determine the residual stresses and the 
permanent radius of curvature after the 10,230-kip ? in. couple M has been 
removed.

SOLUTION

 Loading.  In Sample Prob. 4.5 a couple of moment M 5 10,230 kip ? in. 
was applied and the stresses shown in Fig. 1 were obtained.

 Elastic Unloading.  The beam is unloaded by the application of a 
couple of moment M 5 210,230 kip ? in. (which is equal and opposite to 
the couple originally applied). During this unloading, the action of the beam 
is fully elastic; recalling from Sample Prob. 4.5 that I 5 1524 in4, we com-
pute the maximum stress

s¿m 5
Mc
I

5
110,230 kip ? in.2 18 in.2

1524 in4 5 53.70 ksi

The stresses caused by the unloading are shown in Fig. 2.

 Residual Stresses.  We superpose the stresses due to the loading (Fig. 1) and 
to the unloading (Fig. 2) and obtain the residual stresses in the beam (Fig. 3).

 Permanent Radius of Curvature.  At y 5 7 in. the residual stress is 
s 5 23.01 ksi. Since no plastic deformation occurred at this point, Hooke’s 
law can be used and we have Px 5 syE. Recalling Eq. (4.8), we write

r5 2 
y

Px
5 2 

yE

s
5 2 

17 in.2 129 3 106 psi2
23.01 ksi

5 167,400 in.
 
r 5 5620 ft ◀

We note that the residual stress is tensile on the upper face of the beam and 
compressive on the lower face, even though the beam is concave upward. 

10,230 kip · in. M � 10,230 kip · in.

� �50 ksi�Y
� 53.70 ksi �3.01 ksi

�3.70 ksi


3.70 ksi


3.01 ksi

� 'm

� 46.99 ksi�
8 in. 7 in. 8 in. 7 in.

(1) (2) (3)

� 
3.70 ksi (tension)�

� �3.70 ksi (compression)�

�
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PROBLEMS

266

 4.67 The prismatic bar shown is made of a steel that is assumed to be 
elastoplastic with sY 5 300 MPa and is subjected to a couple M
parallel to the x axis. Determine the moment M of the couple for 
which (a) yield first occurs, (b) the elastic core of the bar is 4 mm 
thick.

 4.68 Solve Prob. 4.67, assuming that the couple M is parallel to the 
z axis.

 4.69 The prismatic bar shown, made of a steel that is assumed to be 
elastoplastic with E 5 29 3 106 psi and sY 5 36 ksi, is subjected 
to a couple of 1350 lb ? in. parallel to the z axis. Determine (a) the 
thickness of the elastic core, (b) the radius of curvature of the bar.

z
x

8 mm12 mm

M

Fig. P4.67

M

y

z

 in.5
8

 in.1
2

Fig. P4.69

4.70 Solve Prob. 4.69, assuming that the 1350-lb ? in. couple is parallel 
to the y axis.

 4.71 A bar of rectangular cross section shown is made of a steel that is 
assumed to be elastoplastic with E 5 200 GPa and sY 5 300 MPa. 
Determine the bending moment M for which (a) yield first occurs, 
(b) the plastic zones at the top and bottom of the bar are 12 mm 
thick.

30 mm

40 mm

M

M'

Fig. P4.71 and P4.72

 4.72 Bar AB is made of a steel that is assumed to be elastoplastic with 
E 5 200 GPa and sY 5 240 MPa. Determine the bending moment 
M for which the radius of curvature of the bar will be (a) 18 m, 
(b) 9 m.
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267Problems 4.73 and 4.74 A beam of the cross section shown is made of a steel 
that is assumed to be elastoplastic with E 5 200 GPa and sY 5 
240 MPa. For bending about the z axis, determine the bending 
moment at which (a) yield first occurs, (b) the plastic zones at the 
top and bottom of the bar are 30 mm thick.

z

y

90 mm

60 mm

C

Fig. P4.73

30 mm

30 mm

30 mm

30 mm
15 mm15 mm

z

y

C

Fig. P4.74

 4.75 and 4.76 A beam of the cross section shown is made of a steel 
that is assumed to be elastoplastic with E 5 29 3 106 psi and 
sY 5 42 ksi. For bending about the z axis, determine the bending 
moment at which (a) yield first occurs, (b) the plastic zones at the 
top and bottom of the bar are 3 in. thick.

3 in.

3 in.

3 in.

3 in.1.5 in. 1.5 in.

z

y

C

Fig. P4.75

3 in.

3 in.

3 in.

3 in.

1.5 in. 1.5 in.

z

y

C

Fig. P4.76

 4.77 through 4.80 For the beam indicated, determine (a) the plastic 
moment Mp, (b) the shape factor of the cross section.

   4.77 Beam of Prob. 4.73.
   4.78 Beam of Prob. 4.74.
   4.79 Beam of Prob. 4.75.
   4.80 Beam of Prob. 4.76.
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268 Pure Bending  4.81 through 4.84 Determine the plastic moment Mp of a steel 
beam of the cross section shown, assuming the steel to be elasto-
plastic with a yield strength of 240 MPa.

r � 18 mm

Fig. P4.81

50 mm

30 mm

10 mm

30 mm
10 mm10 mm

Fig. P4.82

36 mm

30 mm

Fig. P4.83

40 mm

60 mm

Fig. P4.84

 4.85 and 4.86 Determine the plastic moment Mp of the cross sec-
tion shown, assuming the steel to be elastoplastic with a yield 
strength of 36 ksi.

 4.87 and 4.88 For the beam indicated, a couple of moment equal to 
the full plastic moment Mp is applied and then removed. Using a yield 
strength of 240 MPa, determine the residual stress at y 5 45 mm.

   4.87 Beam of Prob. 4.73.
   4.88 Beam of Prob. 4.74.

 4.89 and 4.90 A bending couple is applied to the bar indicated, 
causing plastic zones 3 in. thick to develop at the top and bottom 
of the bar. After the couple has been removed, determine (a) the 
residual stress at y 5 4.5 in., (b) the points where the residual 
stress is zero, (c) the radius of curvature corresponding to the per-
manent deformation of the bar.

   4.89 Beam of Prob. 4.75.
   4.90 Beam of Prob. 4.76.

 4.91 A bending couple is applied to the beam of Prob. 4.73, causing 
plastic zones 30 mm thick to develop at the top and bottom of the 
beam. After the couple has been removed, determine (a) the resid-
ual stress at y 5 45 mm, (b) the points where the residual stress 
is zero, (c) the radius of curvature corresponding to the permanent 
deformation of the beam.

 4.92 A beam of the cross section shown is made of a steel that is assumed 
to be elastoplastic with E 5 29 3 106 psi and sY 5 42 ksi. A bend-
ing couple is applied to the beam about the z axis, causing plastic 
zones 2 in. thick to develop at the top and bottom of the beam. 
After the couple has been removed, determine (a) the residual 
stress at y 5 2 in., (b) the points where the residual stress is zero, 
(c) the radius of curvature corresponding to the permanent defor-
mation of the beam.

 4.93 A rectangular bar that is straight and unstressed is bent into an arc 
of circle of radius r by two couples of moment M. After the couples 
are removed, it is observed that the radius of curvature of the bar is 
rR. Denoting by rY the radius of curvature of the bar at the onset of 
yield, show that the radii of curvature satisfy the following relation:

1
rR

5
1
r
e1 2

3
2

 
r

rY
c 1 2

1
3

 a r
rY
b2 d f

0.6 in.0.6 in.
0.6 in.

1.2 in.

0.4 in.

Fig. P4.85

Cz

y

1 in.
1 in.

1 in.

1 in.

1 in.

2 in.

Fig. P4.92

2 in.

4 in.

3 in.

 in.1
2

 in.1
2

 in.1
2

Fig. P4.86
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269Problems 4.94 A solid bar of rectangular cross section is made of a material that 
is assumed to be elastoplastic. Denoting by MY and rY, respectively, 
the bending moment and radius of curvature at the onset of yield, 
determine (a) the radius of curvature when a couple of moment 
M 5 1.25 MY is applied to the bar, (b) the radius of curvature after 
the couple is removed. Check the results obtained by using the 
relation derived in Prob. 4.93.

 4.95 The prismatic bar AB is made of a steel that is assumed to be 
elastoplastic and for which E 5 200 GPa. Knowing that the radius 
of curvature of the bar is 2.4 m when a couple of moment M 5 
350 N ? m is applied as shown, determine (a) the yield strength of 
the steel, (b) the thickness of the elastic core of the bar.

 4.96 The prismatic bar AB is made of an aluminum alloy for which the 
tensile stress-strain diagram is as shown. Assuming that the s-P dia-
gram is the same in compression as in tension, determine (a) the 
radius of curvature of the bar when the maximum stress is 250 MPa, 
(b) the corresponding value of the bending moment. (Hint: For part b, 
plot s versus y and use an approximate method of integration.)

B

A

16 mm 20 mm

M

Fig. P4.95

M

60 mm

40 mm

A

M'

B

�

�

(MPa)

300

200

100

0 0.005 0.010

Fig. P4.96

 4.97 The prismatic bar AB is made of a bronze alloy for which the ten-
sile stress-strain diagram is as shown. Assuming that the s-P dia-
gram is the same in compression as in tension, determine (a) the 
maximum stress in the bar when the radius of curvature of the bar 
is 100 in., (b) the corresponding value of the bending moment. 
(See hint given in Prob. 4.96.)

 4.98 A prismatic bar of rectangular cross section is made of an alloy for 
which the stress-strain diagram can be represented by the relation 
P 5 ksn for s . 0 and P 5 2|ksn| for s , 0. If a couple M is 
applied to the bar, show that the maximum stress is

sm 5
1 1 2n

3n
 
Mc
I

1.2 in.

0.8 in.

A

B

�

�

(ksi)

50

30

40

20

10

0
0.004 0.008

M

Fig. P4.97

�

�

M

Fig. P4.98
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270 Pure Bending 4.12  ECCENTRIC AXIAL LOADING IN A PLANE
OF SYMMETRY

We saw in Sec. 1.5 that the distribution of stresses in the cross sec-
tion of a member under axial loading can be assumed uniform only 
if the line of action of the loads P and P9 passes through the centroid 
of the cross section. Such a loading is said to be centric. Let us now 
analyze the distribution of stresses when the line of action of the 
loads does not pass through the centroid of the cross section, i.e., 
when the loading is eccentric.
 Two examples of an eccentric loading are shown in Photos 4.5 and 
4.6. In the case of the walkway light, the weight of the lamp causes an 
eccentric loading on the post. Likewise, the vertical forces exerted on 
the press cause an eccentric loading on the back column of the press.

Photo 4.5 Photo 4.6

 In this section, our analysis will be limited to members that 
possess a plane of symmetry, and it will be assumed that the loads 
are applied in the plane of symmetry of the member (Fig. 4.42a). The 
internal forces acting on a given cross section may then be repre-
sented by a force F applied at the centroid C of the section and a 
couple M acting in the plane of symmetry of the member (Fig. 4.42b). 
The conditions of equilibrium of the free body AC require that the 
force F be equal and opposite to P9 and that the moment of the 
couple M be equal and opposite to the moment of P9 about C. Denot-
ing by d the distance from the centroid C to the line of action AB of 
the forces P and P9, we have

 F 5 P  and  M 5 Pd  (4.49)

 We now observe that the internal forces in the section would 
have been represented by the same force and couple if the straight 
portion DE of member AB had been detached from AB and sub-
jected simultaneously to the centric loads P and P9 and to the bend-
ing couples M and M9 (Fig. 4.43). Thus, the stress distribution due 

d

d

D E
C

PP'

A B(a)

D
C

F
M

P'

A
(b)

Fig. 4.42 Member with eccentric 
loading.

D E
C

P

(a)

P'

M' M

D
C

F � P

(b)

P'

M' M

Fig. 4.43 Internal forces in 
member with eccentric loading.
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271to the original eccentric loading can be obtained by superposing the 
uniform stress distribution corresponding to the centric loads P and P9 
and the linear distribution corresponding to the bending couples M 
and M9 (Fig. 4.44). We write

sx 5 1sx2centric 1 1sx2bending

y y y

C C C
x� x� x�+ =

Fig. 4.44 Stress distribution—eccentric loading.

or, recalling Eqs. (1.5) and (4.16):

 
sx 5

P
A

2
My

I  
(4.50)

where A is the area of the cross section and I its centroidal moment 
of inertia, and where y is measured from the centroidal axis of the 
cross section. The relation obtained shows that the distribution of 
stresses across the section is linear but not uniform. Depending upon 
the geometry of the cross section and the eccentricity of the load, 
the combined stresses may all have the same sign, as shown in 
Fig. 4.44, or some may be positive and others negative, as shown in 
Fig. 4.45. In the latter case, there will be a line in the section, along 
which sx 5 0. This line represents the neutral axis of the section. 
We note that the neutral axis does not coincide with the centroidal 
axis of the section, since sx Z 0 for y 5 0.

y

C C

y

x� x� C

N.A.

y

x�+ =
Fig. 4.45 Alternative stress distribution—eccentric loading.

 The results obtained are valid only to the extent that the con-
ditions of applicability of the superposition principle (Sec. 2.12) 
and of Saint-Venant’s principle (Sec. 2.17) are met. This means that 
the stresses involved must not exceed the proportional limit of the 
material, that the deformations due to bending must not apprecia-
bly affect the distance d in Fig. 4.42a, and that the cross section 
where the stresses are computed must not be too close to points 
D or E in the same figure. The first of these requirements clearly 
shows that the superposition method cannot be applied to plastic 
deformations.

4.12 Eccentric Axial Loading in a Plane
of Symmetry
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An open-link chain is obtained by bending low-carbon steel rods of 0.5-in. 
diameter into the shape shown (Fig. 4.46). Knowing that the chain carries 
a load of 160 lb, determine (a) the largest tensile and compressive stresses 
in the straight portion of a link, (b) the distance between the centroidal 
and the neutral axis of a cross section.

 (a) Largest Tensile and Compressive Stresses. The internal 
forces in the cross section are equivalent to a centric force P and a bend-
ing couple M (Fig. 4.47) of magnitudes

P 5 160 lb
M 5 Pd 5 1160 lb 2 10.65 in.2 5 104 lb ? in.

The corresponding stress distributions are shown in parts a and b of Fig. 4.48. 
The distribution due to the centric force P is uniform and equal to s0 5 
PyA. We have

 A 5 pc2 5 p 10.25 in.22 5 0.1963 in2

 s0 5
P
A

5
160 lb

0.1963 in2 5 815 psi

EXAMPLE 4.07

160 lb

160 lb

0.5 in.

0.65 in.

Fig. 4.46

8475 psi

– 8475 psi
– 7660 psi

N.A.

815 psi

x

C y C y C y

9290 psi� x� x�

(a) (b) (c)

+ =

Fig. 4.48160 lb

M

Pd � 0.65 in.

C

Fig. 4.47 The distribution due to the bending couple M is linear with a maximum 
stress sm 5 McyI. We write

 I 5 1
4pc4 5 1

4p 10.25 in.24 5 3.068 3 1023 in4

 sm 5
Mc
I

5
1104 lb ? in.2 10.25 in.2

3.068 3 1023 in4 5 8475 psi

Superposing the two distributions, we obtain the stress distribution cor-
responding to the given eccentric loading (Fig. 4.48c). The largest tensile 
and compressive stresses in the section are found to be, respectively,

 st 5 s0 1 sm 5 815 1 8475 5 9290 psi
 sc 5 s0 2 sm 5 815 2 8475 5 27660 psi

 (b) Distance Between Centroidal and Neutral Axes. The dis-
tance y0 from the centroidal to the neutral axis of the section is obtained 
by setting sx 5 0 in Eq. (4.50) and solving for y0:

 0 5
P
A

2
My0

I

 y0 5 aP
A
ba I

M
b 5 1815 psi2  

3.068 3 1023 in4

104 lb ? in.
 y0 5 0.0240 in.
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SAMPLE PROBLEM 4.8

Knowing that for the cast iron link shown the allowable stresses are 30 MPa 
in tension and 120 MPa in compression, determine the largest force P which 
can be applied to the link. (Note: The T-shaped cross section of the link has 
previously been considered in Sample Prob. 4.2.)

A

B

D

10 mm

a

a

P'P

SOLUTION

 Properties of Cross Section.  From Sample Prob. 4.2, we have

A 5 3000 mm2 5 3 3 1023 m2    Y 5 38 mm 5 0.038 m
I 5 868 3 1029 m4

We now write:  d 5 (0.038 m) 2 (0.010 m) 5 0.028 m

 Force and Couple at C.  We replace P by an equivalent force-couple 
system at the centroid C.

P 5 P  M 5 P(d) 5 P(0.028 m) 5 0.028P

The force P acting at the centroid causes a uniform stress distribution (Fig. 1). 
The bending couple M causes a linear stress distribution (Fig. 2).

 s0 5
P
A

5
P

3 3 1023 5 333P     1Compression 2
 s1 5

McA

I
5
10.028P 2 10.022 2

868 3 1029 5 710P     1Tension 2
 s2 5

McB

I
5
10.028P 2 10.038 2

868 3 1029 5 1226P     1Compression 2
 Superposition.  The total stress distribution (Fig. 3) is found by super-
posing the stress distributions caused by the centric force P and by the 
couple M. Since tension is positive, and compression negative, we have

 sA 5 2  

P
A

1
McA

I
5 2333P 1 710P 5 1377P     1Tension 2

 sB 5 2  

P
A

2
McB

I
5 2333P 2 1226P 5 21559P     1Compression 2

 Largest Allowable Force.  The magnitude of P for which the tensile 
stress at point A is equal to the allowable tensile stress of 30 MPa is found 
by writing

 sA 5 377P 5 30 MPa P 5 79.6 kN ◀

We also determine the magnitude of P for which the stress at B is equal to 
the allowable compressive stress of 120 MPa.

 sB 5 21559P 5 2120 MPa P 5 77.0 kN ◀

The magnitude of the largest force P that can be applied without exceeding ei-
ther of the allowable stresses is the smaller of the two values we have found.

 P 5 77.0 kN ◀

90 mm

20 mm

40 mm
10 mm

30 mm
Section a–a

A

B

C

D�

cA � 0.022 m

cB � 0.038 m

0.010 m

A

d

B

C

D

A

C

D

B
P

d

A

C

B

P

M

C

B

A 0 A
�

McA

I

C

B

A

C

B

�
A�

B�

1�

�
McB

I2�

(1) (2) (3)
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PROBLEMS

274

 4.99 A short wooden post supports a 6-kip axial load as shown. Determine 
the stress at point A when (a) b 5 0, (b) b 5 1.5 in., (c) b 5 3 in.

 4.100 As many as three axial loads each of magnitude P 5 10 kips can 
be applied to the end of a W8 3 21 rolled-steel shape. Determine 
the stress at point A, (a) for the loading shown, (b) if loads are 
applied at points 1 and 2 only.

y

z x

6 kips
3 in.

A

C

b

Fig. P4.99

C

3.5 in.

3.5 in.

P

P

P
3

2

1

A

Fig. P4.100

 4.101 Knowing that the magnitude of the horizontal force P is 8 kN, 
determine the stress at (a) point A, (b) point B.

 4.102 The vertical portion of the press shown consists of a rectangular 
tube of wall thickness t 5 10 mm. Knowing that the press has been 
tightened on wooden planks being glued together until P 5 20 kN, 
determine the stress at (a) point A, (b) point B.

45 mm

30 mm

24 mm

15 mm

A
D

B

P

Fig. P4.101

P'

P
a a

t

t

80 mm

60 mm

Section a-a

A B

200 mm
80 mm

Fig. P4.102

 4.103 Solve Prob. 4.102, assuming that t 5 8 mm.

 4.104 Determine the stress at points A and B, (a) for the loading shown, 
(b) if the 60-kN loads are applied at points 1 and 2 only.

60 kN

150 mm

A

B

1

3

60 kN
60 kN

2 150 mm

90 mm120 mm
120 mm

Fig. P4.104
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275Problems 4.105 Knowing that the allowable stress in section ABD is 10 ksi, deter-
mine the largest force P that can be applied to the bracket shown.

 4.106 Portions of a 1
2 3 1

2-in. square bar have been bent to form the two 
machine components shown. Knowing that the allowable stress is 
15 ksi, determine the maximum load that can be applied to each 
component.

A D

0.9 in.
2 in.

0.6 in.
0.6 in.

P

B

Fig. P4.105

1 in.

(a) (b)

P'P P'P

Fig. P4.106

 4.107 The four forces shown are applied to a rigid plate supported by 
a solid steel post of radius a. Knowing that P 5 100 kN and a 5 
40 mm, determine the maximum stress in the post when (a) the 
force at D is removed, (b) the forces at C and D are removed.

x

y

z

PP

P P

A
C

B

D
a

Fig. P4.107

a

a
d

P'

P

Fig. P4.108 and P4.109

12 kips

Fig. P4.110

 4.108 A milling operation was used to remove a portion of a solid bar 
of square cross section. Knowing that a 5 30 mm, d 5 20 mm, 
and sall 5 60 MPa, determine the magnitude P of the largest 
forces that can be safely applied at the centers of the ends of 
the bar.

 4.109 A milling operation was used to remove a portion of a solid bar of 
square cross section. Forces of magnitude P 5 18 kN are applied 
at the centers of the ends of the bar. Knowing that a 5 30 mm 
and sall 5 135 MPa, determine the smallest allowable depth d of 
the milled portion of the bar.

 4.110 A short column is made by nailing two 1 3 4-in. planks to a 2 3 
4-in. timber. Determine the largest compressive stress created in 
the column by a 12-kip load applied as shown at the center of the 
top section of the timber if (a) the column is as described, (b) plank 
1 is removed, (c) both planks are removed.
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276 Pure Bending  4.111 An offset h must be introduced into a solid circular rod of diameter 
d. Knowing that the maximum stress after the offset is introduced 
must not exceed 5 times the stress in the rod when it is straight, 
determine the largest offset that can be used.

 4.112 An offset h must be introduced into a metal tube of 0.75-in. outer 
diameter and 0.08-in. wall thickness. Knowing that the maximum 
stress after the offset is introduced must not exceed 4 times the 
stress in the tube when it is straight, determine the largest offset 
that can be used.

 4.113 A steel rod is welded to a steel plate to form the machine element 
shown. Knowing that the allowable stress is 135 MPa, determine 
(a) the largest force P that can be applied to the element, (b) the 
corresponding location of the neutral axis. Given: The centroid of 
the cross section is at C and Iz 5 4195 mm4.

P'

P'

P

P

d

d

h

Fig. P4.111 and P4.112

P'

a

P

3 mm

18 mm

13.12 mm

a

z

x

6-mm diameter

Section a-a

C

Fig. P4.113

 4.114 A vertical rod is attached at point A to the cast iron hanger shown. 
Knowing that the allowable stresses in the hanger are sall 5 15 ksi 
and sall 5 212 ksi, determine the largest downward force and the 
largest upward force that can be exerted by the rod.

0.75 in.

3 in.

3 in.

1 in.

1.5 in. 1.5 in.

aa

BA
0.75 in.

Section a-a

Fig. P4.114

 4.115 Solve Prob. 4.114, assuming that the vertical rod is attached at 
point B instead of point A.

 4.116 Three steel plates, each of 25 3 150-mm cross section, are welded 
together to form a short H-shaped column. Later, for architectural 
reasons, a 25-mm strip is removed from each side of one of the 
flanges. Knowing that the load remains centric with respect to the 
original cross section and that the allowable stress is 100 MPa, 
determine the largest force P (a) that could be applied to the 
original column, (b) that can be applied to the modified column.

50 mm
50 mm

P

Fig. P4.116
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277Problems 4.117 A vertical force P of magnitude 20 kips is applied at point C located 
on the axis of symmetry of the cross section of a short column. 
Knowing that y 5 5 in., determine (a) the stress at point A, (b) the 
stress at point B, (c) the location of the neutral axis.

(a) (b)

y

y

y x

x

A

A

B
B

C

3 in.3 in.

4 in.

2 in.

2 in. 2 in.

1 in.

P

Fig. P4.117 and P4.118

 4.118 A vertical force P is applied at point C located on the axis of sym-
metry of the cross section of a short column. Determine the range 
of values of y for which tensile stresses do not occur in the 
column.

 4.119 Knowing that the clamp shown has been tightened until P 5 400 N, 
determine (a) the stress at point A, (b) the stress at point B, (c) the 
location of the neutral axis of section a-a.

32 mm

P'P

a

a
B

A

4 mm

2 mm radius

20 mm

Section a–a

Fig. P4.119

 4.120 The four bars shown have the same cross-sectional area. For the 
given loadings, show that (a) the maximum compressive stresses 
are in the ratio 4:5:7:9, (b) the maximum tensile stresses are in the 
ratio 2:3:5:3. (Note: the cross section of the triangular bar is an 
equilateral triangle.)

P

P

P

P

Fig. P4.120
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278 Pure Bending  4.121 The C-shaped steel bar is used as a dynamometer to determine the 
magnitude P of the forces shown. Knowing that the cross section 
of the bar is a square of side 40 mm and that the strain on the inner 
edge was measured and found to be 450 m, determine the magni-
tude P of the forces. Use E 5 200 GPa.

 4.122 An eccentric force P is applied as shown to a steel bar of 25 3 90-mm 
cross section. The strains at A and B have been measured and 
found to be

PA 5 1350 m  PB 5 270 m

  Knowing that E 5 200 GPa, determine (a) the distance d, (b) the 
magnitude of the force P.

40 mm
80 mm

P'

P

Fig. P4.121

30 mm

45 mm

15 mm

90 mm

25 mm

d

A

B P

Fig. P4.122

 4.123 Solve Prob. 4.122, assuming that the measured strains are

PA 5 1600 m  PB 5 1420 m

 4.124 A short length of a W8 3 31 rolled-steel shape supports a rigid 
plate on which two loads P and Q are applied as shown. The strains 
at two points A and B on the centerline of the outer faces of the 
flanges have been measured and found to be

PA 5 2550 3 1026 in./in.  PB 5 2680 3 1026 in./in.

  Knowing that E 5 29 3 106 psi, determine the magnitude of each 
load.

BA

4.5 in.P Q4.5 in.

Fig. P4.124

b � 40 mm

a � 25 mm

20 mm

A

D

CB
d P

Fig. P4.126

 4.125 Solve Prob. 4.124, assuming that the measured strains are

PA 5 135 3 1026 in./in.  and  PB 5 2450 3 1026 in./in.

 4.126 The eccentric axial force P acts at point D, which must be located 
25 mm below the top surface of the steel bar shown. For P 5 60 kN, 
determine (a) the depth d of the bar for which the tensile stress at 
point A is maximum, (b) the corresponding stress at point A.
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2794.13 UNSYMMETRIC BENDING
Our analysis of pure bending has been limited so far to members 
possessing at least one plane of symmetry and subjected to couples 
acting in that plane. Because of the symmetry of such members and 
of their loadings, we concluded that the members would remain 
symmetric with respect to the plane of the couples and thus bend 
in that plane (Sec. 4.3). This is illustrated in Fig. 4.49; part a shows 
the cross section of a member possessing two planes of symmetry, 
one vertical and one horizontal, and part b the cross section of a 
member with a single, vertical plane of symmetry. In both cases the 
couple exerted on the section acts in the vertical plane of symmetry 
of the member and is represented by the horizontal couple vector 
M, and in both cases the neutral axis of the cross section is found 
to coincide with the axis of the couple.
 Let us now consider situations where the bending couples do 
not act in a plane of symmetry of the member, either because they 
act in a different plane, or because the member does not possess any 
plane of symmetry. In such situations, we cannot assume that the 
member will bend in the plane of the couples. This is illustrated in 
Fig. 4.50. In each part of the figure, the couple exerted on the sec-
tion has again been assumed to act in a vertical plane and has been 
represented by a horizontal couple vector M. However, since the 
vertical plane is not a plane of symmetry, we cannot expect the mem-
ber to bend in that plane, or the neutral axis of the section to coincide 
with the axis of the couple.

4.13 Unsymmetric Bending

Mz

y

N.A. C

(a)

(b)

Mz

y

N.A.
C

Fig. 4.49 Moment in 
plane of symmetry.

(a)

Mz

y

N.A.
C

Fig. 4.50 Moment not in plane of symmetry.

(b)

M
z

y

N.A.
C

(c)

Mz

y

N.A.
C

 We propose to determine the precise conditions under which the 
neutral axis of a cross section of arbitrary shape coincides with the axis 
of the couple M representing the forces acting on that section. Such a 
section is shown in Fig. 4.51, and both the couple vector M and the 

z
N.A.

C

dA

x
�y

y

z

x� z

C

x

y

M
=

Fig. 4.51 Section with arbitrary shape.
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280 Pure Bending neutral axis have been assumed to be directed along the z axis. We 
recall from Sec. 4.2 that, if we then express that the elementary internal 
forces sx dA form a system equivalent to the couple M, we obtain

 x components: esxdA 5 0  (4.1)

 moments about y axis: ezsxdA 5 0 (4.2)

 moments about z axis: e(2ysxdA) 5 M (4.3)

As we saw earlier, when all the stresses are within the proportional 
limit, the first of these equations leads to the requirement that the 
neutral axis be a centroidal axis, and the last to the fundamental 
relation sx 5 2MyyI. Since we had assumed in Sec. 4.2 that the 
cross section was symmetric with respect to the y axis, Eq. (4.2) was 
dismissed as trivial at that time. Now that we are considering a cross 
section of arbitrary shape, Eq. (4.2) becomes highly significant. 
Assuming the stresses to remain within the proportional limit of the 
material, we can substitute sx 5 2sm yyc into Eq. (4.2) and write

 # z a2  

sm y
c
b  dA 5 0    or    eyz dA 5 0 (4.51)

The integral eyzdA represents the product of inertia Iyz of the cross 
section with respect to the y and z axes, and will be zero if these 
axes are the principal centroidal axes of the cross section.† We thus 
conclude that the neutral axis of the cross section will coincide with 
the axis of the couple M representing the forces acting on that sec-
tion if, and only if, the couple vector M is directed along one of the 
principal centroidal axes of the cross section.
 We note that the cross sections shown in Fig. 4.49 are sym-
metric with respect to at least one of the coordinate axes. It follows 
that, in each case, the y and z axes are the principal centroidal axes 
of the section. Since the couple vector M is directed along one of 
the principal centroidal axes, we verify that the neutral axis will coin-
cide with the axis of the couple. We also note that, if the cross sec-
tions are rotated through 908 (Fig. 4.52), the couple vector M will 
still be directed along a principal centroidal axis, and the neutral axis 
will again coincide with the axis of the couple, even though in case 
b the couple does not act in a plane of symmetry of the member.
 In Fig. 4.50, on the other hand, neither of the coordinate axes 
is an axis of symmetry for the sections shown, and the coordinate 
axes are not principal axes. Thus, the couple vector M is not directed 
along a principal centroidal axis, and the neutral axis does not coin-
cide with the axis of the couple. However, any given section possesses 
principal centroidal axes, even if it is unsymmetric, as the section 
shown in Fig. 4.50c, and these axes may be determined analytically 
or by using Mohr’s circle.† If the couple vector M is directed along 
one of the principal centroidal axes of the section, the neutral axis 
will coincide with the axis of the couple (Fig. 4.53) and the equations 

†See Ferdinand P. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed., 
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers, 9th ed., McGraw-Hill, 
New York, 2010, Secs. 9.8–9.10.

(a)

(b)

M

N.A.

N.A.

z

y

C

Mz

y

C

Fig. 4.52 Moment on 
principal centroidal axis.

N.A.

(a)

Mz

y

C

N.A.

(b)

Mz

y

C

Fig. 4.53 Moment not on 
principal centroidal axis.
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281derived in Secs. 4.3 and 4.4 for symmetric members can be used to 
determine the stresses in this case as well.
 As you will see presently, the principle of superposition can be 
used to determine stresses in the most general case of unsymmetric 
bending. Consider first a member with a vertical plane of symmetry, 
which is subjected to bending couples M and M9 acting in a plane 
forming an angle u with the vertical plane (Fig. 4.54). The couple 

4.13 Unsymmetric Bending

M

x

z

�
y

M'

Fig. 4.54 Unsymmetric bending. �

M My

Mz

y

z C

Fig. 4.55

vector M representing the forces acting on a given cross section will 
form the same angle u with the horizontal z axis (Fig. 4.55). Resolv-
ing the vector M into component vectors Mz and My along the z and 
y axes, respectively, we write

 Mz 5 M cos u      My 5 M sin u (4.52)

Since the y and z axes are the principal centroidal axes of the cross 
section, we can use Eq. (4.16) to determine the stresses resulting 
from the application of either of the couples represented by Mz and 
My. The couple Mz acts in a vertical plane and bends the member 
in that plane (Fig. 4.56). The resulting stresses are

 sx 5 2  

Mz y

Iz
 (4.53)

where Iz is the moment of inertia of the section about the principal 
centroidal z axis. The negative sign is due to the fact that we have 
compression above the xz plane (y . 0) and tension below (y , 0). 
On the other hand, the couple My acts in a horizontal plane and 
bends the member in that plane (Fig. 4.57). The resulting stresses 
are found to be

 sx 5 1
My z

Iy
 (4.54)

where Iy is the moment of inertia of the section about the principal 
centroidal y axis, and where the positive sign is due to the fact that 
we have tension to the left of the vertical xy plane (z . 0) and com-
pression to its right (z , 0). The distribution of the stresses caused 
by the original couple M is obtained by superposing the stress dis-
tributions defined by Eqs. (4.53) and (4.54), respectively. We have

 sx 5 2  

Mz y

Iz
1

My z

Iy
 (4.55)

M'z

z

y

Mz

x

y

Fig. 4.56

M'y
z

z

My

x

y

Fig. 4.57
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282 Pure Bending

M N
. A.

C

y

z

 �

Fig. 4.59

 We note that the expression obtained can also be used to com-
pute the stresses in an unsymmetric section, such as the one shown 
in Fig. 4.58, once the principal centroidal y and z axes have been 
determined. On the other hand, Eq. (4.55) is valid only if the condi-
tions of applicability of the principle of superposition are met. In 
other words, it should not be used if the combined stresses exceed 
the proportional limit of the material, or if the deformations caused 
by one of the component couples appreciably affect the distribution 
of the stresses due to the other.
 Equation (4.55) shows that the distribution of stresses caused 
by unsymmetric bending is linear. However, as we have indicated 
earlier in this section, the neutral axis of the cross section will not, 
in general, coincide with the axis of the bending couple. Since the 
normal stress is zero at any point of the neutral axis, the equation 
defining that axis can be obtained by setting sx 5 0 in Eq. (4.55). 
We write

2  

Mz  y

Iz
1

Myz

Iy
5 0

or, solving for y and substituting for Mz and My from Eqs. (4.52),

 y 5 a Iz

Iy
 tan ub z (4.56)

The equation obtained is that of a straight line of slope m 5 (IzyIy) 
tan u. Thus, the angle f that the neutral axis forms with the z axis 
(Fig. 4.59) is defined by the relation

 tan f 5
Iz

Iy
 tan u (4.57)

where u is the angle that the couple vector M forms with the same 
axis. Since Iz and Iy are both positive, f and u have the same sign. 
Furthermore, we note that f . u when Iz . Iy, and f , u when 
Iz , Iy. Thus, the neutral axis is always located between the couple 
vector M and the principal axis corresponding to the minimum 
moment of inertia.

C

y

z

Fig. 4.58 Unsymmetric 
cross section.
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283

EXAMPLE 4.08A 1600-lb ? in. couple is applied to a wooden beam, of rectangular cross 
section 1.5 by 3.5 in., in a plane forming an angle of 308 with the vertical 
(Fig. 4.60). Determine (a) the maximum stress in the beam, (b) the angle 
that the neutral surface forms with the horizontal plane.

C

30�

3.5 in.

1.5 in.

1600 lb · in.

Fig. 4.60

Mz

ED

C

A B

y

z

� � 30� 1.75 in.

0.75 in.

1600 lb · in.

Fig. 4.61

 (a) Maximum Stress. The components Mz and My of the couple 
vector are first determined (Fig. 4.61):

 Mz 5 11600 lb ? in.2 cos 30° 5 1386 lb ? in.
 My 5 11600 lb ? in.2 sin 30° 5 800 lb ? in.

We also compute the moments of inertia of the cross section with 
respect to the z and y axes:

 Iz 5 1
12 11.5 in.2  13.5 in.23 5 5.359 in4

 Iy 5 1
12 13.5 in.2  11.5 in.23 5 0.9844 in4

The largest tensile stress due to Mz occurs along AB and is

s1 5
Mzy

Iz
5
11386 lb ? in.2  11.75 in.2

5.359 in4 5 452.6 psi

The largest tensile stress due to My occurs along AD and is

s2 5
Myz

Iy
5
1800 lb ? in.2  10.75 in.2

0.9844 in4 5 609.5 psi

The largest tensile stress due to the combined loading, therefore, occurs 
at A and is

smax 5 s1 1 s2 5 452.6 1 609.5 5 1062 psi

The largest compressive stress has the same magnitude and occurs at E.

 (b) Angle of Neutral Surface with Horizontal Plane. The 
angle f that the neutral surface forms with the horizontal plane (Fig. 4.62) 
is obtained from Eq. (4.57):

 tan f 5
Iz

Iy
 tan u 5

5.359 in4

0.9844 in4 tan 30° 5 3.143

 f 5 72.4°

The distribution of the stresses across the section is shown in Fig. 4.63.

N
. A

.

E

C

D

A B

y

z



Fig. 4.62

D

E

B

�1062 psi

1062 psi

N
eutral axis

A

C

Fig. 4.63
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284 Pure Bending 4.14 GENERAL CASE OF ECCENTRIC AXIAL LOADING
In Sec. 4.12 you analyzed the stresses produced in a member by an 
eccentric axial load applied in a plane of symmetry of the member. 
You will now study the more general case when the axial load is not 
applied in a plane of symmetry.
 Consider a straight member AB subjected to equal and oppo-
site eccentric axial forces P and P9 (Fig. 4.64a), and let a and b 
denote the distances from the line of action of the forces to the 
principal centroidal axes of the cross section of the member. The 
eccentric force P is statically equivalent to the system consisting of 
a centric force P and of the two couples My and Mz of moments My 
5 Pa and Mz 5 Pb represented in Fig. 4.64b. Similarly, the eccentric 
force P9 is equivalent to the centric force P9 and the couples M9y 
and M9z.
 By virtue of Saint-Venant’s principle (Sec. 2.17), we can replace 
the original loading of Fig. 4.64a by the statically equivalent loading 
of Fig. 4.64b in order to determine the distribution of stresses in a 
section S of the member, as long as that section is not too close to 
either end of the member. Furthermore, the stresses due to the 
loading of Fig. 4.64b can be obtained by superposing the stresses 
corresponding to the centric axial load P and to the bending couples 
My and Mz, as long as the conditions of applicability of the principle 
of superposition are satisfied (Sec. 2.12). The stresses due to the 
centric load P are given by Eq. (1.5), and the stresses due to the 
bending couples by Eq. (4.55), since the corresponding couple vec-
tors are directed along the principal centroidal axes of the section. 
We write, therefore,

 sx 5
P
A

2
Mz y

Iz
1

My z

Iy
 (4.58)

where y and z are measured from the principal centroidal axes of 
the section. The relation obtained shows that the distribution of 
stresses across the section is linear.
 In computing the combined stress sx from Eq. (4.58), care 
should be taken to correctly determine the sign of each of the three 
terms in the right-hand member, since each of these terms can be 
positive or negative, depending upon the sense of the loads P and 
P9 and the location of their line of action with respect to the principal 
centroidal axes of the cross section. Depending upon the geometry 
of the cross section and the location of the line of action of P and 
P9, the combined stresses sx obtained from Eq. (4.58) at various 
points of the section may all have the same sign, or some may be 
positive and others negative. In the latter case, there will be a line 
in the section, along which the stresses are zero. Setting sx 5 0 in 
Eq. (4.58), we obtain the equation of a straight line, which represents 
the neutral axis of the section:

Mz

Iz
 y 2

My

Iy
 z 5

P
A

B

A

S

x

C

abz

y

P'

P

P'

(a)

B

A

S

x

y

C

z

M'z
Mz

M'y

My

P

(b)

Fig. 4.64 Eccentric axial loading.
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285

EXAMPLE 4.09A vertical 4.80-kN load is applied as shown on a wooden post of rectan-
gular cross section, 80 by 120 mm (Fig. 4.65). (a) Determine the stress 
at points A, B, C, and D. (b) Locate the neutral axis of the cross 
section.

4.80 kN

35 mm

120 mm 80 mm

D

C

B

A

y

z x

Fig. 4.65

P � 4.80 kN

Mz � 12
192 N · m

y

x

Fig. 4.66

 (a) Stresses. The given eccentric load is replaced by an equiva-
lent system consisting of a centric load P and two couples Mx and Mz 
represented by vectors directed along the principal centroidal axes of the 
section (Fig. 4.66). We have

 Mx 5 14.80 kN 2 140 mm 2 5 192 N ? m
 Mz 5 14.80 kN 2 160 mm 2 35 mm 2 5 120 N ? m

We also compute the area and the centroidal moments of inertia of the 
cross section:

 A 5 10.080 m 2 10.120 m 2 5 9.60 3 1023 m2

 Ix 5 1
12 10.120 m 2 10.080 m 23 5 5.12 3 1026 m4

 Iz 5 1
12 10.080 m 2 10.120 m 23 5 11.52 3 1026 m4

The stress s0 due to the centric load P is negative and uniform across 
the section. We have

s0 5
P
A

5
24.80 kN

9.60 3 1023 m2 5 20.5 MPa

The stresses due to the bending couples Mx and Mz are linearly distrib-
uted across the section, with maximum values equal, respectively, to

 s1 5
Mxzmax

Ix
5
1192 N ? m 2 140 mm 2

5.12 3 1026 m4 5 1.5 MPa

 s2 5
Mzxmax

Iz
5
1120 N ? m 2 160 mm 2

11.52 3 1026 m4 5 0.625 MPa

The stresses at the corners of the section are

sy 5 s0 6 s1 6 s2

where the signs must be determined from Fig. 4.66. Noting that the 
stresses due to Mx are positive at C and D, and negative at A and B, and 
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that the stresses due to Mz are positive at B and C, and negative at A and 
D, we obtain

 sA 5 20.5 2 1.5 2 0.625 5 22.625 MPa
 sB 5 20.5 2 1.5 1 0.625 5 21.375 MPa
 sC 5 20.5 1 1.5 1 0.625 5 11.625 MPa
 sD 5 20.5 1 1.5 2 0.625 5 10.375 MPa

80 mm

80 mm

0.375 MPa

1.625 MPa

�1.375 MPa

�2.625 MPa

C A
D

HGB

(a) (b)

Fig. 4.67

 (b) Neutral Axis. We note that the stress will be zero at a point 
G between B and C, and at a point H between D and A (Fig. 4.67). Since 
the stress distribution is linear, we write

 
BG

80 mm
5

1.375
1.625 1 1.375

      BG 5 36.7 mm

 
HA

80 mm
5

2.625
2.625 1 0.375

      HA 5 70 mm

The neutral axis can be drawn through points G and H (Fig. 4.68).

C

A

D

H

G
x

z

O

B

Neutral axis

Fig. 4.68

C

H

B
A

�0.375 MPa

�2.625 MPa

Neutralaxis

�1.625 MPa

�1.375 MPa

G

Fig. 4.69

The distribution of the stresses across the section is shown in Fig. 4.69.
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287

SAMPLE PROBLEM 4.9

A horizontal load P is applied as shown to a short section of an S10 3 25.4 
rolled-steel member. Knowing that the compressive stress in the member 
is not to exceed 12 ksi, determine the largest permissible load P.

4.75 in.

1.5 in.

C

S10 � 25.4 P

SOLUTION

 Properties of Cross Section. The following data are taken from 
Appendix C.

Area: A 5 7.46 in2

Section moduli: Sx 5 24.7 in3   Sy 5 2.91 in3

 Force and Couple at C. We replace P by an equivalent force-couple 
system at the centroid C of the cross section.

Mx 5 14.75 in.2P    My 5 11.5 in.2P
Note that the couple vectors Mx and My are directed along the principal 
axes of the cross section.

 Normal Stresses. The absolute values of the stresses at points A, B, 
D, and E due, respectively, to the centric load P and to the couples Mx and 
My are

 s1 5
P
A

5
P

7.46 in2 5 0.1340P

 s2 5
Mx

Sx
5

4.75P

24.7 in3 5 0.1923P

 s3 5
My

Sy
5

1.5P

2.91 in3 5 0.5155P

 Superposition. The total stress at each point is found by superposing 
the stresses due to P, Mx, and My. We determine the sign of each stress by 
carefully examining the sketch of the force-couple system.

 sA 5 2s1 1 s2 1 s3 5 20.1340P 1 0.1923P 1 0.5155P 5 10.574P
 sB 5 2s1 1 s2 2 s3 5 20.1340P 1 0.1923P 2 0.5155P 5 20.457P
 sD 5 2s1 2 s2 1 s3 5 20.1340P 2 0.1923P 1 0.5155P 5 10.189P
 sE 5 2s1 2 s2 2 s3 5 20.1340P 2 0.1923P 2 0.5155P 5 20.842P

 Largest Permissible Load. The maximum compressive stress occurs 
at point E. Recalling that sall 5 212 ksi, we write

 sall 5 sE    212 ksi 5 20.842P  P 5 14.3 kips  b

C

y

x

4.66 in.

10 in.

y

xA

B

C

P

Mx

My

D

E
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288

*SAMPLE PROBLEM 4.10

A couple of magnitude M0 5 1.5 kN ? m acting in a vertical plane is applied 
to a beam having the Z-shaped cross section shown. Determine (a) the stress 
at point A, (b) the angle that the neutral axis forms with the horizontal plane. 
The moments and product of inertia of the section with respect to the y 
and z axes have been computed and are as follows:

 Iy 5 3.25 3 1026 m4

 Iz 5 4.18 3 1026 m4

 Iyz 5 2.87 3 1026 m4

SOLUTION

 Principal Axes.  We draw Mohr’s circle and determine the orientation 
of the principal axes and the corresponding principal moments of inertia.†

 tan 2um 5
FZ
EF

5
2.87
0.465

  2um 5 80.8°   um 5 40.4°

 R2 5 1EF22 1 1FZ22 5 10.46522 1 12.8722   R 5 2.91 3 1026 m4

 Iu 5 Imin 5 OU 5 Iave 2 R 5 3.72 2 2.91 5 0.810 3 1026 m4

 Iv 5 Imax 5 OV 5 Iave 1 R 5 3.72 1 2.91 5 6.63 3 1026 m4

 Loading.  The applied couple M0 is resolved into components parallel 
to the principal axes.

 Mu 5 M0 sin um 5 1500 sin 40.4° 5 972 N ? m
 Mv 5 M0 cos um 5 1500 cos 40.4° 5 1142 N ? m

 a. Stress at A. The perpendicular distances from each principal axis 
to point A are

 uA 5 yA cos um 1 zA sin um 5 50 cos 40.4° 1 74 sin 40.4° 5 86.0 mm
 vA 5 2yA sin um 1 zA cos um 5 250 sin 40.4° 1 74 cos 40.4° 5 23.9 mm

Considering separately the bending about each principal axis, we note that 
Mu produces a tensile stress at point A while Mv produces a compressive 
stress at the same point.

 sA 5 1
MuvA

Iu
2

MvuA

Iv
5 1

1972 N ? m2 10.0239 m2
0.810 3 1026 m4 2

11142 N ? m2 10.0860 m2
6.63 3 1026 m4

 5 1(28.68 MPa) 2 (14.81 MPa) sA 5 113.87 MPa ◀

 b. Neutral Axis. Using Eq. (4.57), we find the angle f that the 
 neutral axis forms with the v axis.

tan f 5
Iv

Iu
 tan um 5

6.63
0.810

 tan 40.4°   f 5 81.8°

The angle b formed by the neutral axis and the horizontal is

 b 5 f 2 um 5 81.88 2 40.48 5 41.48 b 5 41.48 ◀

M0

y

z

x

M0 � 1.5 kN · m

y

A

Cz
12 mm 12 mm

100 mm
12 mm

80 mm

Iyz(10–6 m4)

Iy, Iz (10–6 m4)

Iave � 3.72 Z(4.18, –2.87)

Y(3.25, 2.87)

O U D E F

R

R

V

2�m

M0 � 1.5 kN · m Mu

Mv

� m � 40.4°

�m

y
u

A

Cz

v

zA � 74 mm

z

v

zA sin   m�

yA cos   m�

   m�
yA � 50 mm

y

u

C

A

vA

uA

u

v

�
�

�

M0

m

C

N.A.

†See Ferdinand F. Beer and E. Russell Johnston, Jr., Mechanics for Engineers, 5th ed., 
McGraw-Hill, New York, 2008, or Vector Mechanics for Engineers–9th ed., McGraw-Hill, 
New York, 2010, Secs. 9.8–9.10.
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PROBLEMS

289

 4.127 through 4.134 The couple M is applied to a beam of the cross 
section shown in a plane forming an angle b with the vertical. 
Determine the stress at (a) point A, (b) point B, (c) point D.

B

A

50 mm

50 mm

40 mm 40 mm

M � 250 N · m

� � 30�

z

y

D

C

Fig. P4.127

A

� � 60�

B

z

y

16 mm

16 mm

40 mm 40 mm

M � 300 N · m

D
C

Fig. P4.128

A

2.5 in.
5 in.

2.5 in.

3 in.

y

z

� � 50�

3 in.

1 in.1 in.

B

C

D

5 in.

M � 60 kip · in. 

Fig. P4.129

A

y

z

B
3 in.

2 in.

2 in. 4 in.

3 in.

C

M � 10 kip · in.

� � 20�

D

A B

10 in.

0.3 in.

0.5 in.

0.5 in.

8 in.

C
M � 250 kip · in.

� � 30�

D

y

z

Fig. P4.132

M � 25 kN · m

� � 15�

C
80 mm

80 mm

30 mm

20 mm

z

y

A B

D

Fig. P4.131Fig. P4.130

A B

4 in.

1.6 in.2.4 in.

4.8 in.

C

M � 75 kip · in.

� � 75�

D

y

z

Fig. P4.133

� � 30�

y

z

M � 100 N · m

A

B

r � 20 mm

C

D

Fig. P4.134
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290 Pure Bending  4.135 through 4.140 The couple M acts in a vertical plane and is 
applied to a beam oriented as shown. Determine (a) the angle that 
the neutral axis forms with the horizontal, (b) the maximum tensile 
stress in the beam.

A

B

14.4 mm

C200 	 17.1

203 mm

57 mm
C

M � 2.8 kN · m

D

E

10�

Fig. P4.135

165 mm

310 mm

15�

M � 16 kN · m

W310 	 38.7

A

B

C

D
E

Fig. P4.136

A

B

 in.

4 in.
4 in.

4 in.

0.859 in.

45�

C

M � 15 kip · in.

D
1
2

y'

z'

Iy' � 6.74 in4

Iz' � 21.4 in4

Fig. P4.137

A

B

C
M � 400 N · m

30�

D

E

5 mm

5 mm

18.57 mm

50 mm

50 mm

5 mm

z'

y'

Iy' � 281 	 103 mm4

Iz' � 176.9 	 103 mm4

Fig. P4.138

M � 35 kip · in.
C

E

D

B

A

1 in.
1 in. 0.4 in.

0.4 in.

1.6 in.

2 in.

15�

Fig. P4.139

A

M � 120 N · m

20�

D

B

E
10 mm

10 mm

10 mm

10 mm

6 mm

y'

z' 6 mm

C

Iy' � 14.77 	 103 mm4

Iz' � 53.6 	 103 mm4

Fig. P4.140
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291Problems *4.141 through *4.143 The couple M acts in a vertical plane and is ap-
plied to a beam oriented as shown. Determine the stress at point A.

C

A

z

y

2.4 in.

2.4 in. 2.4 in.

2.4 in.

2.4 in.

2.4 in.

M � 125 kip · in.

Fig. P4.141

A

6 in.

2.08 in.

1.08 in.0.75 in.

0.75 in.

4 in.

C
M � 60 kip · in.

y

z

Iy � 8.7 in4

Iyz � �8.3 in4
Iz � 24.5 in4

Fig. P4.142

A

40 mm

10 mm

40 mm

10 mm 10 mm70 mm

CM � 1.2 kN · m

y

z

Iy � 1.894 	 106 mm4

Iz � 0.614 	 106 mm4

Iyz � �0.800 	 106 mm4

Fig. P4.143

 4.144 The tube shown has a uniform wall thickness of 12 mm. For the 
loading given, determine (a) the stress at points A and B, (b) the 
point where the neutral axis intersects line ABD.

 4.145 Solve Prob. 4.144, assuming that the 28-kN force at point E is 
removed.

 4.146 A rigid circular plate of 125-mm radius is attached to a solid 150 3 
200-mm rectangular post, with the center of the plate directly above 
the center of the post. If a 4-kN force P is applied at E with u 5 
308, determine (a) the stress at point A, (b) the stress at point B, (c) 
the point where the neutral axis intersects line ABD.

75 mm

125 mm
28 kN

28 kN

14 kN

A

D

B G

H

E

F

Fig. P4.144

�

y

A

B

E

D

C

z
x

R � 125 mm

150 mm200 mm

P � 4 kN

Fig. P4.146

 4.147 In Prob. 4.146, determine (a) the value of u for which the stress 
at D reaches its largest value, (b) the corresponding values of the 
stress at A, B, C, and D.
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292 Pure Bending  4.148 Knowing that P 5 90 kips, determine the largest distance a for 
which the maximum compressive stress does not exceed 18 ksi.

 4.149 Knowing that a 5 1.25 in., determine the largest value of P that can be 
applied without exceeding either of the following allowable stresses:

sten 5 10 ksi  scomp 5 18 ksi

 4.150 The Z section shown is subjected to a couple M0 acting in a vertical 
plane. Determine the largest permissible value of the moment M0 
of the couple if the maximum stress is not to exceed 80 MPa. 
Given: Imax 5 2.28 3 1026 m4, Imin 5 0.23 3 1026 m4, principal 
axes 25.78 c and 64.38 a.

1 in.

1 in.
1 in.

4 in. 5 in.

2.5 in.

P

a

Fig. P4.148 and P4.149

C

40 mm

10 mm 10 mm

10 mm

70 mm

y

z
40 mm

M0

Fig. P4.150

 4.151 Solve Prob. 4.150, assuming that the couple M0 acts in a horizontal 
plane.

 4.152 A beam having the cross section shown is subjected to a couple M0 
that acts in a vertical plane. Determine the largest permissible value 
of the moment M0 of the couple if the maximum stress in the beam is 
not to exceed 12 ksi. Given: Iy 5 Iz 5 11.3 in4, A 5 4.75 in2, kmin 5 
0.983 in. (Hint: By reason of symmetry, the principal axes form an 
angle of 458 with the coordinate axes. Use the relations Imin 5 Ak2

min 
and Imin 1 Imax 5 Iy 1 Iz.)

 4.153 Solve Prob. 4.152, assuming that the couple M0 acts in a horizontal 
plane.

 4.154 An extruded aluminum member having the cross section shown is 
subjected to a couple acting in a vertical plane. Determine the 
largest permissible value of the moment M0 of the couple if the 
maximum stress is not to exceed 12 ksi. Given: Imax 5 0.957 in4, 
Imin 5 0.427 in4, principal axes 29.48 a and 60.68 c.

 4.155 A couple M0 acting in a vertical plane is applied to a W12 3 16 
rolled-steel beam, whose web forms an angle u with the vertical. 
Denoting by s0 the maximum stress in the beam when u 5 0, 
determine the angle of inclination u of the beam for which the 
maximum stress is 2s0.

C

0.5 in.

5 in.

1.43 in.

1.43 in.

5 in.

0.5 in.

y

z M0

Fig. P4.152

1.5 in.

0.3 in.

1.5 in.0.6 in.0.3 in. 0.6 in.

M0

y

z C

Fig. P4.154

M0

� �

Fig. P4.155
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293Problems 4.156 Show that, if a solid rectangular beam is bent by a couple applied 
in a plane containing one diagonal of a rectangular cross section, 
the neutral axis will lie along the other diagonal.

 4.157 A beam of unsymmetric cross section is subjected to a couple M0 
acting in the horizontal plane xz. Show that the stress at point A, 
of coordinates y and z, is

sA 5
zIz 2 yIyz

IyIz 2 I2
yz

 My

  where Iy, Iz, and Iyz denote the moments and product of inertia of 
the cross section with respect to the coordinate axes, and My the 
moment of the couple.

 4.158 A beam of unsymmetric cross section is subjected to a couple M0 
acting in the vertical plane xy. Show that the stress at point A, of 
coordinates y and z, is

sA 5 2
yIy 2 zIyz

IyIz 2 I2
yz

 Mz

  where Iy, Iz, and Iyz denote the moments and product of inertia of 
the cross section with respect to the coordinate axes, and Mz the 
moment of the couple.

 4.159 (a) Show that, if a vertical force P is applied at point A of the sec-
tion shown, the equation of the neutral axis BD is

axA

r2
z
b x 1 azA

r2
x
b z 5 21

  where rz and rx denote the radius of gyration of the cross section 
with respect to the z axis and the x axis, respectively. (b) Further 
show that, if a vertical force Q is applied at any point located on 
line BD, the stress at point A will be zero.

 4.160 (a) Show that the stress at corner A of the prismatic member 
shown in Fig. P4.160a will be zero if the vertical force P is applied 
at a point located on the line

x
by6

1
z

hy6
5 1

  (b) Further show that, if no tensile stress is to occur in the member, the 
force P must be applied at a point located within the area bounded 
by the line found in part a and three similar lines corresponding to 
the condition of zero stress at B, C, and D, respectively. This area, 
shown in Fig. P4.160b, is known as the kern of the cross section.

M

A

B

E

C

D

h

b

Fig. P4.156

A

C
y

y
z

z
x

Fig. P4.157 and P4.158

A

B

C
P

D

y

x
z

xA
zA

Fig. P4.159

A

A

B

B

C

C

D

D

z

z x

x

b

h

y

h
6

b
6(a) (b)

P

Fig. P4.160
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294 Pure Bending *4.15 BENDING OF CURVED MEMBERS
Our analysis of stresses due to bending has been restricted so far to 
straight members. In this section we will consider the stresses caused 
by the application of equal and opposite couples to members that 
are initially curved. Our discussion will be limited to curved mem-
bers of uniform cross section possessing a plane of symmetry in 
which the bending couples are applied, and it will be assumed that 
all stresses remain below the proportional limit.
 If the initial curvature of the member is small, i.e., if its radius 
of curvature is large compared to the depth of its cross section, a good 
approximation can be obtained for the distribution of stresses by 
assuming the member to be straight and using the formulas derived 
in Secs. 4.3 and 4.4.† However, when the radius of curvature and the 
dimensions of the cross section of the member are of the same order 
of magnitude, we must use a different method of analysis, which was 
first introduced by the German engineer E. Winkler (1835–1888).
 Consider the curved member of uniform cross section shown in 
Fig. 4.70. Its transverse section is symmetric with respect to the y axis 
(Fig. 4.70b) and, in its unstressed state, its upper and lower surfaces 
intersect the vertical xy plane along arcs of circle AB and FG centered 
at C (Fig. 4.70a). We now apply two equal and opposite couples M 

†See Prob. 4.166.

R

R

A
J

D

F G

E

B

K
y

r

r

C C

y

y

y

x xz

�

� � �

(a) (b) (c)

N. A.
F'

D'

J'
A'

R'
MM'

C'

r'

B'
K'

E'

y
y

G'

' � ��

Fig. 4.70 Curved member in pure bending.

and M9 in the plane of symmetry of the member (Fig. 4.70c). A rea-
soning similar to that of Sec. 4.3 would show that any transverse plane 
section containing C will remain plane, and that the various arcs of 
circle indicated in Fig. 4.70a will be transformed into circular and 
concentric arcs with a center C9 different from C. More specifically, 
if the couples M and M9 are directed as shown, the curvature of the 
various arcs of circle will increase; that is A9C9 , AC. We also note 
that the couples M and M9 will cause the length of the upper surface 
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295of the member to decrease (A9B9 , AB) and the length of the lower 
surface to increase (F9G9 . FG). We conclude that a neutral surface 
must exist in the member, the length of which remains constant. The 
intersection of the neutral surface with the xy plane has been repre-
sented in Fig. 4.70a by the arc DE of radius R, and in Fig. 4.70c by 
the arc D9E9 of radius R9. Denoting by u and u9 the central angles 
corresponding respectively to DE and D9E9, we express the fact that 
the length of the neutral surface remains constant by writing

 Ru 5 R9u9 (4.59)

 Considering now the arc of circle JK located at a distance y 
above the neutral surface, and denoting respectively by r and r9 the 
radius of this arc before and after the bending couples have been 
applied, we express the deformation of JK as

 d 5 r9u9 2 ru (4.60)

Observing from Fig. 4.70 that

 r 5 R 2 y  r9 5 R9 2 y (4.61)

and substituting these expressions into Eq. (4.60), we write

d 5 (R9 2 y)u9 2 (R 2 y)u

or, recalling Eq. (4.59) and setting u9 2 u 5 Du,

 d 5 2y Du (4.62)

The normal strain Px in the elements of JK is obtained by dividing 
the deformation d by the original length ru of arc JK. We write

Px 5
d

ru
5 2

y ¢u
ru

or, recalling the first of the relations (4.61),

 
Px 5 2

¢u
u

 
y

R 2 y
 (4.63)

The relation obtained shows that, while each transverse section 
remains plane, the normal strain Px does not vary linearly with the 
distance y from the neutral surface.
 The normal stress sx can now be obtained from Hooke’s law, 
sx 5 EPx, by substituting for Px from Eq. (4.63). We have

 
sx 5 2

E ¢u
u

 
y

R 2 y
 (4.64)

or, alternatively, recalling the first of Eqs. (4.61),

 
sx 5 2

E ¢u
u

 
R 2 r

r  (4.65)

Equation (4.64) shows that, like Px, the normal stress sx does not 
vary linearly with the distance y from the neutral surface. Plotting 
sx versus y, we obtain an arc of hyperbola (Fig. 4.71).
 In order to determine the location of the neutral surface in the 
member and the value of the coefficient E Duyu used in Eqs. (4.64) 

4.15 Bending of Curved Members

N. A.

y

z �x

y

Fig. 4.71
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296 Pure Bending and (4.65), we now recall that the elementary forces acting on any 
transverse section must be statically equivalent to the bending couple 
M. Expressing, as we did in Sec. 4.2 for a straight member, that the 
sum of the elementary forces acting on the section must be zero, 
and that the sum of their moments about the transverse z axis must 
be equal to the bending moment M, we write the equations

 #sx dA 5 0 (4.1)

and

 # 12ysx dA2 5 M (4.3)

Substituting for sx from (4.65) into Eq. (4.1), we write

 2#E ¢u
u

 
R 2 r

r
 dA 5 0

 #R 2 r
r

 dA 5 0

 R#dA
r

2 #dA 5 0

from which it follows that the distance R from the center of curva-
ture C to the neutral surface is defined by the relation

 

R 5
A

#dA
r

 (4.66)

 We note that the value obtained for R is not equal to the dis-
tance r from C to the centroid of the cross section, since r is defined 
by a different relation, namely,

 
r 5

1
A

 #r dA (4.67)

We thus conclude that, in a curved member, the neutral axis of a 
transverse section does not pass through the centroid of that section 
(Fig. 4.72).† Expressions for the radius R of the neutral surface will 
be derived for some specific cross-sectional shapes in Example 4.10 
and in Probs. 4.188 through 4.190. For convenience, these expres-
sions are shown in Fig. 4.73.
 Substituting now for sx from (4.65) into Eq. (4.3), we write

#E ¢u
u

 
R 2 r

r
 y dA 5 M

†However, an interesting property of the neutral surface can be noted if we write Eq. 
(4.66) in the alternative form

 
1
R

5
1
A

 # 1
r

 dA
 

(4.669)

Equation (4.669) shows that, if the member is divided into a large number of fibers of 
cross-sectional area dA, the curvature 1yR of the neutral surface will be equal to the aver-
age value of the curvature 1yr of the various fibers.

N. A.

Centroid

z

y

C

R

e

r

Fig. 4.72
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or, since y 5 R 2 r,
E ¢u
u # 1R 2 r22

r
 dA 5 M

Expanding the square in the integrand, we obtain after reductions

E ¢u
u

 cR2 #dA
r

2 2RA 1 #r dA d 5 M

Recalling Eqs. (4.66) and (4.67), we note that the first term in the 
brackets is equal to RA, while the last term is equal to rA. We have, 
therefore,

E ¢u
u

 1RA 2 2RA 1 rA2 5 M

and, solving for E Duyu,

 
E ¢u
u

5
M

A1r 2 R2  (4.68)

Referring to Fig. 4.70, we note that Du . 0 for M . 0. It follows 
that r 2 R . 0, or R , r, regardless of the shape of the section. 
Thus, the neutral axis of a transverse section is always located between 
the centroid of the section and the center of curvature of the mem-
ber (Fig. 4.72). Setting r 2 R 5 e, we write Eq. (4.68) in the form

 
E ¢u
u

5
M
Ae

 (4.69)

Substituting now for E Duyu from (4.69) into Eqs. (4.64) and (4.65), 
we obtain the following alternative expressions for the normal stress 
sx in a curved beam:

 
sx 5 2 

My

Ae1R 2 y2  (4.70)

and

 
sx 5

M1r 2 R2
Aer

 (4.71)
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R � 

h

h
 r2

C

c

C

Rectangle

r1
ln

r1

r2

b

R � R � 
� 1

h

h
 r2

C

r1

r2

h

C

TriangleCircle

h
 r2

(r 
    r2 � c2)
r1

2
1

2
1

ln
R � 

 

h2(b1 
 b2)

� h(b1 � b2)(b1r2 � b2r1)

Trapezoid

 r2
r1

2
1

ln

b1

b2

r 

Fig. 4.73 Radius of neutral surface for various cross-sectional shapes.
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298 Pure Bending  We should note that the parameter e in the previous equations 
is a small quantity obtained by subtracting two lengths of comparable 
size, R and r. In order to determine sx with a reasonable degree of 
accuracy, it is therefore necessary to compute R and r very accurately, 
particularly when both of these quantities are large, i.e., when the 
curvature of the member is small. However, as we indicated earlier, 
it is possible in such a case to obtain a good approximation for sx by 
using the formula sx 5 2MyyI developed for straight members.
 Let us now determine the change in curvature of the neutral sur-
face caused by the bending moment M. Solving Eq. (4.59) for the cur-
vature 1yR9 of the neutral surface in the deformed member, we write

1
R¿

5
1
R

 
u¿
u

or, setting u9 5 u 1 Du and recalling Eq. (4.69),

1
R¿

5
1
R

 a1 1
¢u
u
b 5

1
R

 a1 1
M

EAe
b

from which it follows that the change in curvature of the neutral 
surface is

 
1
R¿

2
1
R

5
M

EAeR
 (4.72)

A curved rectangular bar has a mean radius r 5 6 in. and a cross section 
of width b 5 2.5 in. and depth h 5 1.5 in. (Fig. 4.74). Determine the 
distance e between the centroid and the neutral axis of the cross section.

EXAMPLE 4.10

h

b

h/2

C C

rr

Fig. 4.74

We first derive the expression for the radius R of the neutral sur-
face. Denoting by r1 and r2, respectively, the inner and outer radius of 
the bar (Fig. 4.75), we use Eq. (4.66) and write

R 5
A

#
r2

r1

dA
r

5
bh

#
r2

r1

b dr
r

5
h

#
r2

r1

dr
r

 

R 5
h

ln 

r2

r1

 (4.73)

r2
r2

b

drdr

r1
r1

r

C C

r

Fig. 4.75
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For the given data, we have

 r1 5 r 2 1
2 
h 5 6 2 0.75 5 5.25 in.

 r2 5 r 1 1
2 
h 5 6 1 0.75 5 6.75 in.

Substituting for h, r1, and r2 into Eq. (4.73), we have

R 5
h

ln 

r2

r1

5
1.5 in.

ln 

6.75
5.25

5 5.9686 in.

The distance between the centroid and the neutral axis of the cross sec-
tion (Fig. 4.76) is thus

e 5 r 2 R 5 6 2 5.9686 5 0.0314 in.

We note that it was necessary to calculate R with five significant figures 
in order to obtain e with the usual degree of accuracy.

r � 6 in.

C

R � 5.9686 in.

e � 0.0314 in.

Neutral axis

Centroid

Fig. 4.76

For the bar of Example 4.10, determine the largest tensile and compressive 
stresses, knowing that the bending moment in the bar is M 5 8 kip ? in.

We use Eq. (4.71) with the given data,

M 5 8 kip ? in.  A 5 bh 5 (2.5 in.)(1.5 in.) 5 3.75 in2

and the values obtained in Example 4.10 for R and e,

R 5 5.969  e 5 0.0314 in.

Making first r 5 r2 5 6.75 in. in Eq. (4.71), we write

 smax 5
M1r2 2 R2

Aer2

 5
18 kip ? in.2 16.75 in. 2 5.969 in.2
13.75 in22 10.0314 in.2 16.75 in.2

 smax 5 7.86 ksi

Making now r 5 r1 5 5.25 in. in Eq. (4.71), we have

 smin 5
M1r1 2 R2

Aer1

 5
18 kip ? in.2 15.25 in. 2 5.969 in.2
13.75 in22 10.0314 in.2 15.25 in.2

 smin 5 29.30 ksi

 Remark.  Let us compare the values obtained for smax and smin with 
the result we would get for a straight bar. Using Eq. (4.15) of Sec. 4.4, we 
write

 smax, min 5 6
Mc
I

 5 6
18 kip ? in.2 10.75 in.2

1
12 12.5 in.2 11.5 in.23 5 68.53 ksi

299

EXAMPLE 4.11
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300

SAMPLE PROBLEM 4.11

A machine component has a T-shaped cross section and is 
loaded as shown. Knowing that the allowable compressive 
stress is 50 MPa, determine the largest force P that can be 
applied to the component.

SOLUTION

 Centroid of the Cross Section.  We locate the centroid D of the cross 
section

 Ai, mm2 ri, mm riAi, mm3 r©Ai 5 ©ri Ai

1 1202 1802 5 1600 40           64 3 103 r 124002 5 120 3 103

2 1402 1202 5  800 70           56 3 103 r 5 50 mm 5 0.050 m
    © Ai 5 2400  © ri Ai 5 120 3 103 

 Force and Couple at D.  The internal forces in section a-a are equiva-
lent to a force P acting at D and a couple M of moment

M 5 P(50 mm 1 60 mm) 5 (0.110 m)P

 Superposition.  The centric force P causes a uniform compressive 
stress on section a-a. The bending couple M causes a varying stress distribu-
tion [Eq. (4.71)]. We note that the couple M tends to increase the curvature 
of the member and is therefore positive (cf. Fig. 4.70). The total stress at a 
point of section a-a located at distance r from the center of curvature C is

 
s 5 2 

P
A

1
M1r 2 R2

Aer
 (1)

 Radius of Neutral Surface.  We now determine the radius R of the 
neutral surface by using Eq. (4.66).

 R 5
A

#dA
r

5
2400 mm2

#
r2

r1

 
180 mm2 dr

r
1 #

r3

r2

 
120 mm2 dr

r

 5
2400

80 ln 
50
30

1 20 ln 
90
50

5
2400

40.866 1 11.756
5 45.61 mm

 5 0.04561 m

We also compute: e 5 r 2 R 5 0.05000 m 2 0.04561 m 5 0.00439 m

 Allowable Load.  We observe that the largest compressive stress will 
occur at point A where r 5 0.030 m. Recalling that sall 5 50 MPa and using 
Eq. (1), we write

250 3 106 Pa 5 2 
P

2.4 3 1023 m2 1
10.110 P2 10.030 m 2 0.04561 m2

12.4 3 1023 m22 10.00439 m2 10.030 m2
250 3 106 5 2417P 2 5432P P 5 8.55 kN ◀

60 mm

20 mm

Section a-a

40 mm

20 mm

30 mm80 mma

a

P' P

40 mm

20 mm

2

1

r1 � 40 mm

20 mm

30 mm 80 mm

r2 � 70 mm

M
P

B

A
C

50 mm

60 mm

D

P'

B

P
A�

D

A

C

� –

B

M (r – R)
Aer

�

D

A R
r

C

�

B

A

D

C

dr

r

20 mm

80 mm

r3 � 90 mm

r2 � 50 mm

r1 � 30 mm
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PROBLEMS

301

 4.161 For the machine component and loading shown, determine the 
stress at point A when (a) h 5 2 in., (b) h 5 2.6 in.

 4.162 For the machine component and loading shown, determine the 
stress at points A and B when h 5 2.5 in.

 4.163 The curved portion of the bar shown has an inner radius of 20 mm. 
Knowing that the allowable stress in the bar is 150 MPa, determine 
the largest permissible distance a from the line of action of the 
3-kN force to the vertical plane containing the center of curvature 
of the bar.

 4.164 The curved portion of the bar shown has an inner radius of 20 mm. 
Knowing that the line of action of the 3-kN force is located at a 
distance a 5 60 mm from the vertical plane containing the center 
of curvature of the bar, determine the largest compressive stress 
in the bar.

 4.165 The curved bar shown has a cross section of 40 3 60 mm and an 
inner radius r1 5 15 mm. For the loading shown determine the 
largest tensile and compressive stresses.

C

B

A0.75 in.

4 kip · in.

3 in.
h

4 kip · in.

Fig. P4.161 and P4.162

25 mm

25 mm

r � 20 mm P � 3 kNa

Fig. P4.163 and P4.164
40 mm

60 mm

120 N · m

r1

Fig. P4.165 and P4.166

 4.166 For the curved bar and loading shown, determine the percent 
error introduced in the computation of the maximum stress by 
assuming that the bar is straight. Consider the case when (a) r1 5
20 mm, (b) r1 5 200 mm, (c) r1 5 2 m.

 4.167 The curved bar shown has a cross section of 30 3 30 mm. Knowing 
that a 5 60 mm, determine the stress at (a) point A, (b) point B.

 4.168 The curved bar shown has a cross section of 30 3 30 mm. Knowing 
that the allowable compressive stress is 175 MPa, determine the 
largest allowable distance a.

20 mm

20 mm

30 mm

30 mm

B A
C

a
5 kN

5 kN

Fig. P4.167 and P4.168 
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302 Pure Bending  4.169 Steel links having the cross section shown are available with dif-
ferent central angles b. Knowing that the allowable stress is 12 ksi, 
determine the largest force P that can be applied to a link for 
which b 5 908.

0.4 in.

0.4 in.

0.3 in.

0.8 in.

0.8 in.
1.2 in.

A A

C

B

P' P

�

B

Fig. P4.169

 4.170 Solve Prob. 4.169, assuming that b 5 608.

 4.171 A machine component has a T-shaped cross section that is orien-
tated as shown. Knowing that M 5 2.5 kN ? m, determine the 
stress at (a) point A, (b) point B.

 4.172 Assuming that the couple shown is replaced by a vertical 10-kN 
force attached at point D and acting downward, determine the 
stress at (a) point A, (b) point B.

 4.173 Three plates are welded together to form the curved beam shown. 
For the given loading, determine the distance e between the neu-
tral axis and the centroid of the cross section.

Dimensions in mm

100

60

5040 20

20

BC A
D

A B

M �
2.5 kN · m

Fig. P4.171 and P4.172

A

C

B

M' M

2 in.

3 in.

0.5 in. 2 in.

3 in.

0.5 in.

0.5 in.

Fig. P4.173 and P4.174

 4.174 Three plates are welded together to form the curved beam shown. 
For M 5 8 kip ? in., determine the stress at (a) point A, (b) point B, 
(c) the centroid of the cross section.

 4.175 The split ring shown has an inner radius r1 5 20 mm and a circular 
cross section of diameter d 5 32 mm. For the loading shown, 
determine the stress at (a) point A, (b) point B.

 4.176 The split ring shown has an inner radius r1 5 16 mm and a circular 
cross section of diameter d 5 32 mm. For the loading shown, 
determine the stress at (a) point A, (b) point B.

d

B A

r1

2.5 kN

Fig. P4.175 and P4.176
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303Problems 4.177 The curved bar shown has a circular cross section of 32-mm diameter. 
Determine the largest couple M that can be applied to the bar about 
a horizontal axis if the maximum stress is not to exceed 60 MPa.

16 mm

12 mm

M

C

Fig. P4.177

 4.178 The bar shown has a circular cross section of 0.6 in.-diameter. Know-
ing that a 5 1.2 in., determine the stress at (a) point A, (b) point B.

 4.179 The bar shown has a circular cross section of 0.6-in. diameter. 
Knowing that the allowable stress is 8 ksi, determine the largest 
permissible distance a from the line of action of the 50-lb forces 
to the plane containing the center of curvature of the bar.

 4.180 Knowing that P 5 10 kN, determine the stress at (a) point A, 
(b) point B.

 4.181 and 4.182 Knowing that M 5 5 kip ? in., determine the stress 
at (a) point A, (b) point B.

50 lb

50 lb

0.5 in.0.6 in.
a

B A C

Fig. P4.178 and P4.179

90 mm

80 mm

A
B

100 mm

P

Fig. P4.180

 4.183 For the curved beam and loading shown, determine the stress at 
(a) point A, (b) point B.

2.5 in.

3 in.
2 in.

2 in.
3 in.

B

C

M

A M

Fig. P4.181

3 in.

M

M
B

A

C3 in.

2 in.
2 in.

2.5 in.

Fig. P4.182

20 mm

30 mm

35 mm
40 mm

a

a

B

A

B

A

250 N · m250 N · m

Section a-a

Fig. P4.183

35 mm

60 mm

25 mm
40 mm

60 mm

15 kN

a
a

Section a-a

Fig. P4.184
 4.184 For the crane hook shown, determine the largest tensile stress in 

section a-a.
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304 Pure Bending  4.185 Knowing that the machine component shown has a trapezoidal 
cross section with a 5 3.5 in. and b 5 2.5 in., determine the stress 
at (a) point A, (b) point B.

 4.186 Knowing that the machine component shown has a trapezoidal 
cross section with a 5 2.5 in. and b 5 3.5 in., determine the stress 
at (a) point A, (b) point B.

 4.187 Show that if the cross section of a curved beam consists of two or 
more rectangles, the radius R of the neutral surface can be 
expressed as

R 5
A

ln c ar2

r1
bb1 ar3

r2
bb2 ar4

r3
bb3 d

  where A is the total area of the cross section.

 4.188 through 4.190 Using Eq. (4.66), derive the expression for R 
given in Fig. 4.73 for

   *4.188 A circular cross section.
   4.189 A trapezoidal cross section.
   4.190 A triangular cross section.

 *4.191 For a curved bar of rectangular cross section subjected to a bend-
ing couple M, show that the radial stress at the neutral surface is

sr 5
M
Ae

 a1 2
r1

R
2 ln 

R
r1
b

  and compute the value of sr for the curved bar of Examples 4.10 
and 4.11.

  (Hint: consider the free-body diagram of the portion of the beam 
located above the neutral surface.)

6 in. 4 in.

CB

B

A

Ab a

80 kip · in.

Fig. P4.185 and P4.186

r1

r2

b1

b2

b3

r3

r4

Fig. P4.187

r�

r�

x�x�

C

R

b

r1

�
2

�
2

Fig. P4.191
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305

REVIEW AND SUMMARY

This chapter was devoted to the analysis of members in pure bend-
ing. That is, we considered the stresses and deformation in members 
subjected to equal and opposite couples M and M9 acting in the 
same longitudinal plane (Fig. 4.77).

We first studied members possessing a plane of symmetry and sub-
jected to couples acting in that plane. Considering possible deforma-
tions of the member, we proved that transverse sections remain plane
as a member is deformed [Sec. 4.3]. We then noted that a member 
in pure bending has a neutral surface along which normal strains and 
stresses are zero and that the longitudinal normal strain Px varies 
linearly with the distance y from the neutral surface:

Px 5 2  

y
r

 (4.8)

where r is the radius of curvature of the neutral surface (Fig. 4.78). 
The intersection of the neutral surface with a transverse section is 
known as the neutral axis of the section.

For members made of a material that follows Hooke’s law [Sec. 4.4], 
we found that the normal stress sx varies linearly with the distance 
from the neutral axis (Fig. 4.79). Denoting by sm the maximum 
stress we wrote

sx 5 2
y
c

 sm (4.12)

where c is the largest distance from the neutral axis to a point in the 
section.

By setting the sum of the elementary forces, sx dA, equal to zero, we 
proved that the neutral axis passes through the centroid of the cross 
section of a member in pure bending. Then by setting the sum of the 
moments of the elementary forces equal to the bending moment, we 
derived the elastic flexure formula for the maximum normal stress

 sm 5
Mc
I

 (4.15)

where I is the moment of inertia of the cross section with respect to 
the neutral axis. We also obtained the normal stress at any distance 
y from the neutral axis:

sx 5 2  

My

I
 (4.16)

Normal strain in bending

Normal stress in elastic range

A

B

M

M'

Fig. 4.77

y

y

 – y

A
J

D

O

C

B
K

E
xA� B�

�

� �

Fig. 4.78

y

c

m�

x�
Neutral surface

Fig. 4.79

Elastic flexure formula
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306 Pure Bending Noting that I and c depend only on the geometry of the cross sec-
tion, we introduced the elastic section modulus

 S 5
I
c
 (4.17)

and then used the section modulus to write an alternative expression 
for the maximum normal stress:

 sm 5
M
S

 (4.18)

Recalling that the curvature of a member is the reciprocal of its 
radius of curvature, we expressed the curvature of the member as

 
1
r

5
M
EI

 (4.21)

In Sec. 4.5, we completed our study of the bending of homogeneous 
members possessing a plane of symmetry by noting that deforma-
tions occur in the plane of a transverse cross section and result in 
anticlastic curvature of the members.

Next we considered the bending of members made of several materi-
als with different moduli of elasticity [Sec. 4.6]. While transverse 
sections remain plane, we found that, in general, the neutral axis 
does not pass through the centroid of the composite cross section 
(Fig. 4.80). Using the ratio of the moduli of elasticity of the materials, 

1

2

N. A.

x � – — 

x

�

� x�

�
y

2 � – —– � �
E2y

1 � – —– � �
E1y

y y

(a) (b) (c)

Fig. 4.80

C
N. A.

x � – —– �
My
I

yy

�x

Fig. 4.81

we obtained a transformed section corresponding to an equivalent 
member made entirely of one material. We then used the methods 
previously developed to determine the stresses in this equivalent 
homogeneous member (Fig. 4.81) and then again used the ratio of 
the moduli of elasticity to determine the stresses in the composite 
beam [Sample Probs. 4.3 and 4.4].

In Sec. 4.7, stress concentrations that occur in members in pure bend-
ing were discussed and charts giving stress-concentration factors for flat 
bars with fillets and grooves were presented in Figs. 4.27 and 4.28.

Members made of several materials

Elastic section modulus

Curvature of member

Anticlastic curvature

Stress concentrations
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307Review and Summary We next investigated members made of materials that do not 
follow Hooke’s law [Sec. 4.8]. A rectangular beam made of an elas-
toplastic material (Fig. 4.82) was analyzed as the magnitude of the 
bending moment was increased. The maximum elastic moment MY 
occurred when yielding was initiated in the beam (Fig. 4.83). As the 
bending moment was further increased, plastic zones developed and 
the size of the elastic core of the member decreased [Sec. 4.9]. 
Finally the beam became fully plastic and we obtained the maximum 
or plastic moment Mp. In Sec. 4.11, we found that permanent defor-
mations and residual stresses remain in a member after the loads 
that caused yielding have been removed.

�

�Y

�Y �

Y

Fig. 4.82

y

C C

y

x� x� C

N.A.

y

x�+ =
Fig. 4.85

ELASTIC

y

c

��c

x�

max� m� 





�� 

�(a) M M

ELASTIC

y

��c

x�

�

max� m� 








��

�(b) M M

�
c

ELASTIC

PLASTIC

PLASTIC

y

c

�c

x�

�

max� 








��

�(c) M M

�

�

PLASTIC

y

c

�c

x�

�







�(d) M Mp

�

Fig. 4.83

Plastic deformations

In Sec. 4.12, we studied the stresses in members loaded eccentrically 
in a plane of symmetry. Our analysis made use of methods developed 
earlier. We replaced the eccentric load by a force-couple system 
located at the centroid of the cross section (Fig. 4.84) and then 
superposed stresses due to the centric load and the bending couple 
(Fig. 4.85):

 
sx 5

P
A

2
My

I
 (4.50)

d

D
C

F
M

P'

A

Fig. 4.84

Eccentric axial loading

bee80288_ch04_220-313.indd Page 307  10/26/10  4:35:47 PM user-f499bee80288_ch04_220-313.indd Page 307  10/26/10  4:35:47 PM user-f499 /Volumes/201/MHDQ251/bee80288_disk1of1/0073380288/bee80288_pagefiles/Volumes/201/MHDQ251/bee80288_disk1of1/0073380288/bee80288_pagefiles



308 Pure Bending The bending of members of unsymmetric cross section was consid-
ered next [Sec. 4.13]. We found that the flexure formula may be 
used, provided that the couple vector M is directed along one of the 
principal centroidal axes of the cross section. When necessary we 

resolved M into components along the principal axes and superposed 
the stresses due to the component couples (Figs. 4.86 and 4.87).

sx 5 2
Mzy

Iz
1

Myz

Iy
 (4.55)

 For the couple M shown in Fig. 4.88, we determined the ori-
entation of the neutral axis by writing

 
tan f 5

Iz

Iy
 tan u (4.57)

The general case of eccentric axial loading was considered in 
Sec. 4.14, where we again replaced the load by a force-couple system 
located at the centroid. We then superposed the stresses due to the 
centric load and two component couples directed along the principal 
axes:

 
sx 5

P
A

2
Mzy

Iz
1

Myz

Iy
 (4.58)

The chapter concluded with the analysis of stresses in curved mem-
bers (Fig. 4.89). While transverse sections remain plane when the 
member is subjected to bending, we found that the stresses do not 
vary linearly and the neutral surface does not pass through the cen-
troid of the section. The distance R from the center of curvature of 
the member to the neutral surface was found to be

 

R 5
A

#dA
r

 (4.66)

where A is the area of the cross section. The normal stress at a dis-
tance y from the neutral surface was expressed as

sx 5 2
My

Ae1R 2 y2  (4.70)

where M is the bending moment and e the distance from the cen-
troid of the section to the neutral surface.

Unsymmetric bending

M

x

z

�
y

M'

Fig. 4.86

�

M My

Mz

y

z C

Fig. 4.87

M N
. A.

C

y

z

� �

Fig. 4.88

R

A
J

D

F G

E

B

K
y

r

C

y

x

�

Fig. 4.89

General eccentric axial loading

Curved members
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309

REVIEW PROBLEMS

 4.192 Two vertical forces are applied to a beam of the cross section 
shown. Determine the maximum tensile and compressive stresses 
in portion BC of the beam.

 4.193 Straight rods of 6-mm diameter and 30-m length are stored by 
coiling the rods inside a drum of 1.25-m inside diameter. Assum-
ing that the yield strength is not exceeded, determine (a) the maxi-
mum stress in a coiled rod, (b) the corresponding bending moment 
in the rod. Use E 5 200 GPa.

DCBA

6 in.

2 in.

3 in.3 in.

15 kips 15 kips

3 in.

40 in. 40 in.
60 in.

Fig. P4.192

Fig. P4.193

 4.194 Knowing that for the beam shown the allowable stress is 12 ksi in 
tension and 16 ksi in compression, determine the largest couple M
that can be applied.

 4.195 In order to increase corrosion resistance, a 2-mm-thick cladding of 
aluminum has been added to a steel bar as shown. The modulus 
of elasticity is 200 GPa for steel and 70 GPa for aluminum. For a 
bending moment of 300 N ? m, determine (a) the maximum stress 
in the steel, (b) the maximum stress in the aluminum, (c) the radius 
of curvature of the bar.

1.2 in.
0.75 in.

2.4 in.

M

Fig. P4.194

46 mm
50 mm

M � 300 N · m

30 mm
26 mm

Fig. P4.195

 4.196 A single vertical force P is applied to a short steel post as shown. 
Gages located at A, B, and C indicate the following strains:

PA 5 2500 m  PB 5 21000 m  PC 5 2200 m

  Knowing that E 5 29 3 106 psi, determine (a) the magnitude of 
P, (b) the line of action of P, (c) the corresponding strain at the 
hidden edge of the post, where x 5 22.5 in. and z 5 21.5 in.

P

C

B

A

y

z x

3 in.
5 in.

Fig. P4.196
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310 Pure Bending  4.197 For the split ring shown, determine the stress at (a) point A, 
(b) point B.

90 mm
40 mm

14 mm

2500 N

B
A

Fig. P4.197

E
D

M � 8 kN · m

y'

z'

W200 � 19.3

5�

A
B

C

Fig. P4.198

 4.198 A couple M of moment 8 kN ? m acting in a vertical plane is 
applied to a W200 3 19.3 rolled-steel beam as shown. Determine 
(a) the angle that the neutral axis forms with the horizontal plane, 
(b) the maximum stress in the beam.

 4.199 Determine the maximum stress in each of the two machine ele-
ments shown.

400 lb
400 lb

400 lb
400 lb

3

2.5

1.5
0.5

3

2.5

1.5 0.5

0.5

0.5

r � 0.3 r � 0.3

(a)

(b)

Fig. P4.199 All dimensions given in inches.

P'

P

A

B

C

a a

t

90�

Fig. P4.200

 4.200 The shape shown was formed by bending a thin steel plate. Assum-
ing that the thickness t is small compared to the length a of a side 
of the shape, determine the stress (a) at A, (b) at B, (c) at C.
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311Review Problems

10 mm

120 mm

10 mm

120 mm

10 mm

M

Fig. P4.201

 4.201 Three 120 3 10-mm steel plates have been welded together to 
form the beam shown. Assuming that the steel is elastoplastic with 
E 5 200 GPa and sY 5 300 MPa, determine (a) the bending 
moment for which the plastic zones at the top and bottom of the 
beam are 40 mm thick, (b) the corresponding radius of curvature 
of the beam.

 4.202 A short column is made by nailing four 1 3 4-in. planks to a 
4 3 4-in. timber. Determine the largest compressive stress created 
in the column by a 16-kip load applied as shown in the center 
of the top section of the timber if (a) the column is as described, 
(b) plank 1 is removed, (c) planks 1 and 2 are removed, (d) planks 
1, 2, and 3 are removed, (e) all planks are removed.

11

24

3

16 kips

Fig. P4.202

 4.203 Two thin strips of the same material and same cross section are 
bent by couples of the same magnitude and glued together. After 
the two surfaces of contact have been securely bonded, the couples 
are removed. Denoting by s1 the maximum stress and by r1 the 
radius of curvature of each strip while the couples were applied, 
determine (a) the final stresses at points A, B, C, and D, (b) the 
final radius of curvature.

M1

M1

M'1

M'1

A

C
B

D

1�

1�

1�

1�

Fig. P4.203
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312

COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

 4.C1 Two aluminum strips and a steel strip are to be bonded together 
to form a composite member of width b 5 60 mm and depth h 5 40 mm. 
The modulus of elasticity is 200 GPa for the steel and 75 GPa for the alu-
minum. Knowing that M 5 1500 N ? m, write a computer program to cal-
culate the maximum stress in the aluminum and in the steel for values of a
from 0 to 20 mm using 2-mm increments. Using appropriate smaller incre-
ments, determine (a) the largest stress that can occur in the steel, (b) the 
corresponding value of a.

 4.C2 A beam of the cross section shown, made of a steel that is assumed 
to be elastoplastic with a yield strength sY and a modulus of elasticity E, is 
bent about the x axis. (a) Denoting by yY the half thickness of the elastic core, 
write a computer program to calculate the bending moment M and the radius 
of curvature r for values of yY from 1

2 d to 1
6 d using decrements equal to 1

2 tf.
Neglect the effect of fillets. (b) Use this program to solve Prob. 4.201.

b � 60 mm

h � 40 mm

a

a
Steel

Aluminum

Fig. P4.C1

d x

ytf

tw

bf

Fig. P4.C2

 4.C3 An 8-kip ? in. couple M is applied to a beam of the cross section 
shown in a plane forming an angle b with the vertical. Noting that the cen-
troid of the cross section is located at C and that the y and z axes are principal 
axes, write a computer program to calculate the stress at A, B, C, and D for 
values of b from 0 to 1808 using 108 increments. (Given: Iy 5 6.23 in4 and 
Iz 5 1.481 in4.)

z

0.40.4

1.6

1.2

0.4

1.2

0.4 0.8

Dimensions in inches

0.40.8

B

E
D

A

y

M

�

�

C

Fig. P4.C3
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313Computer Problems 4.C4 Couples of moment M 5 2 kN ? m are applied as shown to a 
curved bar having a rectangular cross section with h 5 100 mm and b 5 
25 mm. Write a computer program and use it to calculate the stresses at 
points A and B for values of the ratio r1/h from 10 to 1 using decrements 
of 1, and from 1 to 0.1 using decrements of 0.1. Using appropriate smaller 
increments, determine the ratio r1/h for which the maximum stress in the 
curved bar is 50% larger than the maximum stress in a straight bar of the 
same cross section.

 4.C5 The couple M is applied to a beam of the cross section shown. 
(a) Write a computer program that, for loads expressed in either SI or 
U.S. customary units, can be used to calculate the maximum tensile and 
compressive stresses in the beam. (b) Use this program to solve Probs. 4.10, 
4.11, and 4.192.

B

b

r1
M'M

AA

B

C

h

Fig. P4.C4

M

h1

h2

b1

hn

bn

b2

Fig. P4.C5

 4.C6 A solid rod of radius c 5 1.2 in. is made of a steel that is assumed 
to be elastoplastic with E 5 29,000 ksi and sY 5 42 ksi. The rod is subjected 
to a couple of moment M that increases from zero to the maximum elastic 
moment MY and then to the plastic moment Mp. Denoting by yY the half 
thickness of the elastic core, write a computer program and use it to calcu-
late the bending moment M and the radius of curvature r for values of yY 
from 1.2 in. to 0 using 0.2-in. decrements. (Hint: Divide the cross section 
into 80 horizontal elements of 0.03-in. height.)

 4.C7 The machine element of Prob. 4.182 is to be redesigned by remov-
ing part of the triangular cross section. It is believed that the removal of a 
small triangular area of width a will lower the maximum stress in the ele-
ment. In order to verify this design concept, write a computer program to 
calculate the maximum stress in the element for values of a from 0 to 1 in. 
using 0.1-in. increments. Using appropriate smaller increments, determine 
the distance a for which the maximum stress is as small as possible and the 
corresponding value of the maximum stress.

3 in.2 in.

2.5 in.C

B

a

A

Fig. P4.C7

c

z

y

y

M

�y

Fig. P4.C6
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The beams supporting the multiple 

overhead cranes system shown in this 

picture are subjected to transverse 

loads causing the beams to bend. The 

normal stresses resulting from such 

loadings will be determined in this 

chapter.
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316

Chapter 5 Analysis and Design 
of Beams for Bending

 5.1 Introduction
 5.2 Shear and Bending-Moment 

Diagrams
 5.3  Relations Among Load, Shear, 

and Bending Moment
 5.4 Design of Prismatic Beams for 

Bending
 *5.5  Using Singularity Functions to 

Determine Shear and Bending 
Moment in a Beam

 *5.6 Nonprismatic Beams

5.1 INTRODUCTION
This chapter and most of the next one will be devoted to the analysis 
and the design of beams, i.e., structural members supporting loads 
applied at various points along the member. Beams are usually long, 
straight prismatic members, as shown in the photo on the previous 
page. Steel and aluminum beams play an important part in both struc-
tural and mechanical engineering. Timber beams are widely used in 
home construction (Photo 5.1). In most cases, the loads are perpen-
dicular to the axis of the beam. Such a transverse loading causes only 
bending and shear in the beam. When the loads are not at a right 
angle to the beam, they also produce axial forces in the beam.

Photo 5.1 Timber beams used in residential 
dwelling.

CB

P1

(a) Concentrated loads

w

P2

A D

(b) Distributed load

A
B

C

Fig. 5.1 Transversely loaded 
beams.

 The transverse loading of a beam may consist of concentrated 
loads P1, P2, . . . , expressed in newtons, pounds, or their multiples, 
kilonewtons and kips (Fig. 5.1a), of a distributed load w, expressed 
in N/m, kN/m, lb/ft, or kips/ft (Fig. 5.1b), or of a combination of 
both. When the load w per unit length has a constant value over part 
of the beam (as between A and B in Fig. 5.1b), the load is said to 
be uniformly distributed over that part of the beam.
 Beams are classified according to the way in which they are 
supported. Several types of beams frequently used are shown in 
Fig. 5.2. The distance L shown in the various parts of the figure is 

Fig. 5.2 Common beam support configurations.

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam
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317called the span. Note that the reactions at the supports of the beams 
in parts a, b, and c of the figure involve a total of only three unknowns 
and, therefore, can be determined by the methods of statics. Such 
beams are said to be statically determinate and will be discussed in 
this chapter and the next. On the other hand, the reactions at 
the supports of the beams in parts d, e, and f of Fig. 5.2 involve more 
than three unknowns and cannot be determined by the methods 
of statics alone. The properties of the beams with regard to their 
resistance to deformations must be taken into consideration. Such 
beams are said to be statically indeterminate and their analysis will 
be postponed until Chap. 9, where deformations of beams will be 
discussed.
 Sometimes two or more beams are connected by hinges to 
form a single continuous structure. Two examples of beams hinged 
at a point H are shown in Fig. 5.3. It will be noted that the reactions 
at the supports involve four unknowns and cannot be determined 
from the free-body diagram of the two-beam system. They can be 
determined, however, by recognizing that the internal moment at the 
hinge is zero. Then, after considering the free-body diagram of each 
beam separately, six unknowns are involved (including two force 
components at the hinge), and six equations are available.
 When a beam is subjected to transverse loads, the internal 
forces in any section of the beam will generally consist of a shear 
force V and a bending couple M. Consider, for example, a simply 
supported beam AB carrying two concentrated loads and a uniformly 
distributed load (Fig. 5.4a). To determine the internal forces in a 
section through point C we first draw the free-body diagram of the 
entire beam to obtain the reactions at the supports (Fig. 5.4b). Pass-
ing a section through C, we then draw the free-body diagram of AC 
(Fig. 5.4c), from which we determine the shear force V and the 
bending couple M.
 The bending couple M creates normal stresses in the cross sec-
tion, while the shear force V creates shearing stresses in that section. 
In most cases the dominant criterion in the design of a beam for 
strength is the maximum value of the normal stress in the beam. The 
determination of the normal stresses in a beam will be the subject of 
this chapter, while shearing stresses will be discussed in Chap. 6.
 Since the distribution of the normal stresses in a given section 
depends only upon the value of the bending moment M in that sec-
tion and the geometry of the section,† the elastic flexure formulas 
derived in Sec. 4.4 can be used to determine the maximum stress, 
as well as the stress at any given point, in the section. We write‡

 
sm 5

ZMZc

I
  sx 5 2 

My

I  
(5.1, 5.2)

5.1 Introduction

†It is assumed that the distribution of the normal stresses in a given cross section is not 
affected by the deformations caused by the shearing stresses. This assumption will be 
verified in Sec. 6.5.
‡We recall from Sec. 4.2 that M can be positive or negative, depending upon whether the 
concavity of the beam at the point considered faces upward or downward. Thus, in the case 
considered here of a transverse loading, the sign of M can vary along the beam. On the 
other hand, since sm is a positive quantity, the absolute value of M is used in Eq. (5.1).

B

C

A

w

a

P1 P2

(a) Transversely-loaded beam

B
C

C

A

w
P1

RA RB

P2

(b) Free-body diagram to find
support reactions

A

wa
P1

V

M

RA

(c) Free-body diagram to find
internal forces at C

Fig. 5.4 Analysis of a simply 
supported beam.

B
H

(a)

A

C
B

H

(b)

A

Fig. 5.3 Beams connected by hinges.
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318 Analysis and Design of Beams for Bending where I is the moment of inertia of the cross section with respect 
to a centroidal axis perpendicular to the plane of the couple, y is 
the distance from the neutral surface, and c is the maximum value 
of that distance (Fig. 4.11). We also recall from Sec. 4.4 that, 
introducing the elastic section modulus S 5 Iyc of the beam, the 
maximum value sm of the normal stress in the section can be 
expressed as

 
sm 5

ZMZ

S  
(5.3)

The fact that sm is inversely proportional to S underlines the impor-
tance of selecting beams with a large section modulus. Section mod-
uli of various rolled-steel shapes are given in Appendix C, while the 
section modulus of a rectangular shape can be expressed, as shown 
in Sec. 4.4, as

 S 5 1
6 
bh2 (5.4)

where b and h are, respectively, the width and the depth of the cross 
section.
 Equation (5.3) also shows that, for a beam of uniform cross 
section, sm is proportional to |M|: Thus, the maximum value of the 
normal stress in the beam occurs in the section where |M| is largest. 
It follows that one of the most important parts of the design of a 
beam for a given loading condition is the determination of the loca-
tion and magnitude of the largest bending moment.
 This task is made easier if a bending-moment diagram is drawn, 
i.e., if the value of the bending moment M is determined at various 
points of the beam and plotted against the distance x measured from 
one end of the beam. It is further facilitated if a shear diagram is 
drawn at the same time by plotting the shear V against x.
 The sign convention to be used to record the values of the 
shear and bending moment will be discussed in Sec. 5.2. The values 
of V and M will then be obtained at various points of the beam by 
drawing free-body diagrams of successive portions of the beam. In 
Sec. 5.3 relations among load, shear, and bending moment will be 
derived and used to obtain the shear and bending-moment diagrams. 
This approach facilitates the determination of the largest absolute 
value of the bending moment and, thus, the determination of the 
maximum normal stress in the beam.
 In Sec. 5.4 you will learn to design a beam for bending, i.e., so 
that the maximum normal stress in the beam will not exceed its 
allowable value. As indicated earlier, this is the dominant criterion 
in the design of a beam.
 Another method for the determination of the maximum values 
of the shear and bending moment, based on expressing V and M in 
terms of singularity functions, will be discussed in Sec. 5.5. This 
approach lends itself well to the use of computers and will be 
expanded in Chap. 9 to facilitate the determination of the slope and 
deflection of beams.
 Finally, the design of nonprismatic beams, i.e., beams with a 
variable cross section, will be discussed in Sec. 5.6. By selecting 
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319the shape and size of the variable cross section so that its elastic 
section modulus S 5 Iyc varies along the length of the beam in 
the same way as |M|, it is possible to design beams for which the 
maximum normal stress in each section is equal to the allowable 
stress of the material. Such beams are said to be of constant 
strength.

5.2 SHEAR AND BENDING-MOMENT DIAGRAMS
As indicated in Sec. 5.1, the determination of the maximum absolute 
values of the shear and of the bending moment in a beam are greatly 
facilitated if V and M are plotted against the distance x measured 
from one end of the beam. Besides, as you will see in Chap. 9, the 
knowledge of M as a function of x is essential to the determination 
of the deflection of a beam.
 In the examples and sample problems of this section, the 
shear and bending-moment diagrams will be obtained by determin-
ing the values of V and M at selected points of the beam. These 
values will be found in the usual way, i.e., by passing a section 
through the point where they are to be determined (Fig. 5.5a) and 
considering the equilibrium of the portion of beam located on 
either side of the section (Fig. 5.5b). Since the shear forces V and 
V9 have opposite senses, recording the shear at point C with an up 
or down arrow would be meaningless, unless we indicated at 
the same time which of the free bodies AC and CB we are consid-
ering. For this reason, the shear V will be recorded with a sign: a 
plus sign if the shearing forces are directed as shown in Fig. 5.5b, 
and a minus sign otherwise. A similar convention will apply for 
the bending moment M. It will be considered as positive if the 
bending couples are directed as shown in that figure, and negative 
otherwise.† Summarizing the sign conventions we have presented, 
we state:
 The shear V and the bending moment M at a given point of a 
beam are said to be positive when the internal forces and couples act-
ing on each portion of the beam are directed as shown in Fig. 5.6a.
 These conventions can be more easily remembered if we note 
that

 1. The shear at any given point of a beam is positive when the 
external forces (loads and reactions) acting on the beam tend 
to shear off the beam at that point as indicated in Fig. 5.6b.

†Note that this convention is the same that we used earlier in Sec. 4.2
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P1 P2

(a)
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B
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wP1
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(b)V

M

P2
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M'

V'

Fig. 5.5 Determination of V and M.

5.2 Shear and Bending-Moment Diagrams

V

M

M'

V'

(a)  Internal forces
(positive shear and positive bending moment)

(b)  Effect of external forces
(positive shear)

(c)  Effect of external forces
(positive bending moment)

Fig. 5.6 Sign convention for shear and bending moment.
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320 Analysis and Design of Beams for Bending

Draw the shear and bending-moment diagrams for a simply supported 
beam AB of span L subjected to a single concentrated load P at its mid-
point C (Fig. 5.7).

EXAMPLE 5.01
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L1
2 L1

2

Fig. 5.7

Fig. 5.8
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2 RB� P1
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P
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We first determine the reactions at the supports from the free-body 
diagram of the entire beam (Fig. 5.8a); we find that the magnitude of 
each reaction is equal to Py2.

Next we cut the beam at a point D between A and C and draw the 
free-body diagrams of AD and DB (Fig. 5.8b). Assuming that shear and 
bending moment are positive, we direct the internal forces V and V9 and 
the internal couples M and M9 as indicated in Fig. 5.6a. Considering the 
free body AD and writing that the sum of the vertical components and 
the sum of the moments about D of the forces acting on the free body 
are zero, we find V 5 1Py2 and M 5 1Pxy2. Both the shear and the 
bending moment are therefore positive; this may be checked by observing 
that the reaction at A tends to shear off and to bend the beam at D as 
indicated in Figs. 5.6b and c. We now plot V and M between A and C 
(Figs. 5.8d and e); the shear has a constant value V 5 Py2, while the 
bending moment increases linearly from M 5 0 at x 5 0 to M 5 PLy4 
at x 5 Ly2.

Cutting, now, the beam at a point E between C and B and consider-
ing the free body EB (Fig. 5.8c), we write that the sum of the vertical 
components and the sum of the moments about E of the forces acting on 
the free body are zero. We obtain V 5 2Py2 and M 5 P(L 2 x)y2. The 
shear is therefore negative and the bending moment positive; this can be 
checked by observing that the reaction at B bends the beam at E as 
indicated in Fig. 5.6c but tends to shear it off in a manner opposite to 
that shown in Fig. 5.6b. We can complete, now, the shear and bending-
moment diagrams of Figs. 5.8d and e; the shear has a constant value V 5 
2Py2 between C and B, while the bending moment decreases linearly 
from M 5 PLy4 at x 5 Ly2 to M 5 0 at x 5 L.

 2. The bending moment at any given point of a beam is positive 
when the external forces acting on the beam tend to bend the 
beam at that point as indicated in Fig. 5.6c.

 It is also of help to note that the situation described in Fig. 5.6, 
in which the values of the shear and of the bending moment are 
positive, is precisely the situation that occurs in the left half of a 
simply supported beam carrying a single concentrated load at its mid-
point. This particular case is fully discussed in the next example.
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321 We note from the foregoing example that, when a beam is 
subjected only to concentrated loads, the shear is constant between 
loads and the bending moment varies linearly between loads. In such 
situations, therefore, the shear and bending-moment diagrams can 
easily be drawn, once the values of V and M have been obtained at 
sections selected just to the left and just to the right of the points 
where the loads and reactions are applied (see Sample Prob. 5.1).

EXAMPLE 5.02Draw the shear and bending-moment diagrams for a cantilever beam AB 
of span L supporting a uniformly distributed load w (Fig. 5.9).

L

A B

w

Fig. 5.9

Fig. 5.10

x1
2

VB� � wL

(a)

V

M

MB� � wL21
2

x

x

A

V

A

C

w

wx

(b)

L
B

x

M

A

(c)

L
B

We cut the beam at a point C between A and B and draw the 
free-body diagram of AC (Fig. 5.10a), directing V and M as indicated in 
Fig. 5.6a. Denoting by x the distance from A to C and replacing the 
distributed load over AC by its resultant wx applied at the midpoint of 
AC, we write

1x©Fy 5 0:  2wx 2 V 5 0  V 5 2wx

1 l©MC 5 0:    wx a x
2
b 1 M 5 0    M 5 2 

1
2

 wx2

We note that the shear diagram is represented by an oblique straight line 
(Fig. 5.10b) and the bending-moment diagram by a parabola (Fig. 5.10c). 
The maximum values of V and M both occur at B, where we have

VB 5 2wL   MB 5 21
2wL2

5.2 Shear and Bending-Moment Diagrams
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SAMPLE PROBLEM 5.1

For the timber beam and loading shown, draw the shear and bending-moment 
diagrams and determine the maximum normal stress due to bending.

SOLUTION

 Reactions.  Considering the entire beam as a free body, we find

RB 5 40 kNx  RD 5 14 kNx

 Shear and Bending-Moment Diagrams.  We first determine the 
internal forces just to the right of the 20-kN load at A. Considering the stub 
of beam to the left of section 1 as a free body and assuming V and M to be 
positive (according to the standard convention), we write

 1x©Fy 5 0 :   220 kN 2 V1 5 0    V1 5 220 kN
 1l©M1 5 0 :   120 kN 2 10 m 2 1 M1 5 0     M1 5 0

We next consider as a free body the portion of beam to the left of 
section 2 and write

 1x©Fy 5 0 :   220 kN 2 V2 5 0    V2 5 220 kN
 1l©M2 5 0 :   120 kN2 12.5 m2 1 M2 5 0     M2 5 250 kN ? m

 The shear and bending moment at sections 3, 4, 5, and 6 are deter-
mined in a similar way from the free-body diagrams shown. We obtain

 V3 5 126 kN      M3 5 250 kN ? m
 V4 5 126 kN      M4 5 128 kN ? m
 V5 5 214 kN      M5 5 128 kN ? m
 V6 5 214 kN      M6 5 0

For several of the latter sections, the results may be more easily obtained by 
considering as a free body the portion of the beam to the right of the section. 
For example, for the portion of the beam to the right of section 4, we have

 1x©Fy 5 0 :   V4 2 40 kN 1 14 kN 5 0      V4 5 126 kN
 1l©M4 5 0 :   2M4 1 114 kN2 12 m2 5 0     M4 5 128 kN ? m

 We can now plot the six points shown on the shear and bending-
moment diagrams. As indicated earlier in this section, the shear is of constant 
value between concentrated loads, and the bending moment varies linearly; 
we obtain therefore the shear and bending-moment diagrams shown.

 Maximum Normal Stress.  It occurs at B, where |M| is largest. We 
use Eq. (5.4) to determine the section modulus of the beam:

S 5 1
6bh2 5 1

6 10.080 m2 10.250 m22 5 833.33 3 1026 m3

Substituting this value and |M| 5 |MB| 5 50 3 103 N ? m into Eq. (5.3) gives

sm 5
ZMBZ

S
5
150 3 103 N ? m2

833.33 3 1026 5 60.00 3 106 Pa

 Maximum normal stress in the beam 5 60.0 MPa ◀
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SAMPLE PROBLEM 5.2

The structure shown consists of a W10 3 112 rolled-steel beam AB and of 
two short members welded together and to the beam. (a) Draw the shear 
and bending-moment diagrams for the beam and the given loading. (b) De-
termine the maximum normal stress in sections just to the left and just to 
the right of point D.

SOLUTION

 Equivalent Loading of Beam.  The 10-kip load is replaced by an 
equivalent force-couple system at D. The reaction at B is determined by 
considering the beam as a free body.

 a. Shear and Bending-Moment Diagrams
 From A to C.  We determine the internal forces at a distance x from 
point A by considering the portion of beam to the left of section 1. That 
part of the distributed load acting on the free body is replaced by its resul-
tant, and we write

 1x©Fy 5 0 :   23 x 2 V 5 0    V 5 23 x kips
 1l©M1 5 0 :   3 x112 x2 1 M 5 0     M 5 21.5 x2 kip ? ft

Since the free-body diagram shown can be used for all values of x smaller 
than 8 ft, the expressions obtained for V and M are valid in the region 0 , 
x , 8 ft.

 From C to D.  Considering the portion of beam to the left of section 2 
and again replacing the distributed load by its resultant, we obtain

 1x©Fy 5 0 :     224 2 V 5 0    V 5 224 kips
 1l©M2 5 0 :      241x 2 42 1 M 5 0     M 5 96 2 24 x    kip ? ft

These expressions are valid in the region 8 ft , x , 11 ft.

 From D to B.  Using the position of beam to the left of section 3, we 
obtain for the region 11 ft , x , 16 ft

V 5 234 kips    M 5 226 2 34 x    kip ? ft

The shear and bending-moment diagrams for the entire beam can now be 
plotted. We note that the couple of moment 20 kip ? ft applied at point D 
introduces a discontinuity into the bending-moment diagram.

 b. Maximum Normal Stress to the Left and Right of Point D. From 
Appendix C we find that for the W10 3 112 rolled-steel shape, S 5 126 in3 
about the X-X axis.

 To the left of D:  We have |M| 5 168 kip ? ft 5 2016 kip ? in. Sub-
stituting for |M| and S into Eq. (5.3), we write

 
sm 5

0M 0
S

5
2016 kip ? in.

126 in3 5 16.00 ksi sm 5 16.00 ksi ◀

 To the right of D:  We have |M| 5 148 kip ? ft 5 1776 kip ? in. 
Substituting for |M| and S into Eq. (5.3), we write

 
sm 5

0M 0
S

5
1776 kip ? in.

126 in3 5 14.10 ksi sm 5 14.10 ksi ◀
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PROBLEMS

324

 5.1 through 5.6 For the beam and loading shown, (a) draw the 
shear and bending-moment diagrams, (b) determine the equations 
of the shear and bending-moment curves.

D

w

A
B

a a

C

L

Fig. P5.6

DA
B

a a

C

L

w w

Fig. P5.5

B

w

A

L

B

P

CA

L

ba

Fig. P5.1 Fig. P5.2

w

A C
B

a
L

B

w0

A

L

Fig. P5.4Fig. P5.3

 5.7 and 5.8 Draw the shear and bending-moment diagrams for the 
beam and loading shown, and determine the maximum absolute 
value (a) of the shear, (b) of the bending moment.

BA C D E

200 N 200 N 200 N500 N

300 300225 225

Dimensions in mm

Fig. P5.8

360 lb240 lb

A
C D E

B

300 lb

3 in.4 in. 4 in. 5 in.

Fig. P5.7

bee80288_ch05_314-379.indd Page 324  10/27/10  9:51:52 PM user-f499bee80288_ch05_314-379.indd Page 324  10/27/10  9:51:52 PM user-f499 /Volumes/201/MHDQ251/bee80288_disk1of1/0073380288/bee80288_pagefiles/Volumes/201/MHDQ251/bee80288_disk1of1/0073380288/bee80288_pagefiles



325Problems 5.9 and 5.10 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum abso-
lute value (a) of the shear, (b) of the bending moment.

BA
C

12 kN/m 40 kN

1 m2 m

Fig. P5.9

B
A

C D

4 ft 4 ft 4 ft

2 kips/ft 15 kips

Fig. P5.10 

 5.11 and 5.12 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum abso-
lute value (a) of the shear, (b) of the bending moment.

60 kips 60 kips

CA D

E
F

B

8 in. 8 in. 8 in.

3 in.
250 mm 250 mm 250 mm

50 mm 50 mm

75 N

A
C D

B

75 N

Fig. P5.12Fig. P5.11

 5.13 and 5.14 Assuming that the reaction of the ground is uniformly 
distributed, draw the shear and bending-moment diagrams for the 
beam AB and determine the maximum absolute value (a) of the 
shear, (b) of the bending moment.

B
C D E

2 kips/ft24 kips

A

3 ft 3 ft 3 ft 3 ft

2 kips/ft

Fig. P5.13

BA
C D

1.5 kN1.5 kN

0.9 m
0.3 m0.3 m

Fig. P5.14

3 kN

BA
C D

1.8 kN/m

3 kN

80 mm

300 mm

1.5 m1.5 m1.5 m

Fig. P5.15

B
A

C

200 lb/ft

4 ft 4 ft 6 ft

4 in.

8 in.

2000 lb

Fig. P5.16

 5.15 and 5.16 For the beam and loading shown, determine the maxi-
mum normal stress due to bending on a transverse section at C.
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326 Analysis and Design of Beams for Bending  5.17 For the beam and loading shown, determine the maximum normal 
stress due to bending on a transverse section at C.

 5.18 For the beam and loading shown, determine the maximum normal 
stress due to bending on section a-a.

BA
C

8 kN

1.5 m 2.1 m

W310 � 60

3 kN/m

Fig. P5.17

BA
a

a

30 kN 50 kN 50 kN 30 kN

2 m

5 @ 0.8 m � 4 m

W310 � 52

Fig. P5.18

 5.19 and 5.20 For the beam and loading shown, determine the maxi-
mum normal stress due to bending on a transverse section at C.

BA
C D E F G

5
kips

5
kips

2
kips

2
kips

2
kips

6 @ 15 in. � 90 in.

S8 � 18.4

BA
C D E

150 kN 150 kN

2.4 m
0.8 m

0.8 m

0.8 m

W460 � 113

90 kN/m

Fig. P5.20Fig. P5.19

 5.21 Draw the shear and bending-moment diagrams for the beam and 
loading shown and determine the maximum normal stress due to 
bending.

BA
C D E

25 kips 25 kips 25 kips

2 ft1 ft 2 ft
6 ft

S12 � 35

Fig. P5.21
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327Problems 5.22 and 5.23 Draw the shear and bending-moment diagrams for 
the beam and loading shown and determine the maximum normal 
stress due to bending.

24 kN/m
64 kN ? m

BA
C D

2 m 2 m 2 m

S250 � 52

Fig. P5.22

Hinge

2.4 m

0.6 m

1.5 m 1.5 m

CB
A E

D

80 kN/m 160 kN

W310 � 60

Fig. P5.23

 5.24 and 5.25 Draw the shear and bending-moment diagrams for 
the beam and loading shown and determine the maximum normal 
stress due to bending.

25 kN/m
40 kN ? m

BA
C

1.6 m 3.2 m

W200 � 31.3

Fig. P5.24

BA
C D

5 ft 5 ft8 ft

W14 � 22

10 kips5 kips

Fig. P5.25

 5.26 Knowing that W 5 12 kN, draw the shear and bending-moment 
diagrams for beam AB and determine the maximum normal stress 
due to bending.

 5.27 Determine (a) the magnitude of the counterweight W for which 
the maximum absolute value of the bending moment in the beam 
is as small as possible, (b) the corresponding maximum normal 
stress due to bending. (Hint: Draw the bending-moment diagram 
and equate the absolute values of the largest positive and negative 
bending moments obtained.)

 5.28 Determine (a) the distance a for which the absolute value of the 
bending moment in the beam is as small as possible, (b) the cor-
responding maximum normal stress due to bending. (See hint of 
Prob. 5.27.)

Figs. P5.26 and P5.27

B
C D E  

A

8 kN 8 kN

W310 � 23.8

1 m 1 m 1 m 1 m

W

Hinge

18 ft

B

a

C

4 kips/ft

W14 � 68

A

Fig. P5.28
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328 Analysis and Design of Beams for Bending  5.29 Determine (a) the distance a for which the absolute value of the 
bending moment in the beam is as small as possible, (b) the cor-
responding maximum normal stress due to bending. (See hint of 
Prob. 5.27.)

BA

a 1.5 ft 1.2 ft 0.9 ft

C D E

1.2 kips
1.2 kips0.8 kips

S3 � 5.7

Fig. P5.29

 5.30 Knowing that P 5 Q 5 480 N, determine (a) the distance a for 
which the absolute value of the bending moment in the beam is 
as small as possible, (b) the corresponding maximum normal stress 
due to bending. (See hint of Prob. 5.27.)

BA

a

C D

P Q 12 mm

18 mm

500 mm500 mm

Fig. P5.30

B

b

b
A DC

1.2 m 1.2 m 1.2 m

Fig. P5.32

 5.31 Solve Prob. 5.30, assuming that P 5 480 N and Q 5 320 N.

 5.32 A solid steel bar has a square cross section of side b and is sup-
ported as shown. Knowing that for steel r 5 7860 kg/m3, deter-
mine the dimension b for which the maximum normal stress due 
to bending is (a) 10 MPa, (b) 50 MPa.

 5.33 A solid steel rod of diameter d is supported as shown. Knowing 
that for steel g 5 490 lb/ft3, determine the smallest diameter d 
that can be used if the normal stress due to bending is not to 
exceed 4 ksi.

B

d

A

L � 10 ft

Fig. P5.33
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3295.3  RELATIONS AMONG LOAD, SHEAR, 
AND BENDING MOMENT

When a beam carries more than two or three concentrated loads, 
or when it carries distributed loads, the method outlined in Sec. 5.2 
for plotting shear and bending moment can prove quite cumber-
some. The construction of the shear diagram and, especially, of the 
bending-moment diagram will be greatly facilitated if certain rela-
tions existing among load, shear, and bending moment are taken 
into consideration.
 Let us consider a simply supported beam AB carrying a distrib-
uted load w per unit length (Fig. 5.11a), and let C and C9 be two 
points of the beam at a distance Dx from each other. The shear and 
bending moment at C will be denoted by V and M, respectively, and 
will be assumed positive; the shear and bending moment at C9 will 
be denoted by V 1 DV and M 1 DM.
 We now detach the portion of beam CC9 and draw its free-body 
diagram (Fig. 5.11b). The forces exerted on the free body include a 
load of magnitude w Dx and internal forces and couples at C and 
C9. Since shear and bending moment have been assumed positive, 
the forces and couples will be directed as shown in the figure.

Relations between Load and Shear. Writing that the sum of 
the vertical components of the forces acting on the free body CC9 
is zero, we have

1x©Fy 5 0: V 2 1V 1 ¢V2 2 w ¢x 5 0
 ¢V 5 2w ¢x

Dividing both members of the equation by Dx and then letting Dx 
approach zero, we obtain

 
dV
dx

5 2w
 

(5.5)

Equation (5.5) indicates that, for a beam loaded as shown in Fig. 5.11a, 
the slope dVydx of the shear curve is negative; the numerical value 

5.3 Relations Among Load, Shear, and 
Bending Moment

BA
C

w

D

�x

C'

x

(a)

�x

�x

w �x

w

C C'

(b)

1
2

V

M M � �M

V � �V

Fig. 5.11 Simply supported beam subjected to a distributed load.
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330 Analysis and Design of Beams for Bending of the slope at any point is equal to the load per unit length at that 
point.
 Integrating (5.5) between points C and D, we write

 
VD 2 VC 5 2#

xD

xC

w dx
 

(5.6)

 VD 2 VC 5 21area under load curve between C and D2 (5.69)

Note that this result could also have been obtained by considering 
the equilibrium of the portion of beam CD, since the area under the 
load curve represents the total load applied between C and D.
 It should be observed that Eq. (5.5) is not valid at a point 
where a concentrated load is applied; the shear curve is discontinu-
ous at such a point, as seen in Sec. 5.2. Similarly, Eqs. (5.6) and 
(5.69) cease to be valid when concentrated loads are applied between 
C and D, since they do not take into account the sudden change 
in shear caused by a concentrated load. Equations (5.6) and (5.69), 
therefore, should be applied only between successive concentrated 
loads.

Relations between Shear and Bending Moment. Returning 
to the free-body diagram of Fig. 5.11b, and writing now that the sum 
of the moments about C9 is zero, we have

1loMC¿ 5 0 :   1M 1 ¢M2 2 M 2 V ¢x 1 w ¢x 
¢x
2

5 0

 
¢M 5 V ¢x 2

1
2

 w 1¢x22

Dividing both members of the equation by Dx and then letting Dx 
approach zero, we obtain

 
dM
dx

5 V
 

(5.7)

Equation (5.7) indicates that the slope dMydx of the bending-moment 
curve is equal to the value of the shear. This is true at any point where 
the shear has a well-defined value, i.e., at any point where no con-
centrated load is applied. Equation (5.7) also shows that V 5 0 at 
points where M is maximum. This property facilitates the determina-
tion of the points where the beam is likely to fail under bending.
 Integrating (5.7) between points C and D, we write

 
MD 2 MC 5 #

xD

xC

V dx
 

(5.8)

 MD 2 MC 5 area under shear curve between C and D  (5.89)

�x

�x

w �x

w

C C'

(b)

1
2

V

M M � �M

V � �V

Fig. 5.11 (repeated)
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331Note that the area under the shear curve should be considered posi-
tive where the shear is positive and negative where the shear is nega-
tive. Equations (5.8) and (5.89) are valid even when concentrated 
loads are applied between C and D, as long as the shear curve has 
been correctly drawn. The equations cease to be valid, however, if a 
couple is applied at a point between C and D, since they do not take 
into account the sudden change in bending moment caused by a 
couple (see Sample Prob. 5.6).

5.3 Relations Among Load, Shear, and 
Bending Moment

B

w

A

L

B

w

A

RB� wL1
2RA� wL1

2

Fig. 5.12

EXAMPLE 5.03Draw the shear and bending-moment diagrams for the simply supported 
beam shown in Fig. 5.12 and determine the maximum value of the bend-
ing moment.

From the free-body diagram of the entire beam, we determine the 
magnitude of the reactions at the supports.

RA 5 RB 5 1
2wL

Next, we draw the shear diagram. Close to the end A of the beam, the 
shear is equal to RA, that is, to 1

2wL, as we can check by considering as a 
free body a very small portion of the beam. Using Eq. (5.6), we then 
determine the shear V at any distance x from A; we write

 V 2 VA 5 2#
x

0

w dx 5 2wx

 V 5 VA 2 wx 5 1
2 wL 2 wx 5 w112L 2 x2

The shear curve is thus an oblique straight line which crosses the x axis 
at x 5 Ly2 (Fig. 5.13a). Considering, now, the bending moment, we first 
observe that MA 5 0. The value M of the bending moment at any distance 
x from A may then be obtained from Eq. (5.8); we have

M 2 MA 5 #
x

0

V dx

M 5 #
x

0

w112L 2 x2dx 5 1
2w1Lx 2 x22

The bending-moment curve is a parabola. The maximum value of the 
bending moment occurs when x 5 Ly2, since V (and thus dMydx) is zero 
for that value of x. Substituting x 5 Ly2 in the last equation, we obtain 
Mmax 5 wL2y8 (Fig. 5.13b).

� wL1
2

wL1
2

L1
2

x

V

(a)

L

wL21
8

L L1
2

M

(b)

x

Fig. 5.13
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332 Analysis and Design of Beams for Bending  In most engineering applications, one needs to know the value 
of the bending moment only at a few specific points. Once the 
shear diagram has been drawn, and after M has been determined 
at one of the ends of the beam, the value of the bending moment 
can then be obtained at any given point by computing the area 
under the shear curve and using Eq. (5.89). For instance, since 
MA 5 0 for the beam of Example 5.03, the maximum value of the 
bending moment for that beam can be obtained simply by measur-
ing the area of the shaded triangle in the shear diagram of Fig. 5.13a. 
We have

Mmax 5
1
2

 
L
2

 
wL
2

5
wL2

8

� wL1
2

wL1
2

L1
2

x

V

(a)

L

wL21
8

L L1
2

M

(b)

x

Fig. 5.13

 We note that, in this example, the load curve is a horizontal 
straight line, the shear curve an oblique straight line, and the bending-
moment curve a parabola. If the load curve had been an oblique 
straight line (first degree), the shear curve would have been a parabola 
(second degree) and the bending-moment curve a cubic (third 
degree). The shear and bending-moment curves will always be, 
respectively, one and two degrees higher than the load curve. With 
this in mind, we should be able to sketch the shear and bending-
moment diagrams without actually determining the functions V(x) 
and M(x), once a few values of the shear and bending moment have 
been computed. The sketches obtained will be more accurate if we 
make use of the fact that, at any point where the curves are continu-
ous, the slope of the shear curve is equal to 2w and the slope of 
the bending-moment curve is equal to V.
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333

SAMPLE PROBLEM 5.3

Draw the shear and bending-moment diagrams for the beam and loading 
shown.EA

B C

6 ft

20 kips 12 kips 1.5 kips/ft

8 ft 8 ft10 ft

D

SOLUTION

 Reactions. Considering the entire beam as a free body, we write

1l oMA 5 0:
D124 ft2 2 120 kips2 16 ft2 2 112 kips2 114 ft2 2 112 kips2 128 ft2 5 0

 D 5 126 kips  D 5 26 kips x

1x oFy 5 0: Ay 2 20 kips 2 12 kips 1 26 kips 2 12 kips 5 0
 Ay 5 118 kips  A y 5 18 kips x

y
1 oFx 5 0: Ax 5 0  A x 5 0

We also note that at both A and E the bending moment is zero; thus, two 
points (indicated by dots) are obtained on the bending-moment diagram.

 Shear Diagram. Since dVydx 5 2w, we find that between  concentrated 
loads and reactions the slope of the shear diagram is zero (i.e., the shear is 
constant). The shear at any point is determined by dividing the beam into two 
parts and considering either part as a free body. For example, using the portion 
of beam to the left of section 1, we obtain the shear between B and C:

1xoFy 5 0: 118 kips 2 20 kips 2 V 5 0 V 5 22 kips

We also find that the shear is 112 kips just to the right of D and zero at 
end E. Since the slope dVydx 5 2w is constant between D and E, the shear 
diagram between these two points is a straight line.

 Bending-Moment Diagram. We recall that the area under the shear 
curve between two points is equal to the change in bending moment between 
the same two points. For convenience, the area of each portion of the shear 
diagram is computed and is indicated in parentheses on the diagram. Since 
the bending moment MA at the left end is known to be zero, we write

 MB 2 MA 5 1108     MB 5 1108 kip ? ft
 MC 2 MB 5 216      MC 5 192 kip ? ft
 MD 2 MC 5 2140     MD 5 248 kip ? ft
 ME 2 MD 5 148      ME 5 0

Since ME is known to be zero, a check of the computations is obtained.
 Between the concentrated loads and reactions, the shear is constant; 
thus, the slope dMydx is constant, and the bending-moment diagram is 
drawn by connecting the known points with straight lines. Between D and 
E where the shear diagram is an oblique straight line, the bending-moment 
diagram is a parabola.
 From the V and M diagrams we note that Vmax 5 18 kips and Mmax 5 
108 kip ? ft.

E

E

A

A

Ax

Ay

B C

6 ft

4 ft

20 kips 12 kips

20 kips

20 kips

12 kips

26 kips18 kips

18 kips

V (kips)

M (kip ? ft)

x

x

�18
(�108)

�108

�92

�48

(�48)

(�140)

�12

(�16)

�2

�14

15 kips/ft

12 kips

8 ft 8 ft10 ft

D

B 1 C D

D

M

V
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SAMPLE PROBLEM 5.4

The W360 3 79 rolled-steel beam AC is simply supported and carries the 
uniformly distributed load shown. Draw the shear and bending-moment 
diagrams for the beam and determine the location and magnitude of the 
maximum normal stress due to bending.

SOLUTION

 Reactions. Considering the entire beam as a free body, we find

RA 5 80 kN  x    RC 5 40 kN  x

 Shear Diagram. The shear just to the right of A is VA 5 180 kN. 
Since the change in shear between two points is equal to minus the area under 
the load curve between the same two points, we obtain VB by writing

 VB 2 VA 5 2120 kN/m2 16 m2 5 2120 kN
 VB 5 2120 1 VA 5 2120 1 80 5 240 kN

The slope dVydx 5 2w being constant between A and B, the shear diagram 
between these two points is represented by a straight line. Between B and C, 
the area under the load curve is zero; therefore,

VC 2 VB 5 0    VC 5 VB 5 240 kN

and the shear is constant between B and C.

 Bending-Moment Diagram. We note that the bending moment at 
each end of the beam is zero. In order to determine the maximum bending 
moment, we locate the section D of the beam where V 5 0. We write

VD 2 VA 5 2wx
0 2 80 kN 5 2120 kN/m2  x

and, solving for x we find: x 5 4 m ◀
 

The maximum bending moment occurs at point D, where we have 
dMydx 5 V 5 0. The areas of the various portions of the shear diagram are 
computed and are given (in parentheses) on the diagram. Since the area of 
the shear diagram between two points is equal to the change in bending 
moment between the same two points, we write

 MD 2 MA 5 1 160 kN ? m     MD 5  1160 kN ? m
 MB 2 MD 5 2  40 kN ? m      MB 5  1120 kN ? m
 MC 2 MB 5 2 120 kN ? m      MC 5 0

The bending-moment diagram consists of an arc of parabola followed by a 
segment of straight line; the slope of the parabola at A is equal to the value 
of V at that point.

 Maximum Normal Stress. It occurs at D, where |M| is largest. From 
Appendix C we find that for a W360 3 79 rolled-steel shape, S 5 1270 mm3 
about a horizontal axis. Substituting this value and |M| 5 |MD| 5 160 3 
103 N ? m into Eq. (5.3), we write

sm 5
0MD 0

S
5

160 3 103 N ? m
1270 3 1026 m3 5 126.0 3 106 Pa

Maximum normal stress in the beam 5 126.0 MPa  b

C
B

A

20 kN/m

6 m 3 m

C

C

B

w

A

V

D B

b

a

A

20 kN/m

80 kN

80 kN

(�160)

(�120)

40 kN

�40 kN(�40)

6 m

x � 4m
160 kN ? m

120 kN ? m

x

M

A

x

x
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SAMPLE PROBLEM 5.5

Sketch the shear and bending-moment diagrams for the cantilever beam 
shown.

SOLUTION

 Shear Diagram. At the free end of the beam, we find VA 5 0. Between 
A and B, the area under the load curve is 1

2 w0 
a; we find VB by writing

VB 2 VA 5 21
2 w0 

a    VB 5 21
2 w0 

a

Between B and C, the beam is not loaded; thus VC 5 VB. At A, we have 
w 5 w0 and, according to Eq. (5.5), the slope of the shear curve is 
dVydx 5 2w0, while at B the slope is dVydx 5 0. Between A and B, the 
loading decreases linearly, and the shear diagram is parabolic. Between B 
and C, w 5 0, and the shear diagram is a horizontal line.

 Bending-Moment Diagram. The bending moment MA at the free end 
of the beam is zero. We compute the area under the shear curve and write

 MB 2 MA 5 21
3 w0 

a2    MB 5 21
3 w0 

a2

 MC 2 MB 5 21
2 w0 

a1L 2 a2
 MC 5 21

6 w0 
a13L 2 a2

The sketch of the bending-moment diagram is completed by recalling that 
dMydx 5 V. We find that between A and B the diagram is represented by a 
cubic curve with zero slope at A, and between B and C by a straight line.

CB

w0

A

V

M

a

L

 � w0a21
3  � w0a(L � a)1

2

 � w0a1
2

 � w0a21
3

 � w0a(3L � a)1
6

 � w0a

x

x

1
2

SAMPLE PROBLEM 5.6

The simple beam AC is loaded by a couple of moment T applied at point B. 
Draw the shear and bending-moment diagrams of the beam.

SOLUTION

The entire beam is taken as a free body, and we obtain

RA 5
T
L
x    RC 5

T
L
w

The shear at any section is constant and equal to TyL. Since a couple is 
applied at B, the bending-moment diagram is discontinuous at B; it is rep-
resented by two oblique straight lines and decreases suddenly at B by an 
amount equal to T. The character of this discontinuity can also be verified 
by equilibrium analysis. For example, considering the free body of the por-
tion of the beam from A to just beyond the right of B as shown, we find 
the value of M by

1l©MB 5 0:  2 
T
L

 a 1 T 1 M 5 0   M 5 2T a1 2
a
L
b

C
B

A

V

M

B

L

x

x

T
a

T
L

�T(1 � )a
L

T a
L

T V M

RA� T�L
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 5.34 Using the method of Sec. 5.3, solve Prob. 5.1a.

 5.35 Using the method of Sec. 5.3, solve Prob. 5.2a.

 5.36 Using the method of Sec. 5.3, solve Prob. 5.3a.

 5.37 Using the method of Sec. 5.3, solve Prob. 5.4a.

 5.38 Using the method of Sec. 5.3, solve Prob. 5.5a.

 5.39 Using the method of Sec. 5.3, solve Prob. 5.6a.

 5.40 Using the method of Sec. 5.3, solve Prob. 5.7.

 5.41 Using the method of Sec. 5.3, solve Prob. 5.8.

 5.42 Using the method of Sec. 5.3, solve Prob. 5.9.

 5.43 Using the method of Sec. 5.3, solve Prob. 5.10.

 5.44 and 5.45 Draw the shear and bending-moment diagrams for 
the beam and loading shown, and determine the maximum abso-
lute value (a) of the shear, (b) of the bending moment.

Fig. P5.44

A

1.5 m 0.9 m

3 kN

3.5 kN/m

0.6 m

E
D

C
B

0.5 m

4 kN

1 m 1 m
0.5 m

4 kN

A

E

DC
B

F

Fig. P5.45

 5.46 Using the method of Sec. 5.3, solve Prob. 5.15.

 5.47 Using the method of Sec. 5.3, solve Prob. 5.16.

 5.48 Using the method of Sec. 5.3, solve Prob. 5.18.

 5.49 Using the method of Sec. 5.3, solve Prob. 5.19.

5.50 For the beam and loading shown, determine the equations of the 
shear and bending-moment curves and the maximum absolute 
value of the bending moment in the beam, knowing that (a) k 5 1, 
(b) k 5 0.5.

x

w

w0

– kw0
L

Fig. P5.50

bee80288_ch05_314-379.indd Page 336  10/27/10  9:53:25 PM user-f499bee80288_ch05_314-379.indd Page 336  10/27/10  9:53:25 PM user-f499 /Volumes/201/MHDQ251/bee80288_disk1of1/0073380288/bee80288_pagefiles/Volumes/201/MHDQ251/bee80288_disk1of1/0073380288/bee80288_pagefiles



337 5.51 and 5.52 Determine (a) the equations of the shear and 
 bending-moment curves for the beam and loading shown, (b) the 
maximum absolute value of the bending moment in the beam.

B
x

w
w � w0

A

L

x
L

Fig. P5.51

B
x

w w � w0 sin

A

L

� x
L

Fig. P5.52

 5.53 Determine (a) the equations of the shear and bending-moment 
curves for the beam and loading shown, (b) the maximum absolute 
value of the bending moment in the beam.

w

A

L

B
x

w � w0 cos� x
2L

Fig. P5.53

C D
A B

6 ft 6 ft
2 ft

2 kips/ft
6 kips

W8 � 31

Fig. P5.54

C
A B

1 m
4 m 160 mm

140 mm
3 kN/m

2 kN

Fig. P5.55

 5.56 and 5.57 Draw the shear and bending-moment diagrams for 
the beam and loading shown and determine the maximum normal 
stress due to bending.

A B

80 lb /ft

1600 lb

1.5 ft

9 ft

11.5 in.

1.5 in.

Fig. P5.56

BDC

250 kN 150 kN

A

2 m 2 m 2 m

W410 � 114

Fig. P5.57

 5.54 and 5.55 Draw the shear and bending-moment diagrams for 
the beam and loading shown and determine the maximum normal 
stress due to bending.

Problems

bee80288_ch05_314-379.indd Page 337  10/27/10  9:53:33 PM user-f499bee80288_ch05_314-379.indd Page 337  10/27/10  9:53:33 PM user-f499 /Volumes/201/MHDQ251/bee80288_disk1of1/0073380288/bee80288_pagefiles/Volumes/201/MHDQ251/bee80288_disk1of1/0073380288/bee80288_pagefiles



338 Analysis and Design of Beams for Bending  5.58 and 5.59 Draw the shear and bending-moment diagrams for 
the beam and loading shown and determine the maximum normal 
stress due to bending.

A B
DC

80 kN/m

W250 � 80

1.2 m 1.2 m1.6 m

60 kN · m 12 kN · m

B

CA

8 in.
20 in.

3 in.

800 lb/in.

2    in.1
2

1    in.1
4

Fig. P5.59Fig. P5.58

 5.60 Beam AB, of length L and square cross section of side a, is sup-
ported by a pivot at C and loaded as shown. (a) Check that the 
beam is in equilibrium. (b) Show that the maximum stress due to 
bending occurs at C and is equal to w0L

2y(1.5a)3.

B

a

aA

2L
3

C

w0

L
3

Fig. P5.60

A C BD

400 kN/m

W200 � 22.5w0

0.3 m 0.3 m0.4 m

Fig. P5.61

A

480 lb/ft

1 ft 1 ft

1.5 ft 1.5 ft

W8 � 31

8 ft

P

B
C D E F

Q

Fig. P5.62

 5.61 Knowing that beam AB is in equilibrium under the loading shown, 
draw the shear and bending-moment diagrams and determine the 
maximum normal stress due to bending.

 *5.62 The beam AB supports a uniformly distributed load of 480 lb/ft 
and two concentrated loads P and Q. The normal stress due to 
bending on the bottom edge of the lower flange is 114.85 ksi at 
D and 110.65 ksi at E. (a) Draw the shear and bending-moment 
diagrams for the beam. (b) Determine the maximum normal stress 
due to bending that occurs in the beam.
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 *5.63 Beam AB supports a uniformly distributed load of 2 kN/m and two 
concentrated loads P and Q. It has been experimentally deter-
mined that the normal stress due to bending in the bottom edge 
of the beam is 256.9 MPa at A and 229.9 MPa at C. Draw the 
shear and bending-moment diagrams for the beam and determine 
the magnitudes of the loads P and Q.

 *5.64 The beam AB supports two concentrated loads P and Q. The 
 normal stress due to bending on the bottom edge of the beam 
is 155 MPa at D and 137.5 MPa at F. (a) Draw the shear and 
bending-moment diagrams for the beam. (b) Determine the maxi-
mum normal stress due to bending that occurs in the beam.

C D BA

2 kN/m

P

0.1 m 0.1 m 0.125 m

36 mm

18 mm
Q

Fig. P5.63

Fig. P5.64

0.4 m

P Q 24 mm

0.2 m
0.5 m 0.5 m

60 mmA
C D E F

B

0.3 m

5.4 DESIGN OF PRISMATIC BEAMS FOR BENDING
As indicated in Sec. 5.1, the design of a beam is usually controlled by 
the maximum absolute value |M|max of the bending moment that will 
occur in the beam. The largest normal stress sm in the beam is found 
at the surface of the beam in the critical section where |M|max occurs 
and can be obtained by substituting |M|max for |M| in Eq. (5.1) or Eq. 
(5.3).† We write

 
sm 5

ZMZmaxc

I   
sm 5

ZMZmax

S  
(5.19, 5.39)

A safe design requires that sm # sall, where sall is the allowable stress 
for the material used. Substituting sall for sm in (5.39) and solving 
for S yields the minimum allowable value of the section modulus for 
the beam being designed:

 
Smin 5

ZMZmax

sall  
(5.9)

 The design of common types of beams, such as timber beams 
of rectangular cross section and rolled-steel beams of various cross-
sectional shapes, will be considered in this section. A proper proce-
dure should lead to the most economical design. This means that, 
among beams of the same type and the same material, and other 

†For beams that are not symmetrical with respect to their neutral surface, the largest of 
the distances from the neutral surface to the surfaces of the beam should be used for c 
in Eq. (5.1) and in the computation of the section modulus S 5 I/c.

5.4 Design of Prismatic Beams for Bending 339
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340 Analysis and Design of Beams for Bending things being equal, the beam with the smallest weight per unit 
length—and, thus, the smallest cross-sectional area—should be 
selected, since this beam will be the least expensive.
 The design procedure will include the following steps†:

 1. First determine the value of sall for the material selected from 
a table of properties of materials or from design specifications. 
You can also compute this value by dividing the ultimate strength 
sU of the material by an appropriate factor of safety (Sec. 1.13). 
Assuming for the time being that the value of sall is the same 
in tension and in compression, proceed as follows.

 2. Draw the shear and bending-moment diagrams corresponding 
to the specified loading conditions, and determine the maximum 
absolute value |M|max of the bending moment in the beam.

 3. Determine from Eq. (5.9) the minimum allowable value Smin 
of the section modulus of the beam.

 4. For a timber beam, the depth h of the beam, its width b, or 
the ratio hyb characterizing the shape of its cross section will 
probably have been specified. The unknown dimensions may 
then be selected by recalling from Eq. (4.19) of Sec. 4.4 that 
b and h must satisfy the relation 1

6 
bh2 5 S $  Smin.

 5. For a rolled-steel beam, consult the appropriate table in Appen-
dix C. Of the available beam sections, consider only those with a 
section modulus S $ Smin and select from this group the section 
with the smallest weight per unit length. This is the most eco-
nomical of the sections for which S $ Smin. Note that this is not 
necessarily the section with the smallest value of S (see Example 
5.04). In some cases, the selection of a section may be limited by 
other considerations, such as the allowable depth of the cross 
section, or the allowable deflection of the beam (cf. Chap. 9).

 The foregoing discussion was limited to materials for which sall is 
the same in tension and in compression. If sall is different in tension 
and in compression, you should make sure to select the beam section 
in such a way that sm # sall for both tensile and compressive stresses. 
If the cross section is not symmetric about its neutral axis, the largest 
tensile and the largest compressive stresses will not necessarily occur in 
the section where |M| is maximum. One may occur where M is maxi-
mum and the other where M is minimum. Thus, step 2 should include 
the determination of both Mmax and Mmin, and step 3 should be modified 
to take into account both tensile and compressive stresses.
 Finally, keep in mind that the design procedure described in 
this section takes into account only the normal stresses occurring on 
the surface of the beam. Short beams, especially those made of tim-
ber, may fail in shear under a transverse loading. The determination 
of shearing stresses in beams will be discussed in Chap. 6. Also, in 
the case of rolled-steel beams, normal stresses larger than those con-
sidered here may occur at the junction of the web with the flanges. 
This will be discussed in Chap. 8.

†We assume that all beams considered in this chapter are adequately braced to prevent 
lateral buckling, and that bearing plates are provided under concentrated loads applied to 
rolled-steel beams to prevent local buckling (crippling) of the web.
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*Load and Resistance Factor Design.  This alternative method 
of design was briefly described in Sec. 1.13 and applied to mem-
bers under axial loading. It can readily be applied to the design of 
beams in bending. Replacing in Eq. (1.26) the loads PD, PL, and 
PU, respectively, by the bending moments MD, ML, and MU, we 
write

 gDMD 1 gLML # fMU (5.10)

The coefficients gD and gL are referred to as the load factors and 
the coefficient f as the resistance factor. The moments MD and 
ML are the bending moments due, respectively, to the dead and 
the live loads, while MU is equal to the product of the ultimate 
strength sU of the material and the section modulus S of the beam: 
MU 5 SsU.

EXAMPLE 5.04Select a wide-flange beam to support the 15-kip load as shown in Fig. 5.14. 
The allowable normal stress for the steel used is 24 ksi.

 1. The allowable normal stress is given: sall 5 24 ksi.
 2.  The shear is constant and equal to 15 kips. The bending moment 

is maximum at B. We have

ZMZmax 5 115 kips2 18 ft2 5 120 kip ? ft 5 1440 kip ? in.

 3. The minimum allowable section modulus is

Smin 5
ZMZmax

sall
5

1440 kip ? in.

24 ksi
5 60.0 in3

 4.  Referring to the table of Properties of Rolled-Steel Shapes in Appen-
dix C, we note that the shapes are arranged in groups of the same 
depth and that in each group they are listed in order of decreasing 
weight. We choose in each group the lightest beam having a section 
modulus S 5 Iyc at least as large as Smin and record the results in 
the following table.

 Shape S, in3

W21 3 44 81.6
W18 3 50 88.9
W16 3 40 64.7
W14 3 43 62.6
W12 3 50 64.2
W10 3 54 60.0

The most economical is the W16 3 40 shape since it weighs only 40 lb/ft, 
even though it has a larger section modulus than two of the other shapes. 
We also note that the total weight of the beam will be (8 ft) 3 (40 lb) 5 
320 lb. This weight is small compared to the 15,000-1b load and can be 
neglected in our analysis.

15 kips
8 ft

A B

Fig. 5.14

341
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SAMPLE PROBLEM 5.7

A 12-ft-long overhanging timber beam AC with an 8-ft span AB is to be 
designed to support the distributed and concentrated loads shown. Knowing 
that timber of 4-in. nominal width (3.5-in. actual width) with a 1.75-ksi 
allowable stress is to be used, determine the minimum required depth h of 
the beam.

B
A C h

8 ft 4 ft

3.5 in.400 lb/ft 4.5 kips

SOLUTION

 Reactions.  Considering the entire beam as a free body, we write

1l oMA 5 0: B 18 ft2 2 13.2 kips2 14 ft2 2 14.5 kips2 112 ft2 5 0
 B 5 8.35 kips  B 5 8.35 kipsx

1
y

oFx 5 0: Ax 5 0

1xoFy 5 0: Ay 1 8.35 kips 2 3.2 kips 2 4.5 kips 5 0
 Ay 5 20.65 kips    A 5 0.65 kips w

 Shear Diagram.  The shear just to the right of A is VA 5 Ay 5 
20.65 kips. Since the change in shear between A and B is equal to minus the 
area under the load curve between these two points, we obtain VB by writing

 VB 2 VA 5 2 1400 lb/ft2 18 ft2 5 23200 lb 5 23.20 kips
 VB 5 VA 2 3.20 kips 5 20.65 kips 2 3.20 kips 5 23.85 kips.

The reaction at B produces a sudden increase of 8.35 kips in V, resulting in a 
value of the shear equal to 4.50 kips to the right of B. Since no load is applied 
between B and C, the shear remains constant between these two points.

 Determination of |M|max.  We first observe that the bending moment is 
equal to zero at both ends of the beam: MA 5 MC 5 0. Between A and B the 
bending moment decreases by an amount equal to the area under the shear 
curve, and between B and C it increases by a corresponding amount. Thus, the 
maximum absolute value of the bending moment is |M|max 5 18.00 kip ? ft.

 Minimum Allowable Section Modulus.  Substituting into Eq. (5.9) the 
given value of sall and the value of |M|max that we have found, we write

Smin 5
0M 0max

sall
5
118 kip ? ft2 112 in./ft2

1.75 ksi
5 123.43 in3

 Minimum Required Depth of Beam.  Recalling the formula developed 
in part 4 of the design procedure described in Sec. 5.4 and substituting the 
values of b and Smin, we have

1
6 bh2 $ Smin    1

6 13.5 in.2h2 $ 123.43 in3    h $ 14.546 in.

The minimum required depth of the beam is h 5 14.55 in. ◀

 Note: In practice, standard wood shapes are specified by nominal dimensions that 
are slightly larger than actual. In this case, we would specify a 4-in. 3 16-in. member, 
whose actual dimensions are 3.5 in. 3 15.25 in.

B
A

V

A

Ax
Ay

B

C

8 ft 4 ft

3.2 kips
4.5 kips

(�18)

(�18)

4.50
kips

�3.85 kips

�0.65
kips

CB x
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SAMPLE PROBLEM 5.8

A 5-m-long, simply supported steel beam AD is to carry the distributed and 
concentrated loads shown. Knowing that the allowable normal stress for the 
grade of steel to be used is 160 MPa, select the wide-flange shape that 
should be used.

SOLUTION

 Reactions.  Considering the entire beam as a free body, we write

1loMA 5 0: D 15 m 2 2 160 kN 2 11.5 m 2 2 150 kN 2 14 m 2 5 0
D 5 58.0 kN    D 5 58.0 kNx

1
y

oFx 5 0: Ax 5 0

1xoFy 5 0: Ay 1 58.0 kN 2 60 kN 2 50 kN 5 0
Ay 5 52.0 kN    A 5 52.0 kNx

 Shear Diagram.  The shear just to the right of A is VA  5  Ay 5 
152.0 kN. Since the change in shear between A and B is equal to minus 
the area under the load curve between these two points, we have

VB 5 52.0 kN 2 60 kN 5 28 kN

The shear remains constant between B and C, where it drops to 258 kN, 
and keeps this value between C and D. We locate the section E of the beam 
where V 5 0 by writing

VE 2 VA 5 2wx
0 2 52.0 kN 5 2 120 kN/m 2  x

Solving for x we find x 5 2.60 m.

 Determination of |M|max.  The bending moment is maximum at E, 
where V 5 0. Since M is zero at the support A, its maximum value at E is 
equal to the area under the shear curve between A and E. We have, there-
fore,  |M|max 5 ME 5 67.6 kN ? m.

 Minimum Allowable Section Modulus.  Substituting into Eq. (5.9) the 
given value of sall and the value of |M|max that we have found, we write

Smin 5
0M 0max

sall
5

67.6 kN ? m
160 MPa

5 422.5 3 1026 m3 5 422.5 3 103 mm3

 Selection of Wide-Flange Shape.  From Appendix C we compile a 
list of shapes that have a section modulus larger than Smin and are also the 
lightest shape in a given depth group.

 Shape S, mm3

W410 3 38.8 629
W360 3 32.9 475
W310 3 38.7 547
W250 3 44.8 531
W200 3 46.1 451

We select the lightest shape available, namely W360 3 32.9  b

CB D

1.5 m

52 kN

x � 2.6 m

�58 kN

�8 kN

(67.6)

1.5 m
1 m 1 m

50 kN

D

A

V

A
E B C D

x

Ax
Ay

60 kN

B

A

C D

3 m
1 m 1 m

20 kN
50 kN
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 5.65 and 5.66 For the beam and loading shown, design the cross 
section of the beam, knowing that the grade of timber used has an 
allowable normal stress of 12 MPa.

 5.67 and 5.68 For the beam and loading shown, design the cross 
section of the beam, knowing that the grade of timber used has an 
allowable normal stress of 1750 psi.

 5.69 and 5.70 For the beam and loading shown, design the cross 
section of the beam, knowing that the grade of timber used has an 
allowable normal stress of 12 MPa.

1.8 kN 3.6 kN

CB
A D h

0.8 m 0.8 m 0.8 m

40 mm

Fig. P5.65

A B
C h

1.2 m 1.2 m

125 mm
18 kN/m

Fig. P5.66

1.2 kips/ft

6 ft
a

a
B

A

Fig. P5.68

CB
A D h

3 ft 6 ft

5 in.
1.5 kips/ft

3 ft

Fig. P5.67

A
B

150 mm

b3 kN/m

C

2.4 m 1.2 m

Fig. P5.70

C
A

B
D h

0.6 m 0.6 m
3 m

100 mm6 kN/m
2.5 kN2.5 kN

Fig. P5.69
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345ProblemsProblems 5.71 and 5.72 Knowing that the allowable stress for the steel used 
is 24 ksi, select the most economical wide-flange beam to support 
the loading shown.

Fig. P5.72

2.75 kips/ft

24 kips

B
A C

9 ft 15 ft5 ft
12 ft

5 ft

62 kips

62 kips

B C 
A D

Fig. P5.71

 5.73 and 5.74 Knowing that the allowable stress for the steel used 
is 160 MPa, select the most economical wide-flange beam to sup-
port the loading shown.

Fig. P5.73

6 kN/m

18 kN/m

6 m

A
B

Fig. P5.74

5 kN/m

70 kN 70 kN

A D
CB

3 m 3 m5 m

 5.75 and 5.76 Knowing that the allowable stress for the steel used 
is 160 MPa, select the most economical S-shape beam to support 
the loading shown.

Fig. P5.75

C
DA

B

2.5 m 2.5 m 5 m

60 kN 40 kN

Fig. P5.76

45 kN/m

A D
CB

3 m 3 m
9 m

70 kN 70 kN

 5.77 and 5.78 Knowing that the allowable stress for the steel used 
is 24 ksi, select the most economical S-shape beam to support the 
loading shown.

48 kips 48 kips 48 kips

A
D

E
CB

6 ft
2 ft2 ft2 ft

Fig. P5.77

3 kips/ft

18 kips

A
DCB

6 ft 6 ft
3 ft

Fig. P5.78
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346 Analysis and Design of Beams for Bending  5.79 Two L102 3 76 rolled-steel angles are bolted together and used 
to support the loading shown. Knowing that the allowable normal 
stress for the steel used is 140 MPa, determine the minimum angle 
thickness that can be used.

B

4.5 kN/m

9 kN

A C

1 m1 m

152 mm

102 mm

Fig. P5.79

 5.80 Two rolled-steel channels are to be welded back to back and used 
to support the loading shown. Knowing that the allowable normal 
stress for the steel used is 30 ksi, determine the most economical 
channels that can be used.

 5.81 Three steel plates are welded together to form the beam shown. 
Knowing that the allowable normal stress for the steel used is 
22 ksi, determine the minimum flange width b that can be used.

B

2.25 kips/ft

20 kips

A
C

D

12 ft
3 ft

6 ft

Fig. P5.80 8 kips 32 kips 32 kips

B D
A

C
E

b

4.5 ft
14 ft 14 ft

9.5 ft

in.

1 in.

1 in.

19 in.3
4

Fig. P5.81

 5.82 A steel pipe of 100-mm diameter is to support the loading shown. 
Knowing that the stock of pipes available has thicknesses varying 
from 6 mm to 24 mm in 3-mm increments, and that the allowable 
normal stress for the steel used is 150 MPa, determine the mini-
mum wall thickness t that can be used.

 5.83 Assuming the upward reaction of the ground to be uniformly dis-
tributed and knowing that the allowable normal stress for the steel 
used is 24 ksi, select the most economical wide-flange beam to 
support the loading shown.

A B C D

100 mm

t

1.5 kN 1.5 kN

1 m
0.5 m 0.5 m

1.5 kN

Fig. P5.82

B C

200 kips 200 kips

A DD

4 ft4 ft 4 ft

Fig. P5.83B C

Total load � 2 MN

A D

0.75 m 0.75 m
1 m

D

Fig. P5.84

 5.84 Assuming the upward reaction of the ground to be uniformly dis-
tributed and knowing that the allowable normal stress for the steel 
used is 170 MPa, select the most economical wide-flange beam to 
support the loading shown.
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347Problems 5.85 and 5.86 Determine the largest permissible value of P for the 
beam and loading shown, knowing that the allowable normal stress 
is 16 ksi in tension and 218 ksi in compression.

B

C
A D

10 in. 6 in.
20 in. 0.5 in.

0.5 in.
2 in.

4 in.P P

B C
A D

16 in. 8 in. 4 in.

2 in.
0.5 in.

0.5 in.

8 in.

P P

Fig. P5.86Fig. P5.85

 5.87 Determine the largest permissible distributed load w for the beam 
shown, knowing that the allowable normal stress is 180 MPa in 
tension and 2130 MPa in compression.

B C

w

A D

0.2 m 0.2 m
0.5 m

20 mm

20 mm

60 mm

60 mm

Fig. P5.87

 5.88 Solve Prob. 5.87, assuming that the cross section of the beam is 
reversed, with the flange of the beam resting on the supports at B 
and C.

 5.89 A 54-kip load is to be supported at the center of the 16-ft span 
shown. Knowing that the allowable normal stress for the steel used 
is 24 ksi, determine (a) the smallest allowable length l of beam CD 
if the W12 3 50 beam AB is not to be overstressed, (b) the most 
economical W shape that can be used for beam CD. Neglect the 
weight of both beams.

 5.90 A uniformly distributed load of 66 kN/m is to be supported over 
the 6-m span shown. Knowing that the allowable normal stress for 
the steel used is 140 MPa, determine (a) the smallest allowable 
length l of beam CD if the W460 3 74 beam AB is not to be 
overstressed, (b) the most economical W shape that can be used 
for beam CD. Neglect the weight of both beams.

BA

C D

l/2 l/2

L �16 ft

W12 � 50

54 kips

Fig. P5.89

BA
C D

W460 � 74

66 kN/m 66 kN/m

l 

L � 6 m

Fig. P5.90
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348 Analysis and Design of Beams for Bending  5.91 Each of the three rolled-steel beams shown (numbered 1, 2, 
and 3) is to carry a 64-kip load uniformly distributed over the 
beam. Each of these beams has a 12-ft span and is to be supported 
by the two 24-ft rolled-steel girders AC and BD. Knowing that the 
allowable normal stress for the steel used is 24 ksi, select (a) the 
most economical S shape for the three beams, (b) the most eco-
nomical W shape for the two girders.

4 ft

4 ft

12 ft

8 ft

1

2

3

8 ft

B

A

C

D

Fig. P5.91

 5.92 Beams AB, BC, and CD have the cross section shown and are pin-
connected at B and C. Knowing that the allowable normal stress 
is 1110 MPa in tension and 2150 MPa in compression, determine 
(a) the largest permissible value of w if beam BC is not to be 
overstressed, (b) the corresponding maximum distance a for which 
the cantilever beams AB and CD are not overstressed.

B C

w

D

a 7.2 m

12.5 mm

12.5 mm

150 mm

200 mm

A

a

Fig. P5.92
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349Problems 5.93 Beams AB, BC, and CD have the cross section shown and are pin-
connected at B and C. Knowing that the allowable normal stress 
is 1110 MPa in tension and 2150 MPa in compression, determine 
(a) the largest permissible value of P if beam BC is not to be 
overstressed, (b) the corresponding maximum distance a for which 
the cantilever beams AB and CD are not overstressed.

PP

B C D

a
2.4 m 2.4 m 2.4 m

12.5 mm

12.5 mm

150 mm

200 mm

A

a

Fig. P5.93

a

A B

x

L

P2P1

Fig. P5.94

 *5.94 A bridge of length L 5 48 ft is to be built on a secondary road 
whose access to trucks is limited to two-axle vehicles of medium 
weight. It will consist of a concrete slab and of simply supported 
steel beams with an ultimate strength sU 5 60 ksi. The combined 
weight of the slab and beams can be approximated by a uniformly 
distributed load w 5 0.75 kips/ft on each beam. For the purpose 
of the design, it is assumed that a truck with axles located at a 
distance a 5 14 ft from each other will be driven across the bridge 
and that the resulting concentrated loads P1 and P2 exerted on 
each beam could be as large as 24 kips and 6 kips, respectively. 
Determine the most economical wide-flange shape for the beams, 
using LRFD with the load factors gD 5 1.25, gL 5 1.75 and the 
resistance factor f 5 0.9. [Hint: It can be shown that the maxi-
mum value of |ML| occurs under the larger load when that load is 
located to the left of the center of the beam at a distance equal 
to aP2y2(P1 1 P2).]

 *5.95 Assuming that the front and rear axle loads remain in the same 
ratio as for the truck of Prob. 5.94, determine how much heavier 
a truck could safely cross the bridge designed in that problem.

 *5.96 A roof structure consists of plywood and roofing material sup-
ported by several timber beams of length L 5 16 m. The dead 
load carried by each beam, including the estimated weight of the 
beam, can be represented by a uniformly distributed load wD 5 
350 N/m. The live load consists of a snow load, represented by a 
uniformly distributed load wL 5 600 N/m, and a 6-kN concen-
trated load P applied at the midpoint C of each beam. Knowing 
that the ultimate strength for the timber used is sU 5 50 MPa and 
that the width of each beam is b 5 75 mm, determine the mini-
mum allowable depth h of the beams, using LRFD with the load 
factors gD 5 1.2, gL 5 1.6 and the resistance factor f 5 0.9.

 *5.97 Solve Prob. 5.96, assuming that the 6-kN concentrated load P 
applied to each beam is replaced by 3-kN concentrated loads P1 
and P2 applied at a distance of 4 m from each end of the beams.

P

wD � wL

C

b

hA B

L1
2 L1

2

Fig. P5.96
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350 Analysis and Design of Beams for Bending *5.5  USING SINGULARITY FUNCTIONS TO 
DETERMINE SHEAR AND BENDING MOMENT 
IN A BEAM

Reviewing the work done in the preceding sections, we note that the 
shear and bending moment could only rarely be described by single 
analytical functions. In the case of the cantilever beam of Example 
5.02 (Fig. 5.9), which supported a uniformly distributed load w, the 
shear and bending moment could be represented by single analytical 
functions, namely, V 5 2wx and M 5 21

2wx2; this was due to the 
fact that no discontinuity existed in the loading of the beam. On the 
other hand, in the case of the simply supported beam of Exam-
ple 5.01, which was loaded only at its midpoint C, the load P applied 
at C represented a singularity in the beam loading. This singularity 
resulted in discontinuities in the shear and bending moment and 
required the use of different analytical functions to represent V and 
M in the portions of beam located, respectively, to the left and to 
the right of point C. In Sample Prob. 5.2, the beam had to be divided 
into three portions, in each of which different functions were used 
to represent the shear and the bending moment. This situation led 
us to rely on the graphical representation of the functions V and M 
provided by the shear and bending-moment diagrams and, later in 
Sec. 5.3, on a graphical method of integration to determine V and 
M from the distributed load w.
 The purpose of this section is to show how the use of singular-
ity functions makes it possible to represent the shear V and the 
bending moment M by single mathematical expressions.
 Consider the simply supported beam AB, of length 2a, which 
carries a uniformly distributed load w0 extending from its midpoint 
C to its right-hand support B (Fig. 5.15). We first draw the free-body 
diagram of the entire beam (Fig. 5.16a); replacing the distributed 
load by an equivalent concentrated load and, summing moments 
about B, we write

1l oMB 5 0: 1w0a2 112a2 2 RA12a2 5 0  RA 5 1
4w0a

Next we cut the beam at a point D between A and C. From the 
free-body diagram of AD (Fig. 5.16b) we conclude that, over the 
interval 0 , x , a, the shear and bending moment are expressed, 
respectively, by the functions

V11x2 5 1
4w0a  and  M11x2 5 1

4w0ax

Cutting, now, the beam at a point E between C and B, we draw the 
free-body diagram of portion AE (Fig. 5.16c). Replacing the distrib-
uted load by an equivalent concentrated load, we write

1x oFy 5 0:  14w0a 2 w01x 2 a2 2 V2 5 0

1l oME 5 0:  21
4w0ax 1 w01x 2 a2 3 12 1x 2 a2 4 1 M2 5 0

and conclude that, over the interval a , x , 2a, the shear and bend-
ing moment are expressed, respectively, by the functions

V21x2 5 1
4w0a 2 w01x 2 a2  and  M21x2 5 1

4w0ax 2 1
2w01x 2 a22

B
C

w0

A

a a

Fig. 5.15

B

RB

M1

V1

RA

C

D

x

A

w0

w0 a

A

2a

a1
2

(a)

M2

V2

C

E

w0 (x � a)

A

x

a

(x � a)

x � a

1
2

(c)

(b)

RA� w0 a
1
4

RA� w0 a
1
4

Fig. 5.16
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351 As we pointed out earlier in this section, the fact that the shear 
and bending moment are represented by different functions of x, 
depending upon whether x is smaller or larger than a, is due to the 
discontinuity in the loading of the beam. However, the functions 
V1(x) and V2(x) can be represented by the single expression

 V1x2 5 1
4w0a 2 w0Hx 2 aI (5.11)

if we specify that the second term should be included in our com-
putations when x $ a and ignored when x , a. In other words, the 
brackets H I should be replaced by ordinary parentheses ( ) when 
x $ a and by zero when x , a. With the same convention, the bending 
moment can be represented at any point of the beam by the single 
expression

 M1x2 5 1
4 
w0ax 2 1

2 w0Hx 2 aI2 (5.12)

 From the convention we have adopted, it follows that brackets H I can be differentiated or integrated as ordinary parentheses. 
Instead of calculating the bending moment from free-body diagrams, 
we could have used the method indicated in Sec. 5.3 and integrated 
the expression obtained for V(x):

M1x2 2 M102 5 #
x

0

V1x2 dx 5 #
x

0

1
4w0a dx 2 #

x

0

w0Hx 2 aI dx

After integration, and observing that M(0) 5 0, we obtain as before

M1x2 5 1
4 
w0ax 2 1

2 
w0Hx 2 aI2

 Furthermore, using the same convention again, we note that 
the distributed load at any point of the beam can be expressed as

 w1x2 5 w0Hx 2 aI0 (5.13)

Indeed, the brackets should be replaced by zero for x , a and 
by parentheses for x $ a; we thus check that w(x) 5 0 for x , a 
and, defining the zero power of any number as unity, that Hx 2 aI0 5 1x 2 a20 5 1 and w(x) 5 w0 for x $ a. From Sec. 5.3 we 
recall that the shear could have been obtained by integrating the 
function 2w(x). Observing that V 5 1

4w0a for x 5 0, we write

 V1x2 2 V102 5 2#
x

0

w1x2 dx 5 2#
x

0

w0Hx 2 aI0 dx

  V1x2 2 1
4w0a 5 2w0Hx 2 aI1

Solving for V(x) and dropping the exponent 1, we obtain again

V1x2 5 1
4w0a 2 w0Hx 2 aI

 The expressions Hx 2 aI0, Hx 2 aI, Hx 2 aI2 are called singularity 
functions. By definition, we have, for n $ 0,

 
Hx 2 aIn 5 e 1x 2 a2n

0   
when x $ a
when x , a 

(5.14)

5.5 Using Singularity Functions to Determine 
Shear and Bending Moment in a Beam
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352 Analysis and Design of Beams for Bending We also note that whenever the quantity between brackets is positive 
or zero, the brackets should be replaced by ordinary parentheses, and 
whenever that quantity is negative, the bracket itself is equal to zero.

0
(a) n � 0

� x � a �0

a x 0
(b) n � 1

� x � a �1

a x 0
(c) n � 2

� x � a �2

a x

Fig. 5.17 Singularity functions.

†Since (x 2 a)0 is discontinuous at x 2 a, it can be argued that this function should be 
left undefined for x 5 a or that it should be assigned both of the values 0 and 1 for x 5 a. 
However, defining (x 2 a)0 as equal to 1 when x 5 a, as stated in (Eq. 5.15), has the 
advantage of being unambiguous and, thus, readily applicable to computer programming 
(cf. page 348).

 The three singularity functions corresponding respectively to 
n 5 0, n 5 1, and n 5 2 have been plotted in Fig. 5.17. We note that 
the function Hx 2 aI0 is discontinuous at x 5 a and is in the shape 
of a “step.” For that reason it is referred to as the step function. 
According to (5.14), and with the zero power of any number defined 
as unity, we have†

 
Hx 2 aI0 5 e 1

0  
when x $ a
when x , a 

(5.15)

 It follows from the definition of singularity functions that

 # Hx 2 aIn dx 5
1

n 1 1
 Hx 2 aIn11  for n $ 0 (5.16)

and

 
d
dx

 Hx 2 aIn 5 nHx 2 aIn21      for n $ 1
 

(5.17)

 Most of the beam loadings encountered in engineering practice 
can be broken down into the basic loadings shown in Fig. 5.18. 
Whenever applicable, the corresponding functions w(x), V(x), and 
M(x) have been expressed in terms of singularity functions and plot-
ted against a color background. A heavier color background was used 
to indicate for each loading the expression that is most easily derived 
or remembered and from which the other functions can be obtained 
by integration.
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3535.5 Using Singularity Functions to Determine 
Shear and Bending Moment in a Beam

a
a

x xO O

V

M0

P

Loading Shear Bending Moment

(a)

a

xO

(b)

a

xO

w

(c) w (x) � w0 � x � a �0 

V (x) � �P � x � a �0 

(d) w (x) � k � x � a �1

(e) w (x) � k � x � a �n

Slope � k

w0

a

xO

w

a

xO

w

a xO

V

�P

M (x) � �M0 � x � a �0 

a xO

M

�M0

V (x) � �w0 � x � a �1

a xO

V

M (x) � �P � x � a �1

a xO

M

V (x) � �    � x � a �2

a xO

V

k
2

a xO

M

M (x) � � w0 � x � a �2

a xO

M

1
2

M (x) � � � x � a �3k
2 ? 3

M (x) � � � x � a �n � 2k
(n � 1) (n � 2)

V (x) � �           � x � a �n � 1k
n � 1

a xO

V

a xO

M

Fig. 5.18 Basic loadings and corresponding shears and bending moments expressed in terms of singularity functions.

 After a given beam loading has been broken down into the 
basic loadings of Fig. 5.18, the functions V(x) and M(x) representing 
the shear and bending moment at any point of the beam can be 
obtained by adding the corresponding functions associated with each 
of the basic loadings and reactions. Since all the distributed loadings 
shown in Fig. 5.18 are open-ended to the right, a distributed loading 
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that does not extend to the right end of the beam or that is discon-
tinuous should be replaced as shown in Fig. 5.19 by an equivalent 
combination of open-ended loadings. (See also Example 5.05 and 
Sample Prob. 5.9.)
 As you will see in Sec. 9.6, the use of singularity functions also 
greatly simplifies the determination of beam deflections. It was in 
connection with that problem that the approach used in this section 
was first suggested in 1862 by the German mathematician A. Clebsch 
(1833–1872). However, the British mathematician and engineer 
W. H. Macaulay (1853–1936) is usually given credit for introducing 
the singularity functions in the form used here, and the brackets H I 
are generally referred to as Macaulay’s brackets.†

xO

w w0

b

L

a

xO

w w0

� w0b

L

a

w(x) � w0 � x � a �0 � w0 � x � b �0 

Fig. 5.19 Use of open-ended loadings to 
create a closed-ended loading.

†W. H. Macaulay, “Note on the Deflection of Beams,” Messenger of Mathematics, vol. 48, 
pp. 129–130, 1919.

BE
DC

P � 1.2 kN

A

w0 � 1.5 kN/m

w0 � 1.5 kN/m

� w0 � �1.5 kN/m

w

M0 � 1.44 kN ? m

0.6 m 0.8 m 1.0 m
1.2 m(a)

B

B

DC

P � 1.2 kN

A

Ax

Ay

Ay � 2.6 kN

1.8 kN

M0 � 1.44 kN ? m

3.6 m

0.6 m

3 m

2.4 m

(b)

B
x

B

C

D

P � 1.2 kN

A

M0 � 1.44 kN ? m

2.6 m

1.8 m(c)

E

E

Fig. 5.20

For the beam and loading shown (Fig. 5.20a) and using singularity func-
tions, express the shear and bending moment as functions of the distance 
x from the support at A.

We first determine the reaction at A by drawing the free-body 
diagram of the beam (Fig. 5.20b) and writing

y
1 oFx 5 0:   Ax 5 0

1l oMB 5 0:   2Ay13.6 m2 1 11.2 kN2 13 m2
 1 11.8 kN2 12.4 m2 1 1.44 kN ? m 5 0

Ay 5 2.60 kN

Next, we replace the given distributed loading by two equivalent 
open-ended loadings (Fig. 5.20c) and express the distributed load w(x) as 
the sum of the corresponding step functions:

w1x2 5 1w0Hx 2 0.6I0 2 w0Hx 2 1.8I0
The function V(x) is obtained by integrating w(x), reversing the 1 

and 2 signs, and adding to the result the constants Ay and 2PHx 2 0.6I0 
representing the respective contributions to the shear of the reaction at 
A and of the concentrated load. (No other constant of integration is 
required.) Since the concentrated couple does not directly affect the 
shear, it should be ignored in this computation. We write

V1x2 5 2w0Hx 2 0.6I1 1 w0Hx 2 1.8I1 1 Ay 2 PHx 2 0.6I0
In a similar way, the function M(x) is obtained by integrating V(x) and 
adding to the result the constant 2M0Hx 2 2.6I0 representing the contri-
bution of the concentrated couple to the bending moment. We have

M1x2 5 21
2w0Hx 2 0.6I2 1 1

2 w0Hx 2 1.8I2
1 Ayx 2 PHx 2 0.6I1 2 M0Hx 2 2.6I0

EXAMPLE 5.05
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Substituting the numerical values of the reaction and loads into the 
expressions obtained for V(x) and M(x) and being careful not to compute 
any product or expand any square involving a bracket, we obtain the fol-
lowing expressions for the shear and bending moment at any point of the 
beam:

V1x2 5 21.5Hx 2 0.6I1 1 1.5Hx 2 1.8I1 1 2.6 2 1.2Hx 2 0.6I0
M1x2 5 20.75Hx 2 0.6I2 1 0.75Hx 2 1.8I2
 1 2.6x 2 1.2Hx 2 0.6I1 2 1.44Hx 2 2.6I0

355

EXAMPLE 5.06For the beam and loading of Example 5.05, determine the numerical 
values of the shear and bending moment at the midpoint D.

Making x 5 1.8 m in the expressions found for V(x) and M(x) in 
Example 5.05, we obtain

V11.82 5 21.5H1.2I1 1 1.5H0I1 1 2.6 2 1.2H1.2I0
M11.82 5 20.75H1.2I2 1 0.75H0I2 1 2.611.82 2 1.2H1.2I1 2 1.44H20.8I0

Recalling that whenever a quantity between brackets is positive or zero, 
the brackets should be replaced by ordinary parentheses, and whenever 
the quantity is negative, the bracket itself is equal to zero, we write

 V11.82 5 21.511.221 1 1.51021 1 2.6 2 1.211.220
 5 21.511.22 1 1.5102 1 2.6 2 1.2112
 5 21.8 1 0 1 2.6 2 1.2

 V11.82 5 20.4 kN

and

M11.82 5 20.7511.222 1 0.751022 1 2.611.82 2 1.211.221 2 1.44102
 5 21.08 1 0 1 4.68 2 1.44 2 0

M11.82 5 12.16 kN ? m

Application to Computer Programming. Singularity functions 
are particularly well suited to the use of computers. First we note 
that the step function Hx 2 aI0, which will be represented by the 
symbol STP, can be defined by an IF/THEN/ELSE statement as 
being equal to 1 for X $ A and to 0 otherwise. Any other singularity 
function Hx 2 aIn, with n $ 1, can then be expressed as the product 
of the ordinary algebraic function 1x 2 a2n and the step function Hx 2 aI0.
 When k different singularity functions are involved, such as Hx 2 aiIn, where i 5 1, 2, . . ., k, then the corresponding step functions 
STP(I), where I 5 1, 2, . . ., K, can be defined by a loop containing 
a single IF/THEN/ELSE statement.
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SAMPLE PROBLEM 5.9

 For the beam and loading shown, determine (a) the equations defi ning the shear 
and bending moment at any point, (b) the shear and bending moment at points 
C, D, and E.

SOLUTION

 Reactions. The total load is 1
2 w0 L; because of symmetry, each reaction 

is equal to half that value, namely, 1
4 w0 L.

 Distributed Load. The given distributed loading is replaced by two 
equivalent open-ended loadings as shown. Using a singularity function to 
express the second loading, we write

 
w1x2 5 k1x 1 k2Hx 2 1

2LI 5
2w0

L
 x 2

4w0

L
 Hx 2 1

2LI (1)

 a. Equations for Shear and Bending Moment. We obtain V1x2 by 
integrating (1), changing the signs, and adding a constant equal to RA:

 
V1x2 5 2 

w0

L
x2 1

2w0

L
 Hx 2 1

2LI2 1 1
4w0L 

(2) ◀

We obtain M(x) by integrating (2); since there is no concentrated couple, 
no constant of integration is needed:

 
M1x2 5 2 

w0

3L
 x3 1

2w0

3L
 Hx 2 1

2LI3 1 1
4 w0Lx

 
(3) ◀

 b. Shear and Bending Moment at C, D, and E

 At Point C: Making x 5 1
2L in Eqs. (2) and (3) and recalling that 

whenever a quantity between brackets is positive or zero, the brackets may 
be replaced by parentheses, we have

 
VC 5 2 

w0

L
 112L22 1

2w0

L
 H0I2 1 1

4w0L 
VC 5 0 ◀

 
MC 5 2 

w0

3L
112L23 1

2w0

3L
 H0I3 1 1

4w0L112L2 MC 5
1
12

w0L
2 ◀

 At Point D: Making x 5 1
4L in Eqs. (2) and (3) and recalling that a 

bracket containing a negative quantity is equal to zero, we write

 
VD 5 2 

w0

L
 114L22 1

2w0

L
 H21

4LI2 1 1
4w0L 

VD 5
3
16

w0L ◀

 
MD 5 2 

w0

3L
114L23 1

2w0

3L
H21

4LI3 1 1
4w0L114L2 MD 5

11
192

w0L
2 ◀

 At Point E: Making x 5 3
4L in Eqs. (2) and (3), we have

 
VE 5 2 

w0

L
134L22 1

2w0

L
 H14LI2 1 1

4w0L 
VE 5 2 

3
16

w0L ◀

 
ME 5 2 

w0

3L
 134L23 1

2w0

3L
 H14LI3 1 1

4 w0L134L2 ME 5
11
192

w0L
2 ◀

B

w0

A
D

L/4 L/4 L/4 L/4

C E

w0
2w0

L/2 L/2

C C
A

B

2w0

2w0

2w0

L

A
B

Slope � �

4w0

L
Slope � �

L/2

x

x

x

L/2

C

C E

D

B

w0L

RBRA � w0L

2w0

L

A

V

A

M

C ED BA

w

B

k1 � �

4w0

L
k2 � �1

4

3
16

w0L�

�

3
16

11
192

w0L21
12

w0L2

w0L1
4

w0L1
4
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357

SAMPLE PROBLEM 5.10

The rigid bar DEF is welded at point D to the steel beam AB. For the 
loading shown, determine (a) the equations defining the shear and bending 
moment at any point of the beam, (b) the location and magnitude of the 
largest bending moment.

SOLUTION

 Reactions. We consider the beam and bar as a free body and observe that 
the total load is 960 lb. Because of symmetry, each reaction is equal to 480 lb.

 Modified Loading Diagram. We replace the 160-lb load applied at F 
by an equivalent force-couple system at D. We thus obtain a loading diagram 
consisting of a concentrated couple, three concentrated loads (including the 
two reactions), and a uniformly distributed load

 w1x2 5 50 lb/ft (1)

 a. Equations for Shear and Bending Moment. We obtain V(x) by inte-
grating (1), changing the sign, and adding constants representing the respective 
contributions of RA and P to the shear. Since P affects V(x) only for values of 
x larger than 11 ft, we use a step function to express its contribution.

 V1x2 5 250x 1 480 2 160Hx 2 11I0 (2) ◀

We obtain M(x) by integrating (2) and using a step function to represent 
the contribution of the concentrated couple MD:

 M1x2 5 225x2 1 480x 2 160Hx 2 11I1 2 480Hx 2 11I0 (3) ◀

 b. Largest Bending Moment. Since M is maximum or minimum when 
V 5 0, we set V 5 0 in (2) and solve that equation for x to find the location 
of the largest bending moment. Considering first values of x less than 11 ft 
and noting that for such values the bracket is equal to zero, we write

250x 1 480 5 0  x 5 9.60 ft

Considering now values of x larger than 11 ft, for which the bracket is equal 
to 1, we have

250x 1 480 2 160 5 0  x 5 6.40 ft

Since this value is not larger than 11 ft, it must be rejected. Thus, the value 
of x corresponding to the largest bending moment is

xm 5 9.60 ft ◀

Substituting this value for x into Eq. (3), we obtain

Mmax 5 22519.6022 1 48019.602 2 160H21.40I1 2 480H21.40I0
and, recalling that brackets containing a negative quantity are equal to zero,

 Mmax 5 22519.6022 1 48019.602 Mmax 5 2304 lb ? ft ◀

The bending-moment diagram has been plotted. Note the discontinuity at 
point D due to the concentrated couple applied at that point. The values of 
M just to the left and just to the right of D were obtained by making x 5 11 
in Eq. (3) and replacing the step function Hx 2 11I0 by 0 and 1, respectively.

B

50 lb/ft

160 lb

A

F

C D

E

8 ft 5 ft
3 ft

160 lb

MD � 480 lb ? ft 

P � 160 lb

E

D

F E

D

F

B

w0 � 50 lb/ft

MD � 480 lb ? ft

RA � 480 lb RBP � 160 lb

w

D

11 ft 5 ft

xA

xm � 9.60 ft

x

�2304 lb ? ft
�2255 lb ? ft

�1775 lb ? ft

M

D B
A
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PROBLEMS

358

 5.98 through 5.100 (a) Using singularity functions, write the equa-
tions defining the shear and bending moment for the beam and 
loading shown. (b) Use the equation obtained for M to determine 
the bending moment at point C and check your answer by drawing 
the free-body diagram of the entire beam.

A B C

w0

a a

Fig. P5.98

CA B

w0

a a

Fig. P5.99

A B

w0

a a

C

Fig. P5.100

 5.101 through 5.103 (a) Using singularity functions, write the equa-
tions defining the shear and bending moment for the beam and load-
ing shown. (b) Use the equation obtained for M to determine the 
bending moment at point E and check your answer by drawing the 
free-body diagram of the portion of the beam to the right of E.

A B
D

EC

w0

a aaa

A
B C E D

aa aa

P P

B C E
D

2w0

w0

A

a a a a

w0

Fig. P5.103Fig. P5.102Fig. P5.101

 5.104 (a) Using singularity functions, write the equations for the shear 
and bending moment for beam ABC under the loading shown. 
(b) Use the equation obtained for M to determine the bending 
moment just to the right of point B.

P

A
B C

a a

Fig. P5.104

 5.105 (a) Using singularity functions, write the equations for the shear 
and bending moment for beam ABC under the loading shown. 
(b) Use the equation obtained for M to determine the bending 
moment just to the right of point D.

A
C D

P P

B

L/3 L/3 L/3

Fig. P5.105
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359Problems 5.106 through 5.109 (a) Using singularity functions, write the equa-
tions for the shear and bending moment for the beam and loading 
shown. (b) Determine the maximum value of the bending moment 
in the beam.

3 kips/ft

3 ft 3 ft
4 ft 4 ft

8 kips

A B
C D E

3 kips/ft

B
C D

3 kips 6 kips 6 kips

4 ft
3 ft

A
E

4 ft 4 ft

Fig. P5.109Fig. P5.108

1500 N/m

A B
C

0.8 m 0.8 m

D

2.4 m

48 kN 60 kN 60 kN

0.6 m 0.9 m

A
B C D

E

1.5 m 1.5 m

Fig. P5.107Fig. P5.106

 5.110 and 5.111 (a) Using singularity functions, write the equations 
for the shear and bending moment for the beam and loading shown. 
(b) Determine the maximum normal stress due to bending.

E
B C

50 kN 50 kN125 kN

0.3 m 0.4 m 0.2 m

S150 � 18.6

0.5 m

D
A

Fig. P5.110

F
B C D

24 kN 24 kN
24 kN

0.75 m

W250 � 28.4

4 @ 0.75 m � 3 m

24 kN

E
A

Fig. P5.111

 5.112 and 5.113 (a) Using singularity functions, find the magnitude and 
location of the maximum bending moment for the beam and loading 
shown. (b) Determine the maximum normal stress due to bending.

C
B18 kN ? m

40 kN/m

27 kN ? m

2.4 m1.2 m

S310 � 52A

Fig. P5.112

B

C
A D

1 m 1 m
4 m

80 kN/m
10 kN

W530 � 150

Fig. P5.113
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360 Analysis and Design of Beams for Bending

 5.116 and 5.117 A timber beam is being designed with supports and 
loads as shown. (a) Using singularity functions, find the magnitude 
and location of the maximum bending moment in the beam. 
(b) Knowing that the available stock consists of beams with an allow-
able stress of 12 MPa and a rectangular cross section of 30-mm width 
and depth h varying from 80 mm to 160 mm in 10-mm increments, 
determine the most economical cross section that can be used.

480 N/m

A
B

CC

1.5 m 2.5 m

h

30 mm

Fig. P5.116

A CC

500 N/m

B

1.6 m 2.4 m

h

30 mm

Fig. P5.117

 5.118 through 5.121 Using a computer and step functions, calculate 
the shear and bending moment for the beam and loading shown. 
Use the specified increment DL, starting at point A and ending at 
the right-hand support.

B DC

3 kips/ft 4 kips

A

1.5 ft
4.5 ft

	L � 0.5 ft

3 ft

Fig. P5.118

1.8 kips/ft

3.6 kips/ft

A
B

C

6 ft 6 ft

	L � 0.5 ft

Fig. P5.119

D
B C

120 kN
36 kN/m

A

2 m 1 m
3 m

L � 0.25 m	

Fig. P5.120

C

16 kN/m

12 kN

A
B

1.2 m
4 m

 L � 0.4 m	

Fig. P5.121

C
B

3 kips/ft

12 ft
3 ft

22.5 kips

A

Fig. P5.115

E
C DB

8 ft
4 ft 4 ft 4 ft

12 kips 12 kips24 kips

A

Fig. P5.114

 5.114 and 5.115 A beam is being designed to be supported and loaded 
as shown. (a) Using singularity functions, find the magnitude and 
location of the maximum bending moment in the beam. (b) Knowing 
that the allowable normal stress for the steel to be used is 24 ksi, 
find the most economical wide-flange shape that can be used.
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 5.122 and 5.123 For the beam and loading shown, and using a com-
puter and step functions, (a) tabulate the shear, bending moment, 
and maximum normal stress in sections of the beam from x 5 0 
to x 5 L, using the increments DL indicated, (b) using smaller 
increments if necessary, determine with a 2% accuracy the maxi-
mum normal stress in the beam. Place the origin of the x axis at 
end A of the beam.

 5.124 and 5.125 For the beam and loading shown, and using a com-
puter and step functions, (a) tabulate the shear, bending moment, 
and maximum normal stress in sections of the beam from x 5 0 
to x 5 L, using the increments DL indicated, (b) using smaller 
increments if necessary, determine with a 2% accuracy the maxi-
mum normal stress in the beam. Place the origin of the x axis at 
end A of the beam.

B

5 kN/m

3 kN/m

3 kN

A
C

D

2 m
1.5 m 1.5 m

W200 � 22.5

L � 0.25 m	

L � 5 m

Fig. P5.122

C
A

B
D 300 mm

2 m 3 m
1 m

50 mm20 kN/m

5 kN

L � 0.5 m	

L � 6 m

Fig. P5.123

C
A

B
D 12 in.

1.5 ft 2 ft
1.5 ft

2 in.1.2 kips/ft

2 kips/ft

300 lb

L � 5 ft
L � 0.25 ft	

Fig. P5.124

C
A

B
D

2.5 ft 2.5 ft
10 ft

3.2 kips/ft
4.8 kips/ft

W12 � 30
L � 15 ft

L � 1.25 ft	

Fig. P5.125

Photo 5.2  Nonprismatic cantilever beams of 
bridge during construction.

*5.6 NONPRISMATIC BEAMS
Our analysis has been limited so far to prismatic beams, i.e., to beams 
of uniform cross section. As we saw in Sec. 5.4, prismatic beams are 
designed so that the normal stresses in their critical sections are at 
most equal to the allowable value of the normal stress for the material 
being used. It follows that, in all other sections, the normal stresses 
will be smaller, possibly much smaller, than their allowable value. A 
prismatic beam, therefore, is almost always overdesigned, and consid-
erable savings of material can be realized by using nonprismatic 
beams, i.e., beams of variable cross section. The cantilever beams 
shown in the bridge during construction in Photo 5.2 are examples 
of nonprismatic beams.
 Since the maximum normal stresses sm usually control the design 
of a beam, the design of a nonprismatic beam will be optimum if the 

5.6 Nonprismatic Beams 361
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362 Analysis and Design of Beams for Bending section modulus S 5 Iyc of every cross section satisfies Eq. (5.3) of 
Sec. 5.1. Solving that equation for S, we write

 
S 5

ZMZ
sall 

(5.18)

A beam designed in this manner is referred to as a beam of constant 
strength.
 For a forged or cast structural or machine component, it is 
possible to vary the cross section of the component along its length 
and to eliminate most of the unnecessary material (see Example 5.07). 
For a timber beam or a rolled-steel beam, however, it is not possible 
to vary the cross section of the beam. But considerable savings of 
material can be achieved by gluing wooden planks of appropriate 
lengths to a timber beam (see Sample Prob. 5.11) and using cover 
plates in portions of a rolled-steel beam where the bending moment 
is large (see Sample Prob. 5.12).

w

A

B

h h0

L

x

Fig. 5.21

A cast-aluminum plate of uniform thickness b is to support a uniformly 
distributed load w as shown in Fig. 5.21. (a) Determine the shape of 
the plate that will yield the most economical design. (b) Knowing that 
the allowable normal stress for the aluminum used is 72 MPa and that 
b 5 40 mm, L 5 800 mm, and w 5 135 kN/m, determine the maximum 
depth h0 of the plate.

 Bending Moment. Measuring the distance x from A and observ-
ing that VA 5 MA 5 0, we use Eqs. (5.6) and (5.8) of Sec. 5.3 and write

V1x2 5 2#
x

0

wdx 5 2wx

M1x2 5 #
x

0

V1x2dx 5 2#
x

0

wxdx 5 21
2 
wx2

 (a) Shape of Plate. We recall from Sec. 5.4 that the modulus S 
of a rectangular cross section of width b and depth h is S 5 1

6 
bh2. Carrying 

this value into Eq. (5.18) and solving for h2, we have

 
h2 5

6ZMZ

bsall

 
(5.19)

and, after substituting ZMZ 5 1
2 
wx2,

 
h2 5

3wx2

bsall
  or  h 5 a 3w

bsall
b1y2

x
 

(5.20)

Since the relation between h and x is linear, the lower edge of the plate 
is a straight line. Thus, the plate providing the most economical design is 
of triangular shape.

 (b) Maximum Depth h0. Making x 5 L in Eq. (5.20) and sub-
stituting the given data, we obtain

h0 5 c 31135 kN/m2
10.040 m2 172 MPa2 d

1y21800 mm2 5 300 mm

EXAMPLE 5.07
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SAMPLE PROBLEM 5.11

A 12-ft-long beam made of a timber with an allowable normal stress of 2.40 ksi 
and an allowable shearing stress of 0.40 ksi is to carry two 4.8-kip loads located 
at its third points. As shown in Chap. 6, a beam of uniform rectangular cross 
section, 4 in. wide and 4.5 in. deep, would satisfy the allowable shearing stress 
requirement. Since such a beam would not satisfy the allowable normal stress 
requirement, it will be reinforced by gluing planks of the same timber, 4 in. 
wide and 1.25 in. thick, to the top and bottom of the beam in a symmetric 
manner. Determine (a) the required number of pairs of planks, (b) the length 
of the planks in each pair that will yield the most economical design.

SOLUTION

 Bending Moment. We draw the free-body diagram of the beam and 
find the following expressions for the bending moment:
From A to B 10 # x # 48 in.2:  M 5 14.80 kips2  x
From B to C 148 in. # x # 96 in.2:

M 5 14.80 kips2 x 2 14.80 kips2 1x 2 48 in.2 5 230.4 kip ? in.
 a. Number of Pairs of Planks. We first determine the required total 
depth of the reinforced beam between B and C. We recall from Sec. 5.4 that 
S 5 1

6 
bh2 for a beam with a rectangular cross section of width b and depth 

h. Substituting this value into Eq. (5.17) and solving for h2, we have

 
h2 5

6ZMZ

bsall

 
(1)

Substituting the value obtained for M from B to C and the given values of 
b and sall, we write

h2 5
61230.4 kip ? in.2
14 in.2 12.40 ksi2 5 144 in.2     h 5 12.00 in.

Since the original beam has a depth of 4.50 in., the planks must provide an 
additional depth of 7.50 in. Recalling that each pair of planks is 2.50 in. 
thick, we write:

Required number of pairs of planks 5 3 ◀

 b. Length of Planks. The bending moment was found to be M 5 
(4.80 kips) x in the portion AB of the beam. Substituting this expression and 
the given values of b and sall, into Eq. (1) and solving for x, we have
 

x 5
14 in.2 12.40 ksi2

6 14.80 kips2  h2       x 5
h2

3 in.
 

(2)

Equation (2) defines the maximum distance x from end A at which a given 
depth h of the cross section is acceptable. Making h 5 4.50 in., we find the 
distance x1 from A at which the original prismatic beam is safe: x1 5 6.75 in. 
From that point on, the original beam should be reinforced by the first pair 
of planks. Making h 5 4.50 in. 1 2.50 in. 5 7.00 in. yields the distance x2 5 
16.33 in. from which the second pair of planks should be used, and making 
h 5 9.50 in. yields the distance x3 5 30.08 in. from which the third pair of 
planks should be used. The length li of the planks of the pair i, where i 5 1, 2, 
3, is obtained by subtracting 2xi from the 144-in. length of the beam. We find

l1 5 130.5 in., l2 5 111.3 in., l3 5 83.8 in. ◀

The corners of the various planks lie on the parabola defined by Eq. (2).

C

A D

B
4 ft

4.8 kips 4.8 kips

4 ft 4 ft

A

A

A

V
M

DCB

B
48 in.

x

4.8 kips

4.8 kips 4.8 kips

4.8 kips

4.8 kips

4.8 kips
4.8 kips

x

M

O

x1 x2
x3

x

y
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SAMPLE PROBLEM 5.12

Two steel plates, each 16 mm thick, are welded as shown to a W690 3 125 
beam to reinforce it. Knowing that sall 5 160 MPa for both the beam 
and the plates, determine the required value of (a) the length of the plates, 
(b) the width of the plates.

SOLUTION

 Bending Moment.  We first find the reactions. From the free body of 
a portion of beam of length x # 4 m, we obtain M between A and C:

 M 5 1250 kN2  x (1)

 a. Required Length of Plates. We first determine the maximum 
allowable length xm of the portion AD of the unreinforced beam. From 
Appendix C we find that the section modulus of a W690 3 125 beam is 
S 5 3490 3 106 mm3, or S 5 3.49 3 1023 m3. Substituting for S and sall 
into Eq. (5.17) and solving for M, we write

M 5 Ssall 5 13.49 3 1023 m32 1160 3 103 kN/m22 5 558.4 kN ? m

Substituting for M in Eq. (1), we have

558.4 kN ? m 5 1250 kN2  xm      xm 5 2.234 m

The required length l of the plates is obtained by subtracting 2xm from the 
length of the beam:

 l 5 8 m 2 212.234 m2 5 3.532 m l 5 3.53 m ◀

 b. Required Width of Plates. The maximum bending moment occurs 
in the midsection C of the beam. Making x 5 4 m in Eq. (1), we obtain 
the bending moment in that section:

M 5 1250 kN2 14 m2 5 1000 kN ? m

 In order to use Eq. (5.1) of Sec. 5.1, we now determine the moment 
of inertia of the cross section of the reinforced beam with respect to a cen-
troidal axis and the distance c from that axis to the outer surfaces of the 
plates. From Appendix C we find that the moment of inertia of a W690 3 
125 beam is Ib 5 1190 3 106 mm4 and its depth is d 5 678 mm. On the 
other hand, denoting by t the thickness of one plate, by b its width, and by 
y the distance of its centroid from the neutral axis, we express the moment 
of inertia Ip of the two plates with respect to the neutral axis:

Ip 5 21 1
12 

bt3 1 A y22 5 116 t32  b 1 2 bt 112 
d 1 1

2 t22
Substituting t 5 16 mm and d 5 678 mm, we obtain Ip 5 (3.854 3 
106 mm3) b. The moment of inertia I of the beam and plates is

 I 5 Ib 1 Ip 5 1190 3 106 mm4 1 13.854 3 106 mm32  b (2)

and the distance from the neutral axis to the surface is c 5 1
2 d 1 t 5 355 mm. 

Solving Eq. (5.1) for I and substituting the values of M, sall, and c, we write

I 5
ZMZ c
sall

5
11000 kN ? m2 1355 mm2

160 MPa
5 2.219 3 1023 m4 5 2219 3 106 mm4

Replacing I by this value in Eq. (2) and solving for b, we have

 2219 3 106 mm4 5 1190 3 106 mm4 1 13.854 3 106 mm32b
 b 5 267 mm ◀

l

E
b

BA

CD

W690 × 125

16
mm

4 m4 m

1
2l1

2

500 kN

B
C

V

M

x

A

A

500 kN

250 kN250 kN

250 kN

y

b

c

t

d1
2

d1
2

N.A.
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PROBLEMS

365

 5.126 and 5.127 The beam AB, consisting of an aluminum plate of 
uniform thickness b and length L, is to support the load shown. 
(a) Knowing that the beam is to be of constant strength, express h
in terms of x, L, and h0 for portion AC of the beam. (b) Determine 
the maximum allowable load if L 5 800 mm, h0 5 200 mm, b 5 
25 mm, and sall 5 72 MPa.

B
h h0

L/2 L/2

x

A
C

P

Fig. P5.126

B
h h0

L/2 L/2

x

A C

M0

Fig. P5.127

 5.128 and 5.129 The beam AB, consisting of a cast-iron plate of 
uniform thickness b and length L, is to support the load shown. 
(a) Knowing that the beam is to be of constant strength, express 
h in terms of x, L, and h0. (b) Determine the maximum allowable 
load if L 5 36 in., h0 5 12 in., b 5 1.25 in., and sall 5 24 ksi.

A

B

h

L

x

P

h0

Fig. P5.128

B
h h0

L/2 L/2

x

w

A

Fig. P5.129

 5.130 and 5.131 The beam AB, consisting of a cast-iron plate of 
 uniform thickness b and length L, is to support the distributed load 
w(x) shown. (a) Knowing that the beam is to be of constant 
strength, express h in terms of x, L, and h0. (b) Determine the 
smallest value of h0 if L 5 750 mm, b 5 30 mm, w0 5 300 kN/m, 
and sall 5 200 MPa.

w � w0 L
x

A

B

h h0

L

x

Fig. P5.130

w � w0 sin 2 L
x

A

B

h h0

L

x

�

Fig. P5.131
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366 Analysis and Design of Beams for Bending  5.132 and 5.133 A preliminary design on the use of a simply sup-
ported prismatic timber beam indicated that a beam with a rectan-
gular cross section 50 mm wide and 200 mm deep would be required 
to safely support the load shown in part a of the figure. It was then 
decided to replace that beam with a built-up beam obtained by glu-
ing together, as shown in part b of the figure, four pieces of the same 
timber as the original beam and of 50 3 50-mm cross section. Deter-
mine the length l of the two outer pieces of timber that will yield 
the same factor of safety as the original design.

A B

C

1.2 m 1.2 m

P

(a)

A B

C D

w

0.8 m 0.8 m 0.8 m

(a)

A B

l

(b)

Fig. P5.133Fig. P5.132

 5.134 and 5.135 A preliminary design on the use of a cantilever pris-
matic timber beam indicated that a beam with a rectangular cross 
section 2 in. wide and 10 in. deep would be required to safely 
support the load shown in part a of the figure. It was then decided 
to replace that beam with a built-up beam obtained by gluing 
together, as shown in part b of the figure, five pieces of the same 
timber as the original beam and of 2 3 2-in. cross section. Deter-
mine the respective lengths l1 and l2 of the two inner and outer 
pieces of timber that will yield the same factor of safety as the 
original design.

l2
l1

A
C

D B

A

6.25 ft

(a)

(b)

w

B

B

Fig. P5.135

l2
l1

A
C

D B

A B

P

6.25 ft

(a)

(b)

Fig. P5.134

A B

l

(b)
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367Problems 5.136 and 5.137 A machine element of cast aluminum and in the 
shape of a solid of revolution of variable diameter d is being designed 
to support the load shown. Knowing that the machine element is 
to be of constant strength, express d in terms of x, L, and d0.

w

A B

C
x

L/2 L/2

d d0

Fig. P5.136

P

A B

C
x

L/2 L/2

d d0

Fig. P5.137

 5.138 A cantilever beam AB consisting of a steel plate of uniform depth h 
and variable width b is to support the distributed load w along its 
centerline AB. (a) Knowing that the beam is to be of constant 
strength, express b in terms of x, L, and b0. (b) Determine the maxi-
mum allowable value of w if L 5 15 in., b0 5 8 in., h 5 0.75 in., 
and sall 5 24 ksi.

x

L h

A

B

b0

w

b

Fig. P5.138

x

L h

A

B

b0

b

P

Fig. P5.139

 5.139 A cantilever beam AB consisting of a steel plate of uniform depth 
h and variable width b is to support the concentrated load P at 
point A. (a) Knowing that the beam is to be of constant strength, 
express b in terms of x, L, and b0. (b) Determine the smallest 
allowable value of h if L 5 300 mm, b0 5 375 mm, P 5 14.4 kN, 
and sall 5 160 MPa.

 5.140 Assuming that the length and width of the cover plates used with 
the beam of Sample Prob. 5.12 are, respectively, l 5 4 m and b 5 
285 mm, and recalling that the thickness of each plate is 16 mm, 
determine the maximum normal stress on a transverse section 
(a) through the center of the beam, (b) just to the left of D.
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368 Analysis and Design of Beams for Bending  5.141 Knowing that sall 5 150 MPa, determine the largest concentrated 
load P that can be applied at end E of the beam shown.

E

C  

A
B D

P

W410 � 85

18 � 220 mm

2.25 m 1.25 m

2.2 m
4.8 m

Fig. P5.141

 5.142 Two cover plates, each 5
8 in. thick, are welded to a W30 3 99 beam 

as shown. Knowing that l 5 9 ft and b 5 12 in., determine the 
maximum normal stress on a transverse section (a) through the 
center of the beam, (b) just to the left of D.

B

b

ED

A

W30 × 99

16 ft

30 kips/ft

in.5
8

l

Fig. P5.142 and P5.143

B

b 7.5 mm

ED
A

l W460 × 74

8 m

40 kN/m

Fig. P5.144 and P5.145

 5.143 Two cover plates, each 5
8 in. thick, are welded to a W30 3 99 beam 

as shown. Knowing that sall 5 22 ksi for both the beam and the 
plates, determine the required value of (a) the length of the plates, 
(b) the width of the plates.

 5.144 Two cover plates, each 7.5 mm thick, are welded to a W460 3 74 
beam as shown. Knowing that l 5 5 m and b 5 200 mm, determine 
the maximum normal stress on a transverse section (a) through the 
center of the beam, (b) just to the left of D.

 5.145 Two cover plates, each 7.5 mm thick, are welded to a W460 3 74 
beam as shown. Knowing that sall 5 150 MPa for both the beam 
and the plates, determine the required value of (a) the length of 
the plates, (b) the width of the plates.
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369Problems

 5.147 Two cover plates, each 1
2  in. thick, are welded to a W27 3 84 beam 

as shown. Knowing that sall 5 24 ksi for both the beam and the 
plates, determine the required value of (a) the length of the plates, 
(b) the width of the plates.

 5.148 For the tapered beam shown, determine (a) the transverse section 
in which the maximum normal stress occurs, (b) the largest distrib-
uted load w that can be applied, knowing that sall 5 140 MPa.

 5.149 For the tapered beam shown, knowing that w 5 160 kN/m, deter-
mine (a) the transverse section in which the maximum normal 
stress occurs, (b) the corresponding value of the normal stress.

 5.150 For the tapered beam shown, determine (a) the transverse section 
in which the maximum normal stress occurs, (b) the largest distrib-
uted load w that can be applied, knowing that sall 5 24 ksi.

in.1
2

B

b
ED C

A

l
W27 × 84

9 ft

160 kips

1
2 l1

2

9 ft

Fig. P5.146 and P5.147

 5.146 Two cover plates, each 1
2  in. thick, are welded to a W27 3 84 beam 

as shown. Knowing that l 5 10 ft and b 5 10.5 in., determine the 
maximum normal stress on a transverse section (a) through the 
center of the beam, (b) just to the left of D.

C

x

0.6 m

120 mm
A B

hh

0.6 m

300 mm

w 20 mm

Fig. P5.148 and P5.149

A B

x

30 in.

4 in. hh

30 in.

in.3
4

8 in.

C

w

Fig. P5.150

 5.151 For the tapered beam shown, determine (a) the transverse section 
in which the maximum normal stress occurs, (b) the largest con-
centrated load P that can be applied, knowing that sall 5 24 ksi.

x

30 in.

4 in.
A BC

hh

30 in.

P

8 in.

in.3
4

Fig. P5.151
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370

This chapter was devoted to the analysis and design of beams under 
transverse loadings. Such loadings can consist of concentrated loads 
or distributed loads and the beams themselves are classified accord-
ing to the way they are supported (Fig. 5.22). Only statically deter-
minate beams were considered in this chapter, where all support 
reactions can be determined by statics. The analysis of statically inde-
terminate beams is postponed until Chap. 9.

Considerations for the design of 
prismatic beams

Considerations for the design of 
prismatic beams

L

(a) Simply supported beam

Statically
Determinate
Beams

Statically
Indeterminate
Beams

L2L1

(d) Continuous beam

L

(b) Overhanging beam

L

Beam fixed at one end
and simply supported

at the other end

(e) 

L

(c) Cantilever beam

L

( f ) Fixed beam

Fig. 5.22

y

c

m�

x�
Neutral surface

Fig. 5.23

While transverse loadings cause both bending and shear in a beam, 
the normal stresses caused by bending are the dominant criterion in 
the design of a beam for strength [Sec. 5.1]. Therefore, this chapter 
dealt only with the determination of the normal stresses in a beam, 
the effect of shearing stresses being examined in the next one.
 We recalled from Sec. 4.4 the flexure formula for the determi-
nation of the maximum value sm of the normal stress in a given 
section of the beam,

 
sm 5

0M 0 c
I

 (5.1)

where I is the moment of inertia of the cross section with respect to a 
centroidal axis perpendicular to the plane of the bending couple M and 
c is the maximum distance from the neutral surface (Fig. 5.23). We 
also recalled from Sec. 4.4 that, introducing the elastic section modulus 
S 5 Iyc of the beam, the maximum value sm of the normal stress in 
the section can be expressed as

 
sm 5

0M 0
S

 (5.3)

It follows from Eq. (5.1) that the maximum normal stress occurs in 
the section where |M| is largest, at the point farthest from the neutral 

Normal stresses due to bending

Shear and bending-moment 
diagrams

REVIEW AND SUMMARY
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371axis. The determination of the maximum value of |M| and of the critical 
section of the beam in which it occurs is greatly simplified if we draw 
a shear diagram and a bending-moment diagram. These diagrams rep-
resent, respectively, the variation of the shear and of the bending 
moment along the beam and were obtained by determining the values 
of V and M at selected points of the beam [Sec. 5.2]. These values 
were found by passing a section through the point where they were 
to be determined and drawing the free-body diagram of either of the 
portions of beam obtained in this fashion. To avoid any confusion 
regarding the sense of the shearing force V and of the bending couple 
M (which act in opposite sense on the two portions of the beam), we 
followed the sign convention adopted earlier in the text as illustrated 
in Fig. 5.24 [Examples 5.01 and 5.02, Sample Probs. 5.1 and 5.2].

The construction of the shear and bending-moment diagrams is 
facilitated if the following relations are taken into account [Sec. 5.3]. 
Denoting by w the distributed load per unit length (assumed positive 
if directed downward), we wrote

 
dV
dx

5 2w    dM
dx

5 V (5.5, 5.7)

or, in integrated form,

 VD 2 VC 5 21area under load curve between C and D2 (5.69)
 MD 2 MC 5 area under shear curve between C and D  (5.89)

Equation (5.69) makes it possible to draw the shear diagram of a beam 
from the curve representing the distributed load on that beam and the 
value of V at one end of the beam. Similarly, Eq. (5.89) makes it pos-
sible to draw the bending-moment diagram from the shear diagram 
and the value of M at one end of the beam. However, concentrated 
loads introduce discontinuities in the shear diagram and concentrated 
couples in the bending-moment diagram, none of which is accounted 
for in these equations [Sample Probs. 5.3 and 5.6]. Finally, we noted 
from Eq. (5.7) that the points of the beam where the bending moment 
is maximum or minimum are also the points where the shear is zero 
[Sample Prob. 5.4].
 A proper procedure for the design of a prismatic beam was 
described in Sec. 5.4 and is summarized here:
 Having determined sall for the material used and assuming that 
the design of the beam is controlled by the maximum normal stress 
in the beam, compute the minimum allowable value of the section 
modulus:

 
Smin 5

ZMZmax

sall  
(5.9)

 For a timber beam of rectangular cross section, S 5 1
6 
bh2, 

where b is the width of the beam and h its depth. The dimensions 
of the section, therefore, must be selected so that 1

6 bh2 $ Smin.
 For a rolled-steel beam, consult the appropriate table in Appen-
dix C. Of the available beam sections, consider only those with a 

Relations among load, shear, 
and bending moment
Relations among load, shear, 
and bending moment

Design of prismatic beamsDesign of prismatic beams

Review and Summary

V

M

M'

V'

(a)  Internal forces
(positive shear and positive bending moment)

Fig. 5.24
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372 Analysis and Design of Beams for Bending section modulus S $ Smin and select from this group the section with 
the smallest weight per unit length. This is the most economical of 
the sections for which S $ Smin.

In Sec. 5.5, we discussed an alternative method for the determina-
tion of the maximum values of the shear and bending moment based 
on the use of the singularity functions Hx 2 aIn. By definition, and 
for n $ 0, we had

 
Hx 2 aIn 5 e 1x 2 a2n when x $ a

0 when x , a 
(5.14)

We noted that whenever the quantity between brackets is positive or 
zero, the brackets should be replaced by ordinary parentheses, and 
whenever that quantity is negative, the bracket itself is equal to zero.
We also noted that singularity functions can be integrated and dif-
ferentiated as ordinary binomials. Finally, we observed that the sin-
gularity function corresponding to n 5 0 is discontinuous at x 5 a 
(Fig. 5.25). This function is called the step function. We wrote

 
Hx 2 aI0 5 e 1 when x $ a

0 when x , a 
(5.15)

Singularity functionsSingularity functions

Step functionStep function

0
(a) n � 0

� x � a �0

a x

Fig. 5.25

The use of singularity functions makes it possible to represent the 
shear or the bending moment in a beam by a single expression, valid 
at any point of the beam. For example, the contribution to the shear 
of the concentrated load P applied at the midpoint C of a simply 
supported beam (Fig. 5.26) can be represented by 2P Hx 2 1

2 
LI0, since 

Using singularity functions to 
express shear and bending moment

Using singularity functions to 
express shear and bending moment

B
C

A

P

L1
2 L1

2

Fig. 5.26
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373this expression is equal to zero to the left of C, and to 2P to the 
right of C. Adding the contribution of the reaction RA 5 1

2 P at A, we 
express the shear at any point of the beam as

V1x2 5 1
2 
P 2 P Hx 2 1

2 
LI0

The bending moment is obtained by integrating this expression:

M1x2 5 1
2 Px 2 P Hx 2 1

2 LI1
The singularity functions representing, respectively, the load, shear, 
and bending moment corresponding to various basic loadings were 
given in Fig. 5.18 on page 353. We noted that a distributed loading 
that does not extend to the right end of the beam, or which is dis-
continuous, should be replaced by an equivalent combination of 
open-ended loadings. For instance, a uniformly distributed load 
extending from x 5 a to x 5 b (Fig. 5.27) should be expressed as

w1x2 5 w0Hx 2 aI0 2 w0Hx 2 bI0

Equivalent open-ended loadingsEquivalent open-ended loadings

Fig. 5.27

xO

w w0

b

L

a

xO

w w0

� w0b

L

a

Review and Summary

The contribution of this load to the shear and to the bending moment 
can be obtained through two successive integrations. Care should be 
taken, however, to also include in the expression for V(x) the contribu-
tion of concentrated loads and reactions, and to include in the expres-
sion for M(x) the contribution of concentrated couples [Examples 5.05 
and 5.06, Sample Probs. 5.9 and 5.10]. We also observed that singular-
ity functions are particularly well suited to the use of computers.

We were concerned so far only with prismatic beams, i.e., beams of 
uniform cross section. Considering in Sec. 5.6 the design of nonpris-
matic beams, i.e., beams of variable cross section, we saw that by 
selecting the shape and size of the cross section so that its elastic 
section modulus S 5 Iyc varied along the beam in the same way as 
the bending moment M, we were able to design beams for which 
sm at each section was equal to sall. Such beams, called beams of 
constant strength, clearly provide a more effective use of the material 
than prismatic beams. Their section modulus at any section along 
the beam was defined by the relation

 
S 5

M
sall 

(5.18)

Nonprismatic beamsNonprismatic beams

Beams of constant strengthBeams of constant strength
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REVIEW PROBLEMS

 5.152 Draw the shear and bending-moment diagrams for the beam and 
loading shown, and determine the maximum absolute value (a) of 
the shear, (b) of the bending moment.

400 lb 1600 lb 400 lb

12 in. 12 in. 12 in. 12 in.

8 in.

8 in.
C

A
D E F

G

B

Fig. P5.152

5.154 Determine (a) the distance a for which the maximum absolute 
value of the bending moment in the beam is as small as possible, 
(b) the corresponding maximum normal stress due to bending. 
(See hint of Prob. 5.27.)

HA

7 @ 200 mm � 1400 mm

Hinge

30 mm

20 mm

CB D E F G

300 N 300 N 300 N40 N

Fig. P5.153

BA
C D

a 5 ft8 ft

W14 � 22

10 kips5 kips

Fig. P5.154

5.153 Draw the shear and bending-moment diagrams for the beam and 
loading shown and determine the maximum normal stress due to 
bending.
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375Review Problems5.155 Determine (a) the equations of the shear and bending-moment 
curves for the beam and loading shown, (b) the maximum absolute 
value of the bending moment in the beam.

w

A

L

B
x

w � w0   l 	( (x2

L2

Fig. P5.155

5.156 Draw the shear and bending-moment diagrams for the beam and 
loading shown and determine the maximum normal stress due to 
bending.

A B
C

16 kN/m

1 m1.5 m

S150 � 18.6

Fig. P5.156

 5.157 Knowing that beam AB is in equilibrium under the loading shown, 
draw the shear and bending-moment diagrams and determine the 
maximum normal stress due to bending.

Fig. P5.157

BA

1.2 ft 1.2 ft

C

w0 � 50 lb/ft

T

w0

3
4 in.
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376 Analysis and Design of Beams for Bending

 5.159 Knowing that the allowable stress for the steel used is 160 MPa, 
select the most economical wide-flange beam to support the loading 
shown.

 5.160 Determine the largest permissible value of P for the beam and 
loading shown, knowing that the allowable normal stress is 18 ksi 
in tension and 218 ksi in compression.

P
10 in. 10 in.

60 in. 60 in.

1 in.

5 in.

1 in.7 in.

E
DCB

A

PP

Fig. P5.160

C
DA

B

0.8 m 0.8 m
2.4 m

50 kN/m

Fig. P5.159

 5.158 For the beam and loading shown, design the cross section of the 
beam, knowing that the grade of timber used has an allowable 
normal stress of 1750 psi.

4.8 kips 4.8 kips
2 kips 2 kips

F

b

A

2 ft 2 ft 3 ft 2 ft 2 ft

9.5 in.

B C D E

Fig. P5.158
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377Review Problems 5.161 (a) Using singularity functions, find the magnitude and location of 
the maximum bending moment for the beam and loading shown. 
(b) Determine the maximum normal stress due to bending.

40 kN/m

1.8 m

A
C D

B

1.8 m
0.9 m

W530 � 66

60 kN 60 kN

Fig. P5.161

 5.162 The beam AB, consisting of an aluminum plate of uniform thick-
ness b and length L, is to support the load shown. (a) Knowing that 
the beam is to be of constant strength, express h in terms of x, L, 
and h0 for portion AC of the beam. (b) Determine the maximum 
allowable load if L 5 800 mm, h0 5 200 mm, b 5 25 mm, and 
sall 5 72 MPa.

w0

B
h h0

L/2 L/2

x

A
C

Fig. P5.162

P

d0

H
B

A

Fig. P5.163

 5.163 A transverse force P is applied as shown at end A of the conical 
taper AB. Denoting by d0 the diameter of the taper at A, show that 
the maximum normal stress occurs at point H, which is contained 
in a transverse section of diameter d 5 1.5 d0.
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378

COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

 5.C1 Several concentrated loads Pi (i 5 1, 2, . . . , n) can be applied to 
a beam as shown. Write a computer program that can be used to calculate 
the shear, bending moment, and normal stress at any point of the beam for 
a given loading of the beam and a given value of its section modulus. Use 
this program to solve Probs. 5.18, 5.21, and 5.25. (Hint: Maximum values 
will occur at a support or under a load.)

 5.C2 A timber beam is to be designed to support a distributed load and 
up to two concentrated loads as shown. One of the dimensions of its uniform 
rectangular cross section has been specified and the other is to be determined 
so that the maximum normal stress in the beam will not exceed a given allow-
able value sall. Write a computer program that can be used to calculate at given 
intervals DL the shear, the bending moment, and the smallest acceptable value 
of the unknown dimension. Apply this program to solve the following problems, 
using the intervals DL indicated: (a) Prob. 5.65 (DL 5 0.1 m), (b) Prob. 5.69 
(DL 5 0.3 m), (c) Prob. 5.70 (DL 5 0.2 m).

BA

x1

x2

xn
xi

a bL

P1 P2 Pi Pn

Fig. P5.C1

B

t

h
A

x1

x3

x2

x4

a bL

P1

P2
w

Fig. P5.C2

 5.C3 Two cover plates, each of thickness t, are to be welded to a wide-
flange beam of length L that is to support a uniformly distributed load w. 
Denoting by sall the allowable normal stress in the beam and in the plates, 
by d the depth of the beam, and by Ib and Sb, respectively, the moment of 
inertia and the section modulus of the cross section of the unreinforced 
beam about a horizontal centroidal axis, write a computer program that can 
be used to calculate the required value of (a) the length a of the plates, 
(b) the width b of the plates. Use this program to solve Prob. 5.145.

bt

ED
a

L

w

BA

Fig. P5.C3
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379Computer Problems 5.C4 Two 25-kip loads are maintained 6 ft apart as they are moved slowly 
across the 18-ft beam AB. Write a computer program and use it to calculate 
the bending moment under each load and at the midpoint C of the beam 
for values of x from 0 to 24 ft at intervals Dx 5 1.5 ft.

BC

x

A

18 ft

6 ft

9 ft

25 kips25 kips

Fig. P5.C4

 5.C5 Write a computer program that can be used to plot the shear 
and bending-moment diagrams for the beam and loading shown. Apply this 
 program with a plotting interval DL 5 0.2 ft to the beam and loading of 
(a) Prob. 5.72, (b) Prob. 5.115.

B

w

A

a

b

L

P

Fig. P5.C5

 5.C6 Write a computer program that can be used to plot the shear and 
bending-moment diagrams for the beam and loading shown. Apply this pro-
gram with a plotting interval DL 5 0.025 m to the beam and loading of 
Prob. 5.112.

B

w

A

b

a

L

MA MB

Fig. P5.C6
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A reinforced concrete deck will be 

attached to each of the steel sections 

shown to form a composite box girder 

bridge. In this chapter the shearing 

stresses will be determined in various 

types of beams and girders.
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C H A P T E R

Shearing Stresses in Beams and 
Thin-Walled Members
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Chapter 6 Shearing Stresses in 
Beams and Thin-Walled Members

 6.1 Introduction
 6.2  Shear on the Horizontal Face of 

a Beam Element
 6.3  Determination of the Shearing 

Stresses in a Beam
 6.4  Shearing Stresses txy in Common 

Types of Beams
 *6.5  Further Discussion of the 

Distribution of Stresses in a 
Narrow Rectangular Beam

 6.6  Longitudinal Shear on a Beam 
Element of Arbitrary Shape

 6.7 Shearing Stresses in Thin-Walled 
Members

 *6.8 Plastic Deformations
 *6.9  Unsymmetric Loading of Thin-

Walled Members; Shear Center

6.1 INTRODUCTION
You saw in Sec. 5.1 that a transverse loading applied to a beam will 
result in normal and shearing stresses in any given transverse section 
of the beam. The normal stresses are created by the bending couple 
M in that section and the shearing stresses by the shear V. Since the 
dominant criterion in the design of a beam for strength is the maxi-
mum value of the normal stress in the beam, our analysis was limited 
in Chap. 5 to the determination of the normal stresses. Shearing 
stresses, however, can be important, particularly in the design of 
short, stubby beams, and their analysis will be the subject of the first 
part of this chapter.

 Figure 6.1 expresses graphically that the elementary normal 
and shearing forces exerted on a given transverse section of a pris-
matic beam with a vertical plane of symmetry are equivalent to the 
bending couple M and the shearing force V. Six equations can be 
written to express that fact. Three of these equations involve only 
the normal forces sx dA and have already been discussed in Sec. 4.2; 
they are Eqs. (4.1), (4.2), and (4.3), which express that the sum of the 
normal forces is zero and that the sums of their moments about the 
y and z axes are equal to zero and M, respectively. Three more equa-
tions involving the shearing forces txy dA and txz dA can now be writ-
ten. One of them expresses that the sum of the moments of the 
shearing forces about the x axis is zero and can be dismissed as trivial 
in view of the symmetry of the beam with respect to the xy plane. 
The other two involve the y and z components of the elementary 
forces and are

 y components:     etxy  
dA 5 2V (6.1)

 z components:     etxz  dA 5 0 (6.2)

The first of these equations shows that vertical shearing stresses must 
exist in a transverse section of a beam under transverse loading. The 
second equation indicates that the average horizontal shearing stress 
in any section is zero. However, this does not mean that the shearing 
stress txz is zero everywhere.
 Let us now consider a small cubic element located in the verti-
cal plane of symmetry of the beam (where we know that txz must be 
zero) and examine the stresses exerted on its faces (Fig. 6.2). As we 

�xydA

�xzdA �xdA

x

z

y

x

z

y

M

V=

Fig. 6.1 Beam cross section.

�yx

�xy

�x

Fig. 6.2 Element from beam.
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383have just seen, a normal stress sx and a shearing stress txy are exerted 
on each of the two faces perpendicular to the x axis. But we know 
from Chap. 1 that, when shearing stresses txy are exerted on the 
vertical faces of an element, equal stresses must be exerted on the 
horizontal faces of the same element. We thus conclude that longi-
tudinal shearing stresses must exist in any member subjected to a 
transverse loading. This can be verified by considering a cantilever 
beam made of separate planks clamped together at one end 
(Fig. 6.3a). When a transverse load P is applied to the free end of 
this composite beam, the planks are observed to slide with respect 
to each other (Fig. 6.3b). In contrast, if a couple M is applied to the 
free end of the same composite beam (Fig. 6.3c), the various planks 
will bend into concentric arcs of circle and will not slide with respect 
to each other, thus verifying the fact that shear does not occur in a 
beam subjected to pure bending (cf. Sec. 4.3).
 While sliding does not actually take place when a transverse 
load P is applied to a beam made of a homogeneous and cohesive 
material such as steel, the tendency to slide does exist, showing that 
stresses occur on horizontal longitudinal planes as well as on vertical 
transverse planes. In the case of timber beams, whose resistance to 
shear is weaker between fibers, failure due to shear will occur along 
a longitudinal plane rather than a transverse plane (Photo 6.1).
 In Sec. 6.2, a beam element of length Dx bounded by two trans-
verse planes and a horizontal one will be considered and the shearing 
force DH exerted on its horizontal face will be determined, as well as 
the shear per unit length, q, also known as shear flow. A formula for 
the shearing stress in a beam with a vertical plane of symmetry will be 
derived in Sec. 6.3 and used in Sec. 6.4 to determine the shearing 
stresses in common types of beams. The distribution of stresses in a 
narrow rectangular beam will be further discussed in Sec. 6.5.
 The derivation given in Sec. 6.2 will be extended in Sec. 6.6 to 
cover the case of a beam element bounded by two transverse planes 
and a curved surface. This will allow us in Sec. 6.7 to determine the 
shearing stresses at any point of a symmetric thin-walled member, 
such as the flanges of wide-flange beams and box beams. The effect 
of plastic deformations on the magnitude and distribution of shearing 
stresses will be discussed in Sec. 6.8.

6.1 Introduction

(a)

(b)

P

M

(c)

Fig. 6.3 Beam made from planks.

Photo 6.1 Longitudinal shear failure in timber beam.
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384 Shearing Stresses in Beams 
and Thin-Walled Members

 In the last section of the chapter (Sec. 6.9), the unsymmetric 
loading of thin-walled members will be considered and the concept 
of shear center will be introduced. You will then learn to determine 
the distribution of shearing stresses in such members.

6.2  SHEAR ON THE HORIZONTAL FACE 
OF A BEAM ELEMENT

B

P1 P2 w

A

x

C

y

z

Fig. 6.4 Beam example.

y1 y1

�x
C

c

x

D

C'
N.A.

D'

y

z

Fig. 6.5 Short segment of beam example.

Consider a prismatic beam AB with a vertical plane of symmetry that 
supports various concentrated and distributed loads (Fig. 6.4). At a 
distance x from end A we detach from the beam an element CDD9C9 
of length Dx extending across the width of the beam from the upper 
surface of the beam to a horizontal plane located at a distance y1 
from the neutral axis (Fig. 6.5). The forces exerted on this element 

consist of vertical shearing forces V9C and V9D, a horizontal shearing 
force DH exerted on the lower face of the element, elementary hori-
zontal normal forces sC dA and sD dA, and possibly a load w Dx (Fig. 
6.6). We write the equilibrium equation

y
1 oFx 5 0:

 
¢H 1 #

A

1sC 2 sD2  dA 5 0

where the integral extends over the shaded area A of the section 
located above the line y 5 y1. Solving this equation for DH and using 
Eq. (5.2) of Sec. 5.1, s 5 My/I, to express the normal stresses in 
terms of the bending moments at C and D, we have

 ¢H 5
MD 2 MC

I #
A

y dA (6.3)

V�C V�D

�H

x

C D
�  dAD�  dAC

w

Fig. 6.6 Forces exerted on 
element.
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385The integral in (6.3) represents the first moment with respect to the 
neutral axis of the portion A of the cross section of the beam that is 
located above the line y 5 y1 and will be denoted by Q. On the 
other hand, recalling Eq. (5.7) of Sec. 5.3, we can express the incre-
ment MD 2 MC of the bending moment as

MD 2 MC 5 ¢M 5 1dMydx2 ¢x 5 V ¢x

Substituting into (6.3), we obtain the following expression for the 
horizontal shear exerted on the beam element

 ¢H 5
VQ

I
 ¢x (6.4)

 The same result would have been obtained if we had used as 
a free body the lower element C9D9D0C0, rather than the upper 
element CDD9C9 (Fig. 6.7), since the shearing forces DH and DH9 

6.2 Shear on the Horizontal Face 
of a Beam Element

y1

�x

c

x

C' D'

C" D"

y

z N.A.

'

y1

Fig. 6.7 Short segment of beam example.

exerted by the two elements on each other are equal and opposite. 
This leads us to observe that the first moment Q of the portion A9 
of the cross section located below the line y 5 y1 (Fig. 6.7) is equal 
in magnitude and opposite in sign to the first moment of the portion 
A located above that line (Fig. 6.5). Indeed, the sum of these two 
moments is equal to the moment of the area of the entire cross sec-
tion with respect to its centroidal axis and, thus, must be zero. This 
property can sometimes be used to simplify the computation of Q. 
We also note that Q is maximum for y1 5 0, since the elements of 
the cross section located above the neutral axis contribute positively 
to the integral in (6.3) that defines Q, while the elements located 
below that axis contribute negatively.
 The horizontal shear per unit length, which will be denoted 
by the letter q, is obtained by dividing both members of Eq. (6.4) 
by Dx:

 q 5
¢H
¢x

5
VQ

I
 (6.5)

We recall that Q is the first moment with respect to the neutral axis 
of the portion of the cross section located either above or below the 
point at which q is being computed, and that I is the centroidal 
moment of inertia of the entire cross-sectional area. For a reason 
that will become apparent later (Sec. 6.7), the horizontal shear per 
unit length q is also referred to as the shear flow.
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†See Appendix A.

A beam is made of three planks, 20 by 100 mm in cross section, nailed 
together (Fig. 6.8). Knowing that the spacing between nails is 25 mm and 
that the vertical shear in the beam is V 5 500 N, determine the shearing 
force in each nail.

We first determine the horizontal force per unit length, q, exerted 
on the lower face of the upper plank. We use Eq. (6.5), where Q repre-
sents the first moment with respect to the neutral axis of the shaded area 
A shown in Fig. 6.9a, and where I is the moment of inertia about the 
same axis of the entire cross-sectional area (Fig. 6.9b). Recalling that the 
first moment of an area with respect to a given axis is equal to the product 
of the area and of the distance from its centroid to the axis,† we have

 Q 5 A  y 5 10.020 m 3 0.100 m 2 10.060 m 2
 5 120 3 1026 m3

 I 5 1
12 10.020 m 2 10.100 m 23

 12 3 1
12 10.100 m 2 10.020 m 23

 1 10.020 m 3 0.100 m 2 10.060 m 22 4
 5 1.667 3 1026 1 2 10.0667 1 7.2 21026

 5 16.20 3 1026 m4

Substituting into Eq. (6.5), we write

q 5
VQ

I
5
1500 N 2 1120 3 1026 m32

16.20 3 1026 m4 5 3704 N/m

Since the spacing between the nails is 25 mm, the shearing force in each 
nail is

F 5 10.025 m 2q 5 10.025 m 2 13704 N/m 2 5 92.6 N

EXAMPLE 6.01

0.100 m

0.020 m

N.A.

y � 0.060 m

C'

0.100 m

N.A.
0.100 m

0.020 m

(a) (b)

A

Fig. 6.9

100 mm

20 mm

100 mm
20 mm

20 mm

Fig. 6.8

6.3  DETERMINATION OF THE SHEARING 
STRESSES IN A BEAM

Consider again a beam with a vertical plane of symmetry, subjected 
to various concentrated or distributed loads applied in that plane. We 
saw in the preceding section that if, through two vertical cuts and one 
horizontal cut, we detach from the beam an element of length Dx 
(Fig. 6.10), the magnitude DH of the shearing force exerted on the 
horizontal face of the element can be obtained from Eq. (6.4). The 
average shearing stress tave on that face of the element is obtained 
by dividing DH by the area DA of the face. Observing that DA 5 
t Dx, where t is the width of the element at the cut, we write

tave 5
¢H
¢A

5
VQ

I
 

¢x
t ¢x

or

 tave 5
VQ

It
 (6.6)

t

C�

�H'
�A

�x

D''2
C''1

C''2

D''1

D'1
D'

D'2

Fig. 6.10 Beam element.
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387We note that, since the shearing stresses txy and tyx exerted respec-
tively on a transverse and a horizontal plane through D9 are equal, 
the expression obtained also represents the average value of txy along 
the line D91 D92 (Fig. 6.11).
 We observe that tyx 5 0 on the upper and lower faces of the 
beam, since no forces are exerted on these faces. It follows that 
txy 5 0 along the upper and lower edges of the transverse section 
(Fig. 6.12). We also note that, while Q is maximum for y 5 0 (see 
Sec. 6.2), we cannot conclude that tave will be maximum along the 
neutral axis, since tave depends upon the width t of the section as 
well as upon Q.
 As long as the width of the beam cross section remains small 
compared to its depth, the shearing stress varies only slightly along 
the line D91 D92 (Fig. 6.11) and Eq. (6.6) can be used to compute txy 
at any point along D91 D92. Actually, txy is larger at points D91 and D92 
than at D9, but the theory of elasticity shows† that, for a beam of 
rectangular section of width b and depth h, and as long as b # hy4, 
the value of the shearing stress at points C1 and C2 (Fig. 6.13) does not 
exceed by more than 0.8% the average value of the stress computed 
along the neutral axis.‡

6.4  SHEARING STRESSES Txy IN COMMON 
TYPES OF BEAMS

We saw in the preceding section that, for a narrow rectangular beam, 
i.e., for a beam of rectangular section of width b and depth h with 
b # 1

4h, the variation of the shearing stress txy across the width of the 
beam is less than 0.8% of tave. We can, therefore, use Eq. (6.6) in 
practical applications to determine the shearing stress at any point of 
the cross section of a narrow rectangular beam and write

 txy 5
VQ

It
 (6.7)

where t is equal to the width b of the beam, and where Q is the 
first moment with respect to the neutral axis of the shaded area A 
(Fig. 6.14).
 Observing that the distance from the neutral axis to the centroid 
C9 of A is y 5 1

2 1c 1 y 2, and recalling that Q 5 A y, we write

 Q 5 A y 5 b 1c 2 y 2  12 1c 1 y 2 5 1
2 b 1c2 2 y22 (6.8)

†See S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 
3d ed., 1970, sec. 124.
‡On the other hand, for large values of byh, the value tmax of the stress at C1 and C2 may 
be many times larger then the average value tave computed along the neutral axis, as we 
may see from the following table:
 b/h 0.25 0.5 1 2 4 6 10 20 50

tmaxytave 1.008 1.033 1.126 1.396 1.988 2.582 3.770 6.740 15.65
tminytave 0.996 0.983 0.940 0.856 0.805 0.800 0.800 0.800 0.800

�yx

�ave

�ave

�xy

D'

D'

D''2
C''1

D''1

1

2D'

Fig. 6.11 Beam segment.

�yx� 0

�yx� 0

�xy� 0

�xy� 0

Fig. 6.12 Beam cross section.

6.4 Shearing Stresses txy in Common 
Types of Beams

h

C1

C2

b

1
2

h1
2 �max

N.A.

Fig. 6.13 Rectangular 
beam cross section.

hc �
C'

1
2

h

yy

y

b

z

c � 1
2

A'

Fig. 6.14 Beam cross 
section.
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388 Shearing Stresses in Beams 
and Thin-Walled Members Recalling, on the other hand, that I 5 bh3y12 5 2

3 bc3, we have

txy 5
VQ

Ib
5

3
4

 
c2 2 y2

bc3  V

or, noting that the cross-sectional area of the beam is A 5 2bc,

 txy 5
3
2

 
V
A

 a1 2
y2

c2 b (6.9)

 Equation (6.9) shows that the distribution of shearing stresses 
in a transverse section of a rectangular beam is parabolic (Fig. 6.15). 
As we have already observed in the preceding section, the shearing 
stresses are zero at the top and bottom of the cross section (y 5 6c). 
Making y 5 0 in Eq. (6.9), we obtain the value of the maximum 
shearing stress in a given section of a narrow rectangular beam:

 tmax 5
3
2

 

V
A

 (6.10)

The relation obtained shows that the maximum value of the shearing 
stress in a beam of rectangular cross section is 50% larger than the 
value V/A that would be obtained by wrongly assuming a uniform 
stress distribution across the entire cross section.
 In the case of an American standard beam (S-beam) or a wide-
flange beam (W-beam), Eq. (6.6) can be used to determine the aver-
age value of the shearing stress txy over a section aa9 or bb9 of the 
transverse cross section of the beam (Figs. 6.16a and b). We write

 tave 5
VQ

It
 (6.6)

where V is the vertical shear, t the width of the section at the eleva-
tion considered, Q the first moment of the shaded area with respect 
to the neutral axis cc9, and I the moment of inertia of the entire 
cross-sectional area about cc9. Plotting tave against the vertical dis-
tance y, we obtain the curve shown in Fig. 6.16c. We note the 
 discontinuities existing in this curve, which reflect the difference 
between the values of t corresponding respectively to the flanges 
ABGD and A9B9G9D9 and to the web EFF9E9.
 In the case of the web, the shearing stress txy varies only very 
slightly across the section bb9, and can be assumed equal to its average 

�
�

max

y

O

�c

�c

Fig. 6.15 Shear stress distribution on 
transverse section of rectangular beam.

D

C

E F G

A
a

t

a'

c c' c'

b'

B

D' E' F' G'

A' B'

(a)

b

c
y

y

t

E F

E' F'

(b) (c)

ave�

Fig. 6.16 Shear stress distribution on transverse section of 
wide-flange beam.
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389value tave. This is not true, however, for the flanges. For example, 
considering the horizontal line DEFG, we note that txy is zero between 
D and E and between F and G, since these two segments are part of 
the free surface of the beam. On the other hand the value of txy 
between E and F can be obtained by making t 5 EF in Eq. (6.6). In 
practice, one usually assumes that the entire shear load is carried by 
the web, and that a good approximation of the maximum value of the 
shearing stress in the cross section can be obtained by dividing V by 
the cross-sectional area of the web.

 
tmax 5

V
Aweb 

(6.11)

 We should note, however, that while the vertical component 
txy of the shearing stress in the flanges can be neglected, its hori-
zontal component txz has a significant value that will be determined 
in Sec. 6.7.

EXAMPLE 6.02Knowing that the allowable shearing stress for the timber beam of Sample 
Prob. 5.7 is tall 5 0.250 ksi, check that the design obtained in that sample 
problem is acceptable from the point of view of the shearing stresses.

We recall from the shear diagram of Sample Prob. 5.7 that Vmax = 
4.50 kips. The actual width of the beam was given as b 5 3.5 in., and the 
value obtained for its depth was h 5 14.55 in. Using Eq. (6.10) for the 
maximum shearing stress in a narrow rectangular beam, we write

tmax 5
3
2

 
V
A

5
3
2

 
V
bh

5
3 14.50 kips2

2 13.5 in.2 114.55 in.2 5 0.1325 ksi

Since tmax , tall, the design obtained in Sample Prob. 5.7 is acceptable.

EXAMPLE 6.03Knowing that the allowable shearing stress for the steel beam of Sample 
Prob. 5.8 is tall 5 90 MPa, check that the W360 3 32.9 shape obtained 
in that sample problem is acceptable from the point of view of the shear-
ing stresses.

We recall from the shear diagram of Sample Prob. 5.8 that the maxi-
mum absolute value of the shear in the beam is |V|max 5 58 kN. As we saw 
in Sec. 6.4, it may be assumed in practice that the entire shear load is car-
ried by the web and that the maximum value of the shearing stress in the 
beam can be obtained from Eq. (6.11). From Appendix C we find that for 
a W360 3 32.9 shape the depth of the beam and the thickness of its web 
are, respectively, d 5 349 mm and tw 5 5.8 mm. We thus have

Aweb 5 d tw 5 1349 mm2 15.8 mm2 5 2024 mm2

Substituting the values of 0V 0max and Aweb into Eq. (6.11), we obtain

tmax 5
0V 0max

Aweb
5

58 kN
2024 mm2 5 28.7 MPa

Since tmax , tall, the design obtained in Sample Prob. 5.8 is acceptable.

6.4 Shearing Stresses txy in Common 
Types of Beams
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390 Shearing Stresses in Beams 
and Thin-Walled Members *6.5  FURTHER DISCUSSION OF THE DISTRIBUTION OF 

STRESSES IN A NARROW RECTANGULAR BEAM

L

b

h � 2c

P

Fig. 6.17 Cantilever beam.

Consider a narrow cantilever beam of rectangular cross section of 
width b and depth h subjected to a load P at its free end (Fig. 6.17). 
Since the shear V in the beam is constant and equal in magnitude 
to the load P, Eq. (6.9) yields

 
txy 5

3
2

 
P
A

 a1 2
y2

c2b (6.12)

We note from Eq. (6.12) that the shearing stresses depend only upon 
the distance y from the neutral surface. They are independent, 
therefore, of the distance from the point of application of the load; 
it follows that all elements located at the same distance from the 
neutral surface undergo the same shear deformation (Fig. 6.18). 
While plane sections do not remain plane, the distance between two 
corresponding points D and D9 located in different sections remains 
the same. This indicates that the normal strains Px, and thus the 
normal stresses sx, are unaffected by the shearing stresses, and that 
the assumption made in Sec. 5.1 is justified for the loading condition 
of Fig. 6.17.
 We conclude that our analysis of the stresses in a cantilever 
beam of rectangular cross section, subjected to a concentrated load 
P at its free end, is valid. The correct values of the shearing stresses 
in the beam are given by Eq. (6.12), and the normal stresses at a 
distance x from the free end are obtained by making M 5 2Px in 
Eq. (5.2) of Sec. 5.1. We have

 
sx 5 1

Pxy

I  
(6.13)

 The validity of the above statement, however, depends upon 
the end conditions. If Eq. (6.12) is to apply everywhere, then the 
load P must be distributed parabolically over the free-end section. 
Moreover, the fixed-end support must be of such a nature that it will 
allow the type of shear deformation indicated in Fig. 6.18. The 

D'D
P

Fig. 6.18 Deformation of 
segment of cantilever beam.
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391resulting model (Fig. 6.19) is highly unlikely to be encountered in 
practice. However, it follows from Saint-Venant’s principle that, for 
other modes of application of the load and for other types of fixed-
end supports, Eqs. (6.12) and (6.13) still provide us with the correct 
distribution of stresses, except close to either end of the beam.

 When a beam of rectangular cross section is subjected to sev-
eral concentrated loads (Fig. 6.20), the principle of superposition can 
be used to determine the normal and shearing stresses in sections 
located between the points of application of the loads. However, 
since the loads P2, P3, etc., are applied on the surface of the beam 
and cannot be assumed to be distributed parabolically throughout 
the cross section, the results obtained cease to be valid in the imme-
diate vicinity of the points of application of the loads.
 When the beam is subjected to a distributed load (Fig. 6.21), 
the shear varies with the distance from the end of the beam, and so 
does the shearing stress at a given elevation y. The resulting shear 
deformations are such that the distance between two corresponding 
points of different cross sections, such as D1 and D91, or D2 and D92, 
will depend upon their elevation. This indicates that the assumption 
that plane sections remain plane, under which Eqs. (6.12) and (6.13) 
were derived, must be rejected for the loading condition of Fig. 6.21. 
The error involved, however, is small for the values of the span-depth 
ratio encountered in practice.
 We should also note that, in portions of the beam located under 
a concentrated or distributed load, normal stresses sy will be exerted 
on the horizontal faces of a cubic element of material, in addition to 
the stresses txy shown in Fig. 6.2.

P3P2P1

Fig. 6.20 Cantilever beam.

P

P

y

�xy

Fig. 6.19 Deformation of cantilever 
beam with concentrated load.

D'2

D'

D1

w

D2

1

Fig. 6.21 Deformation of cantilever beam 
with distributed load.

6.5 Further Discussion of the Distribution of 
Stresses in a Narrow Rectangular Beam
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SAMPLE PROBLEM 6.1

Beam AB is made of three planks glued together and is subjected, in its 
plane of symmetry, to the loading shown. Knowing that the width of each 
glued joint is 20 mm, determine the average shearing stress in each joint 
at section n-n of the beam. The location of the centroid of the section is 
given in the sketch and the centroidal moment of inertia is known to be 
I 5 8.63 3 1026 m4.

SOLUTION

 Vertical Shear at Section n-n. Since the beam and loading are both 
symmetric with respect to the center of the beam, we have A 5 
B 5 1.5 kN c.

Considering the portion of the beam to the left of section n-n as a free body, 
we write

1xg  Fy 5 0: 1.5 kN 2 V 5 0    V 5 1.5 kN

 Shearing Stress in Joint a. We pass the section a-a through the glued 
joint and separate the cross-sectional area into two parts. We choose to 
determine Q by computing the first moment with respect to the neutral axis 
of the area above section a-a.

Q 5 A  y1 5 3 10.100 m 2 10.020 m 2 4 10.0417 m 2 5 83.4 3 1026 m3

Recalling that the width of the glued joint is t 5 0.020 m, we use Eq. (6.7) 
to determine the average shearing stress in the joint.

tave 5
VQ

It
5
11500 N 2 183.4 3 1026 m32
18.63 3 1026 m42 10.020 m 2   tave 5 725 kPa  b

 Shearing Stress in Joint b. We now pass section b-b and compute Q 
by using the area below the section.

Q 5 A  y2 5 3 10.060 m 2 10.020 m 2 4 10.0583 m 2 5 70.0 3 1026 m3

 tave 5
VQ

It
5
11500 N 2 170.0 3 1026 m32
18.63 3 1026 m42 10.020 m 2  tave 5 608 kPa  b

B

0.4 m 0.4 m
0.2 m

1.5 kN1.5 kN

A n

n

B

1.5 kN

M

V

A � 1.5 kN B � 1.5 kN A � 1.5 kN

1.5 kN

A n

n

0.100 m

0.020 m

Neutral axis
y1 � 0.0417 m

x'
a a

Neutral axis

0.020 m

0.060 m

y2 � 0.0583 m

x'
C

b b

100 mm

68.3 mm

Joint a

Joint b

C

60 mm

20 mm

20 mm

20 mm

80 mm

392
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393

SAMPLE PROBLEM 6.2

A timber beam AB of span 10 ft and nominal width 4 in. (actual width 5 
3.5 in.) is to support the three concentrated loads shown. Knowing that for 
the grade of timber used sall 5 1800 psi and tall 5 120 psi, determine the 
minimum required depth d of the beam.

2.5 kips 1 kip 2.5 kips

2 ft 2 ft

3.5 in.

3 ft

A B
d

10 ft

3 ft

SOLUTION

 Maximum Shear and Bending Moment. After drawing the shear and 
bending-moment diagrams, we note that

 Mmax 5 7.5 kip ? ft 5 90 kip ? in.
 Vmax 5 3 kips

 Design Based on Allowable Normal Stress. We first express the 
elastic section modulus S in terms of the depth d. We have

I 5
1

12
 bd 3    S 5

1
c

5
1
6

 bd 2 5
1
6

 13.5 2d 2 5 0.5833d 2

For Mmax 5 90 kip ? in. and sall 5 1800 psi, we write

 S 5
Mmax

sall
     0.5833d 

2 5
90 3 103 lb ? in.

1800 psi
 d2 5 85.7    d 5 9.26 in.

We have satisfied the requirement that sm # 1800 psi.

 Check Shearing Stress. For Vmax 5 3 kips and d 5 9.26 in., we find

tm 5
3
2

 
Vmax

A
5

3
2

 
3000 lb

13.5 in.2 19.26 in.2    tm 5 138.8 psi

Since tall 5 120 psi, the depth d 5 9.26 in. is not acceptable and we must 
redesign the beam on the basis of the requirement that tm # 120 psi.

 Design Based on Allowable Shearing Stress. Since we now know 
that the allowable shearing stress controls the design, we write

tm 5 tall 5
3
2

 
Vmax

A
    120 psi 5

3
2

 
3000 lb
13.5 in.2d

d 5 10.71 in.  b

The normal stress is, of course, less than sall 5 1800 psi, and the depth of 
10.71 in. is fully acceptable.

 Comment. Since timber is normally available in depth increments of 
2 in., a 4 3 12-in. nominal size timber should be used. The actual cross 
section would then be 3.5 3 11.25 in.

A BC D E

2.5 kips 1 kip 2.5 kips

3 kips

3 kips

6 kip ? ft
6 kip ? ft

7.5 kip ? ft

3 kips

�3 kips

0.5 kip

�0.5 kip

2 ft

V

M

x

x

2 ft3 ft

(1.5)

(�1.5)

(6)

(�6)

3 ft

b � 3.5 in.

c � 
d

d
2

3.5 in.

11.25 in.

4 in. � 12 in.
Nominal size
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PROBLEMS

394394

 6.1 Three boards, each of 1.5 3 3.5-in. rectangular cross section, are 
nailed together to form a beam that is subjected to a vertical shear 
of 250 lb. Knowing that the spacing between each pair of nails is 
2.5 in., determine the shearing force in each nail.

1.5 in.

2.5 in.
2.5 in.

1.5 in.

1.5 in.

3.5 in.

Fig. P6.1

2 in.

2 in.

6 in.

s
s

s

2 in.

4 in.

Fig. P6.2

 6.3 Three boards are nailed together to form a beam shown, which is 
subjected to a vertical shear. Knowing that the spacing between the 
nails is s 5 75 mm and that the allowable shearing force in each nail 
is 400 N, determine the allowable shear when w 5 120 mm.

 6.4 Solve Prob. 6.3, assuming that the width of the top and bottom 
boards is changed to w 5 100 mm.

60 mm

200 mm

w

s
s

s

60 mm

60 mm

Fig. P6.3

 6.2 Three boards, each 2 in. thick, are nailed together to form a beam 
that is subjected to a vertical shear. Knowing that the allowable 
shearing force in each nail is 150 lb, determine the allowable shear 
if the spacing s between the nails is 3 in.
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395Problems 6.5 The American Standard rolled-steel beam shown has been rein-
forced by attaching to it two 16 3 200-mm plates, using 18-mm-
diameter bolts spaced longitudinally every 120 mm. Knowing that 
the average allowable shearing stress in the bolts is 90 MPa, deter-
mine the largest permissible vertical shearing force.

16 � 200 mm

S310 � 52

Fig. P6.5

S10 � 25.4

C8 � 13.7

Cz

y

Fig. P6.7

 6.8 The composite beam shown is fabricated by connecting two W6 3 
20 rolled-steel members, using bolts of 5

8-in. diameter spaced lon-
gitudinally every 6 in. Knowing that the average allowable shearing 
stress in the bolts is 10.5 ksi, determine the largest allowable verti-
cal shear in the beam.

Fig. P6.8

 6.6 Solve Prob. 6.5, assuming that the reinforcing plates are only 12 mm 
thick.

 6.7 A column is fabricated by connecting the rolled-steel members 
shown by bolts of 3

4-in. diameter spaced longitudinally every 5 in. 
Determine the average shearing stress in the bolts caused by a 
shearing force of 30 kips parallel to the y axis.
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396 Shearing Stresses in Beams 
and Thin-Walled Members

 6.9 through 6.12 For the beam and loading shown, consider sec-
tion n-n and determine (a) the largest shearing stress in that section, 
(b) the shearing stress at point a.

1 ft

2 ft 2 ft 2 ft 2 ft

0.375 in.

1 in.

0.6 in.

a

0.6 in.

10 in.

10 in.

n

15 kips 20 kips 15 kips

n

Fig. P6.9

1.5 m

100 mm

200 mm

40 mm

12 mm

12 mm
150 mm

0.3 m

10 kN
n

a

n

Fig. P6.10

180

12 16

16

a

n

n
80

0.6 m

0.9 m

Dimensions in mm

0.9 m

160 kN

80

100

Fig. P6.11

8 in.

16 in. 12 in. 16 in.

4 in.

4 in.

n

10 kips 10 kips

n

a

in.1
2

in.1
2

Fig. P6.12
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397Problems 6.13 and 6.14 For a beam having the cross section shown, deter-
mine the largest allowable vertical shear if the shearing stress is 
not to exceed 60 MPa.

 6.15 For the beam and loading shown, determine the minimum required 
depth h, knowing that for the grade of timber used, sall 5 1750 psi 
and tall 5 130 psi.

10

10 10
30

10

Dimensions in mm

30

30

40

Fig. P6.13

Dimensions in mm 40

40

40

10 10
30

Fig. P6.14

16 ft

5 in.

A B
h

750 lb/ft

Fig. P6.15

2.4 kN 4.8 kN

1 m 1 m 1 m

150 mmA D

b

B C

Fig. P6.16

 6.16 For the beam and loading shown, determine the minimum required 
width b, knowing that for the grade of timber used, sall 5 12 MPa 
and tall 5 825 kPa.

 6.17 A timber beam AB of length L and rectangular cross section carries 
a uniformly distributed load w and is supported as shown. (a) Show 
that the ratio tmysm of the maximum values of the shearing and 
normal stresses in the beam is equal to 2hyL, where h and L are, 
respectively, the depth and the length of the beam. (b) Determine 
the depth h and the width b of the beam, knowing that L 5 5 m, 
w 5 8 kN/m, tm 5 1.08 MPa, and sm 5 12 MPa.

B

b

hA

C D

w

L/2
L/4L/4

Fig. P6.17
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398 Shearing Stresses in Beams 
and Thin-Walled Members

 6.18 A timber beam AB of length L and rectangular cross section carries 
a single concentrated load P at its midpoint C. (a) Show that the ratio 
tmysm of the maximum values of the shearing and normal stresses in 
the beam is equal to hy2L, where h and L are, respectively, the depth 
and the length of the beam. (b) Determine the depth h and the width 
b of the beam, knowing that L 5 2 m, P 5 40 kN, tm 5 960 kPa, 
and sm 5 12 MPa.

 6.19 For the wide-flange beam with the loading shown, determine the 
largest P that can be applied, knowing that the maximum normal 
stress is 24 ksi and the largest shearing stress using the approxima-
tion tm 5 VyAweb is 14.5 ksi.

Fig. P6.18

B

b

h
C

L/2 L/2
A

P

6 ft

A C
B

9 ft

W24 � 104

P

Fig. P6.19

Fig. P6.20

0.6 m 0.6 m
0.6 m

1.8 m

A E
B C D

W360 � 122

PPP  6.20 For the wide-flange beam with the loading shown, determine the 
largest load P that can be applied, knowing that the maximum 
normal stress is 160 MPa and the largest shearing stress using the 
approximation tm 5 VyAweb is 100 MPa.

 6.21 and 6.22 For the beam and loading shown, consider section 
n-n and determine the shearing stress at (a) point a, (b) point b.

Fig. P6.21 and P6.23

180 kN

500 mm 500 mm

100 mm

160 mm

30 mm 30 mm

30 mm

20 mm

20 mm

A B
b

a

n

n

Fig. P6.22 and P6.24

16 in.

12 kips 12 kips

A

n

n

B

a

b

10 in.
16 in.

4 in.

1 in.
1 in.

1 in.

4 in.

2 in.

 6.23 and 6.24 For the beam and loading shown, determine the larg-
est shearing stress in section n-n.
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 6.25 through 6.28 A beam having the cross section shown is sub-
jected to a vertical shear V. Determine (a) the horizontal line along 
which the shearing stress is maximum, (b) the constant k in the 
following expression for the maximum shearing stress

  
tmax 5 k

V
A

  where A is the cross-sectional area of the beam.

c

Fig. P6.25

b

h

Fig. P6.26

rm

tm

Fig. P6.27

h

h

b

Fig. P6.28

6.6  LONGITUDINAL SHEAR ON A BEAM ELEMENT 
OF ARBITRARY SHAPE

Consider a box beam obtained by nailing together four planks, as 
shown in Fig. 6.22a. You learned in Sec. 6.2 how to determine the 
shear per unit length, q, on the horizontal surfaces along which the 
planks are joined. But could you determine q if the planks had been 
joined along vertical surfaces, as shown in Fig. 6.22b? We examined 
in Sec. 6.4 the distribution of the vertical components txy of the 
stresses on a transverse section of a W-beam or an S-beam and found 
that these stresses had a fairly constant value in the web of the beam 
and were negligible in its flanges. But what about the horizontal 
components txz of the stresses in the flanges?
 To answer these questions we must extend the procedure 
developed in Sec. 6.2 for the determination of the shear per unit 
length, q, so that it will apply to the cases just described.

(a) (b)

Fig. 6.22 Box beam cross sections.

B

P1 P2 w

A

x

C

y

z

Fig. 6.4 (repeated) Beam example.

 Consider the prismatic beam AB of Fig. 6.4, which has a verti-
cal plane of symmetry and supports the loads shown. At a distance 
x from end A we detach again an element CDD9C9 of length Dx. 
This element, however, will now extend from two sides of the beam 

3996.6 Longitudinal Shear on a Beam Element 
of Arbitrary Shape
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400 Shearing Stresses in Beams 
and Thin-Walled Members

to an arbitrary curved surface (Fig. 6.23). The forces exerted on the 
element include vertical shearing forces V9C and V9D, elementary hori-
zontal normal forces sC dA and sD dA, possibly a load w Dx, and a 
longitudinal shearing force DH representing the resultant of the 
elementary longitudinal shearing forces exerted on the curved sur-
face (Fig. 6.24). We write the equilibrium equation

1
ygFx 5 0:

 
¢H 1 #

A

 1sC 2 sD2 dA 5 0

�x
C

c

x

D

C' D'

y

N.A.
z

Fig. 6.23 Short segment of beam example.

V�C V�D

�H

x

C D
�  dAD�  dAC

w

Fig. 6.24 Forces exerted on 
element.

where the integral is to be computed over the shaded area A of the 
section. We observe that the equation obtained is the same as the 
one we obtained in Sec. 6.2, but that the shaded area A over which 
the integral is to be computed now extends to the curved surface.
 The remainder of the derivation is the same as in Sec. 6.2. We 
find that the longitudinal shear exerted on the beam element is

 ¢H 5
VQ

I
 ¢x (6.4)

where I is the centroidal moment of inertia of the entire section, Q 
the first moment of the shaded area A with respect to the neutral 
axis, and V the vertical shear in the section. Dividing both members 
of Eq. (6.4) by Dx, we obtain the horizontal shear per unit length, 
or shear flow:

 q 5
¢H
¢x

5
VQ

I
 (6.5)
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6.7 SHEARING STRESSES IN THIN-WALLED MEMBERS
We saw in the preceding section that Eq. (6.4) may be used to deter-
mine the longitudinal shear DH exerted on the walls of a beam ele-
ment of arbitrary shape and Eq. (6.5) to determine the corresponding 
shear flow q. These equations will be used in this section to calculate 
both the shear flow and the average shearing stress in thin-walled 

401

EXAMPLE 6.04A square box beam is made of two 0.75 3 3-in. planks and two 0.75 3 
4.5-in. planks, nailed together as shown (Fig. 6.25). Knowing that the spacing 
between nails is 1.75 in. and that the beam is subjected to a vertical shear 
of magnitude V 5 600 lb, determine the shearing force in each nail.

We isolate the upper plank and consider the total force per unit 
length, q, exerted on its two edges. We use Eq. (6.5), where Q represents 
the first moment with respect to the neutral axis of the shaded area A9 shown 
in Fig. 6.26a, and where I is the moment of inertia about the same axis of 
the entire cross-sectional area of the box beam (Fig. 6.26b). We have

Q 5 A¿y 5 10.75 in.2 13 in.2 11.875 in.2 5 4.22 in3

Recalling that the moment of inertia of a square of side a about a cen-
troidal axis is I 5 1

12 a4, we write

I 5 1
12 14.5 in.24 2 1

12 13 in.24 5 27.42 in4

Substituting into Eq. (6.5), we obtain

q 5
VQ

I
5
1600 lb 2 14.22 in32

27.42 in4 5 92.3 lb/in.

Because both the beam and the upper plank are symmetric with respect 
to the vertical plane of loading, equal forces are exerted on both edges 
of the plank. The force per unit length on each of these edges is thus 
1
2q 5 1

2 192.3 2 5 46.15 lb/in. Since the spacing between nails is 1.75 in., 
the shearing force in each nail is

F 5 11.75 in.2 146.15 lb/in.2 5 80.8 lb

0.75 in. 0.75 in.

0.75 in.

4.5 in.

3 in.

Fig. 6.25

0.75 in.

y � 1.875 in.

N.A. 4.5 in.

4.5 in.

3 in.

3 in.

3 in.

(a) (b)

A'

Fig. 6.26
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402 Shearing Stresses in Beams 
and Thin-Walled Members

members such as the flanges of wide-flange beams (Photo 6.2) and 
box beams, or the walls of structural tubes (Photo 6.3).

Photo 6.2 Wide-flange beams. Photo 6.3 Box beams and tubes.

 Consider, for instance, a segment of length Dx of a wide-flange 
beam (Fig. 6.27a) and let V be the vertical shear in the transverse 
section shown. Let us detach an element ABB9A9 of the upper flange 
(Fig. 6.27b). The longitudinal shear DH exerted on that element can 
be obtained from Eq. (6.4):

 ¢H 5
VQ

I
  ¢x (6.4)

Dividing DH by the area DA 5 t Dx of the cut, we obtain for the 
average shearing stress exerted on the element the same expression 
that we had obtained in Sec. 6.3 in the case of a horizontal cut:

 tave 5
VQ

It
 (6.6)

Note that tave now represents the average value of the shearing stress 
tzx over a vertical cut, but since the thickness t of the flange is small, 
there is very little variation of tzx across the cut. Recalling that txz 5 
tzx (Fig. 6.28), we conclude that the horizontal component txz of the 

y

B' B'
B B

�H

V

�x

�x

A
A

A' A't

xz

(a)

(b)

Fig. 6.27 Wide-flange beam segment.

y

zx� xz�

x

z

Fig. 6.28 Segment of beam flange.
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403shearing stress at any point of a transverse section of the flange can 
be obtained from Eq. (6.6), where Q is the first moment of the 
shaded area about the neutral axis (Fig. 6.29a). We recall that a 
similar result was obtained in Sec. 6.4 for the vertical component txy 
of the shearing stress in the web (Fig. 6.29b). Equation (6.6) can be 
used to determine shearing stresses in box beams (Fig. 6.30), half 
pipes (Fig. 6.31), and other thin-walled members, as long as the loads 
are applied in a plane of symmetry of the member. In each case, the 
cut must be perpendicular to the surface of the member, and Eq. (6.6) 
will yield the component of the shearing stress in the direction of the 
tangent to that surface. (The other component may be assumed equal 
to zero, in view of the proximity of the two free surfaces.)

†We recall that the concept of shear flow was used to analyze the distribution of shearing 
stresses in thin-walled hollow shafts (Sec. 3.13). However, while the shear flow in a hollow 
shaft is constant, the shear flow in a member under a transverse loading is not.

N.A.

xz�

y
t

z

(a)

N.A.

xy�

y

t

z

(b)

Fig. 6.29 Wide-flange beam.

N.A. N.A.

xy�

xz� xz�

xy�

t

t

z z

yy

(a) (b)

Fig. 6.30 Box beam.

N.A.
z

y

t

C

�

Fig. 6.31 Half pipe beam.

B

N.A.

A

q q

C C'

B'

D E D'

V

Fig. 6.32 Shear flow q 
in box beam section.

N.A.

q1

q

q � q1 � q2

q2

q1 q2

A

D

B

C

A'

E'E

V

Fig. 6.33  Shear flow q in 
wide-flange beam section.

 Comparing Eqs. (6.5) and (6.6), we note that the product of the 
shearing stress t at a given point of the section and of the thickness 
t of the section at that point is equal to q. Since V and I are constant 
in any given section, q depends only upon the first moment Q and, 
thus, can easily be sketched on the section. In the case of a box beam, 
for example (Fig. 6.32), we note that q grows smoothly from zero at 
A to a maximum value at C and C9 on the neutral axis, and then 
decreases back to zero as E is reached. We also note that there is no 
sudden variation in the magnitude of q as we pass a corner at B, D, 
B9, or D9, and that the sense of q in the horizontal portions of the 
section may be easily obtained from its sense in the vertical portions 
(which is the same as the sense of the shear V). In the case of a wide-
flange section (Fig. 6.33), the values of q in portions AB and A9B of 
the upper flange are distributed symmetrically. As we turn at B into 
the web, the values of q corresponding to the two halves of the flange 
must be combined to obtain the value of q at the top of the web. 
After reaching a maximum value at C on the neutral axis, q decreases, 
and at D splits into two equal parts corresponding to the two halves 
of the lower flange. The name of shear flow commonly used to refer 
to the shear per unit length, q, reflects the similarity between the 
properties of q that we have just described and some of the charac-
teristics of a fluid flow through an open channel or pipe.†

6.7 Shearing Stresses in Thin-Walled Members
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404 Shearing Stresses in Beams 
and Thin-Walled Members

 So far we have assumed that all the loads were applied in a 
plane of symmetry of the member. In the case of members pos-
sessing two planes of symmetry, such as the wide-flange beam of 
Fig. 6.29 or the box beam of Fig. 6.30, any load applied through 
the centroid of a given cross section can be resolved into compo-
nents along the two axes of symmetry of the section. Each compo-
nent will cause the member to bend in a plane of symmetry, and 
the corresponding shearing stresses can be obtained from Eq. (6.6). 
The principle of superposition can then be used to determine the 
resulting stresses.
 However, if the member considered possesses no plane of sym-
metry, or if it possesses a single plane of symmetry and is subjected 
to a load that is not contained in that plane, the member is observed 
to bend and twist at the same time, except when the load is applied 
at a specific point, called the shear center. Note that the shear center 
generally does not coincide with the centroid of the cross section. 
The determination of the shear center of various thin-walled shapes 
is discussed in Sec. 6.9.

*6.8 PLASTIC DEFORMATIONS
Consider a cantilever beam AB of length L and rectangular cross sec-
tion, subjected at its free end A to a concentrated load P (Fig. 6.34). 
The largest value of the bending moment occurs at the fixed end B 
and is equal to M 5 PL. As long as this value does not exceed the 
maximum elastic moment MY, that is, as long as PL # MY, the normal 
stress sx will not exceed the yield strength sY anywhere in the beam. 
However, as P is increased beyond the value MYyL, yield is initiated 
at points B and B9 and spreads toward the free end of the beam. 
Assuming the material to be elastoplastic, and considering a cross 
 section CC9 located at a distance x from the free end A of the beam 
(Fig. 6.35), we obtain the half-thickness yY of the elastic core in that 
section by making M 5 Px in Eq. (4.38) of Sec. 4.9. We have

 
Px 5

3
2

MY a1 2
1
3

 
y2

Y

c2 b (6.14)

where c is the half-depth of the beam. Plotting yY against x, we 
obtain the boundary between the elastic and plastic zones.

P

A

L

B

B'

Fig. 6.34 (PL # MY)

A

L

x

C

2yY

C' B'

B
P

Fig. 6.35 (PL . MY)
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405 As long as PL , 3
2MY, the parabola defined by Eq. (6.14) 

intersects the line BB9, as shown in Fig. 6.38. However, when PL 
reaches the value 3

2MY, that is, when PL 5 Mp, where Mp is the 
plastic moment defined in Sec. 4.9, Eq. (6.14) yields yY 5 0 for 
x 5 L, which shows that the vertex of the parabola is now located 
in section BB9, and that this section has become fully plastic 
(Fig. 6.36). Recalling Eq. (4.40) of Sec. 4.9, we also note that the 
radius of curvature r of the neutral surface at that point is equal 
to zero, indicating the presence of a sharp bend in the beam at its 
fixed end. We say that a plastic hinge has developed at that point. 
The load P 5 MpyL is the largest load that can be supported by 
the beam.
 The above discussion was based only on the analysis of the 
normal stresses in the beam. Let us now examine the distribution 
of the shearing stresses in a section that has become partly plastic. 
Consider the portion of beam CC0D0D located between the trans-
verse sections CC9 and DD9, and above the horizontal plane D0C0 
(Fig. 6.37a). If this portion is located entirely in the plastic zone, 
the normal stresses exerted on the faces CC0 and DD0 will be uni-
formly distributed and equal to the yield strength sY (Fig. 6.40b). 
The equilibrium of the free body CC0D0D thus requires that the 
horizontal shearing force DH exerted on its lower face be equal to 
zero. It follows that the average value of the horizontal shearing 
stress tyx across the beam at C0 is zero, as well as the average value 
of the vertical shearing stress txy. We thus conclude that the vertical 
shear V 5 P in section CC9 must be distributed entirely over the 
portion EE9 of that section that is located within the elastic zone 
(Fig. 6.38). It can be shown† that the distribution of the shearing 
stresses over EE9 is the same as in an elastic rectangular beam of 
the same width b as beam AB, and of depth equal to the thickness 
2yY of the elastic zone. Denoting by A9 the area 2byY of the elastic 
portion of the cross section, we have

 
txy 5

3
2

 
P
A¿

 a1 2
y2

y2
Y
b
 

(6.15)

The maximum value of the shearing stress occurs for y 5 0 and is

 
tmax 5

3
2

 
P
A¿  (6.16)

 As the area A9 of the elastic portion of the section decreases, 
tmax increases and eventually reaches the yield strength in shear tY. 
Thus, shear contributes to the ultimate failure of the beam. A more 
exact analysis of this mode of failure should take into account the 
combined effect of the normal and shearing stresses.

Fig. 6.36 (PL 5 MP 5 3
2MY)

A

L

x � L

B
yY � 0

B'
P

6.8 Plastic Deformations

†See Prob. 6.60.

D

D''
D''

C''
C''

C D

�H

�Y �YC

D' C'

(b)

(a)

Fig. 6.37 Beam segment.

C'

E'

E

C

y

xy�

max�
2yY

PLASTIC

PLASTIC

ELASTIC

Fig. 6.38
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SAMPLE PROBLEM 6.3

Knowing that the vertical shear is 50 kips in a W10 3 68 rolled-steel beam, 
determine the horizontal shearing stress in the top flange at a point a located 
4.31 in. from the edge of the beam. The dimensions and other geometric 
data of the rolled-steel section are given in Appendix C.

SOLUTION

We isolate the shaded portion of the flange by cutting along the dashed line 
that passes through point a.

Q 5 14.31 in.2 10.770 in.2 14.815 in.2 5 15.98 in3

  t 5
VQ

It
5
150 kips2 115.98 in32
1394 in42 10.770 in.2  t 5 2.63 ksi  b

� 4.815 in.5.2 �5.2 in.

tf � 0.770 in.

Ix � 394 in4

a

C

0.770

4.31 in.

10.4 in.

2

SAMPLE PROBLEM 6.4

Solve Sample Prob. 6.3, assuming that 0.75 3 12-in. plates have been attached 
to the flanges of the W10 3 68 beam by continuous fillet welds as shown.

SOLUTION

For the composite beam the centroidal moment of inertia is

 I 5 394 in4 1 2 3 1
12 112 in.2 10.75 in.23 1 112 in.2 10.75 in.2 15.575 in.22 4

 I 5 954 in4

Since the top plate and the flange are connected only at the welds, we find the 
shearing stress at a by passing a section through the flange at a, between the 
plate and the flange, and again through the flange at the symmetric point a9.

For the shaded area that we have isolated, we have

 t 5 2tf 5 2 10.770 in.2 5 1.540 in.
Q 5 2 3 14.31 in.2 10.770 in.2 14.815 in.2 4 1 112 in.2 10.75 in.2 15.575 in.2
Q 5 82.1 in3

 t 5
VQ

It
5
150 kips2 182.1 in32
1954 in42 11.540 in.2  t 5 2.79 ksi  b

C

12 in.

5.2 in.
5.575 in.

0.375 in.

10.4 in.

0.75 in.

0.75 in.

12 in.

5.2 in.

0.75 in.

0.770 in.
4.31 in. 4.31 in.4.815 in.

5.575 in.

a' a

C

a

Welds

0.75 in. � 12 in.

4.31 in.
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SAMPLE PROBLEM 6.5

The thin-walled extruded beam shown is made of aluminum and has a uniform 
3-mm wall thickness. Knowing that the shear in the beam is 5 kN, determine 
(a) the shearing stress at point A, (b) the maximum shearing stress in the beam. 
Note: The dimensions given are to lines midway between the outer and inner 
surfaces of the beam.

SOLUTION

 Centroid. We note that AB 5 AD 5 65 mm.

 Y 5
o  y A

o  A
5

2 3 165 mm 2 13 mm 2 130 mm 2 4
2 3 165 mm 2 13 mm 2 4 1 150 mm 2 13 mm 2

 Y 5 21.67 mm

 Centroidal Moment of Inertia. Each side of the thin-walled beam can 
be considered as a parallelogram, and we recall that for the case shown 
Inn 5 bh3y12 where b is measured parallel to the axis nn.

 b 5 13 mm 2ycos b 5 13 mm 2y 112y13 2 5 3.25 mm
 I 5 o 1I 1 Ad22 5 2 3 1

12 13.25 mm 2 160 mm 23
 1 13.25 mm 2 160 mm 2 18.33 mm 22 4 1 3 1

12 150 mm 2 13 mm 23
 1 150 mm 2 13 mm 2 121.67 mm 22 4

 I 5 214.6 3 103 mm4    I 5 0.2146 3 1026 m4

 a. Shearing Stress at A. If a shearing stress tA occurs at A, the shear 
flow will be qA 5 tAt and must be directed in one of the two ways shown. 
But the cross section and the loading are symmetric about a vertical line 
through A, and thus the shear flow must also be symmetric. Since neither 
of the possible shear flows is symmetric, we conclude that tA 5 0  b

 b. Maximum Shearing Stress. Since the wall thickness is constant, 
the maximum shearing stress occurs at the neutral axis, where Q is maxi-
mum. Since we know that the shearing stress at A is zero, we cut the section 
along the dashed line shown and isolate the shaded portion of the beam. In 
order to obtain the largest shearing stress, the cut at the neutral axis is made 
perpendicular to the sides, and is of length t 5 3 mm.

Q 5 3 13.25 mm 2 138.33 mm 2 4  a38.33 mm
2

b 5 2387 mm3

Q 5 2.387 3 1026 m3

tE 5
VQ

It
5

15 kN 2 12.387 3 1026 m32
10.2146 3 1026 m42 10.003 m 2  tmax 5 tE 5 18.54 MPa  b

D B

A

60 mm
65 mm

cos 12
13�

13
12

5
y

� �

�

30 mm

25 mm 25 mm

h h

b b

n n n n

3 mm

�

�

3.25 mm

D

C

B

A

30 mm

21.67 mm3 mm

8.33 mm� �

30 mm

30 mm

25 mm 25 mm

qA qA qA qA

OR

b � 3.25 mm

t � 3 mmC

A

ENeutral axis

38.33 mm

5 kN

D B

A

60 mm

25 mm 25 mm

407
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PROBLEMS

408

 6.32 The built-up timber beam is subjected to a 1500-lb vertical shear. 
Knowing that the longitudinal spacing of the nails is s 5 2.5 in. 
and that each nail is 3.5 in. long, determine the shearing force in 
each nail.

 6.29 The built-up beam shown is made by gluing together five planks. 
Knowing that in the glued joints the average allowable shearing 
stress is 350 kPa, determine the largest permissible vertical shear 
in the beam.

 6.30 For the beam of Prob. 6.29, determine the largest permissible hori-
zontal shear.

6.31 Several wooden planks are glued together to form the box beam 
shown. Knowing that the beam is subjected to a vertical shear of 
3 kN, determine the average shearing stress in the glued joint 
(a) at A, (b) at B.

40 mm

80 mm

40 mm

40 mm

100 mm 100 mm

Fig. P6.29

Fig. P6.31

20 60 20

20

30

20

30

20

Dimensions in mm

A

B

4 in.

4 in.

2 in. 2 in.
2 in.

2 in.

6 in. 4 in.

2 in.

Fig. P6.32

6.33 The built-up wooden beam shown is subjected to a vertical shear 
of 8 kN. Knowing that the nails are spaced longitudinally every 
60 mm at A and every 25 mm at B, determine the shearing force 
in the nails (a) at A, (b) at B. (Given: Ix 5 1.504 3 109 mm4.)Fig. P6.33

300

100

200

400

50

50

50

50

B

B

A

x

AA

A

C

Dimensions in mm
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409Problems 6.34 Knowing that a vertical shear V of 50 kips is exerted on a W14 3 
82 rolled-steel beam, determine the shearing stress (a) at point a, 
(b) at the centroid C.

 6.35 An extruded aluminum beam has the cross section shown. Know-
ing that the vertical shear in the beam is 150 kN, determine the 
shearing stress at (a) point a, (b) point b.

Fig. P6.34

a

C

4.15 in.

Fig. P6.35

b

1212

40

80

80
Dimensions in mm

6

6

a

 6.36 Knowing that a given vertical shear V causes a maximum shearing 
stress of 75 MPa in the hat-shaped extrusion shown, determine the 
corresponding shearing stress at (a) point a, (b) point b.

 6.37 Knowing that a given vertical shear V causes a maximum shearing 
stress of 75 MPa in an extruded beam having the cross section shown, 
determine the shearing stress at the three points indicated.

Fig. P6.36

60 mm

20 mm 28 mm 20 mm

4 mm

4 mm

14 mm

6 mm 6 mm

b

a

40 mm

Fig. P6.37

40

30

30

40

10

10

160

120

50 50

20 20

c

b

a

Dimensions in mm

Fig. P6.38

1.5 in.

d

c a
b

0.6 in.

0.6 in.

0.6 in.

0.6 in.

0.6 in.

1.5 in.

 6.38 An extruded beam has the cross section shown and a uniform wall 
thickness of 0.20 in. Knowing that a given vertical shear V causes 
a maximum shearing stress t 5 9 ksi, determine the shearing stress 
at the four points indicated.

 6.39 Solve Prob. 6.38 assuming that the beam is subjected to a horizon-
tal shear V.
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410 Shearing Stresses in Beams 
and Thin-Walled Members

 6.40 Knowing that a given vertical shear V causes a maximum shearing 
stress of 50 MPa in a thin-walled member having the cross section 
shown, determine the corresponding shearing stress at (a) point a, 
(b) point b, (c) point c.

 6.41 and 6.42 The extruded aluminum beam has a uniform wall 
thickness of 1

8 in. Knowing that the vertical shear in the beam is 
2 kips, determine the corresponding shearing stress at each of the 
five points indicated.

 6.43 Three 1 3 18-in. steel plates are bolted to four L6 3 6 3 1 angles to 
form a beam with the cross section shown. The bolts have a 7

8-in. 
diameter and are spaced longitudinally every 5 in. Knowing that the 
allowable average shearing stress in the bolts is 12 ksi, determine the 
largest permissible vertical shear in the beam. (Given: Ix 5 6123 in4.)

Fig. P6.40

40 mm

30 mm

50 mm

30 mm

10 mm

10 mm

12 mm40 mm

b
c

a

1.25 in.

1.25 in.

1.25 in. 1.25 in.

bc

ae

d

Fig. P6.42

1.25 in.

1.25 in.

1.25 in. 1.25 in.

bc

ae

d

Fig. P6.41

Fig. P6.43

C
1 in.

1 in.

1 in.

18 in.

18 in.x

Fig. P6.44

125 mm 125 mm
100 mm

100 mm

250 mm

 6.44 Three planks are connected as shown by bolts of 14-mm diameter 
spaced every 150 mm along the longitudinal axis of the beam. For 
a vertical shear of 10 kN, determine the average shearing stress in 
the bolts.
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411Problems 6.45 A beam consists of three planks connected as shown by steel bolts 
with a longitudinal spacing of 225 mm. Knowing that the shear in 
the beam is vertical and equal to 6 kN and that the allowable aver-
age shearing stress in each bolt is 60 MPa, determine the smallest 
permissible bolt diameter that can be used.

Fig. P6.45

100 mm

100 mm

50 mm100 mm50 mm

25 mm
25 mm

 6.46 A beam consists of five planks of 1.5 3 6-in. cross section con-
nected by steel bolts with a longitudinal spacing of 9 in. Knowing 
that the shear in the beam is vertical and equal to 2000 lb and that 
the allowable average shearing stress in each bolt is 7500 psi, deter-
mine the smallest permissible bolt diameter that can be used.

 6.47 A plate of 1
4-in. thickness is corrugated as shown and then used as 

a beam. For a vertical shear of 1.2 kips, determine (a) the maxi-
mum shearing stress in the section, (b) the shearing stress at point B. 
Also sketch the shear flow in the cross section.

Fig. P6.46

6 in.

1 in.
1 in.

Fig. P6.47

1.6 in.

2 in. 2 in.
1.2 in. 1.2 in.

A B

D

E F

 6.48 A plate of 4-mm thickness is bent as shown and then used as a 
beam. For a vertical shear of 12 kN, determine (a) the shearing 
stress at point A, (b) the maximum shearing stress in the beam. 
Also sketch the shear flow in the cross section.

Fig. P6.48

Dimensions in mm

25

A

20 25

48

20
50
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412 Shearing Stresses in Beams 
and Thin-Walled Members

 6.49 A plate of 2-mm thickness is bent as shown and then used as a 
beam. For a vertical shear of 5 kN, determine the shearing stress 
at the five points indicated and sketch the shear flow in the cross 
section.

 6.50 A plate of thickness t is bent as shown and then used as a beam. 
For a vertical shear of 600 lb, determine (a) the thickness t for 
which the maximum shearing stress is 300 psi, (b) the correspond-
ing shearing stress at point E. Also sketch the shear flow in the 
cross section.da

e

b c

50 mm

10 mm 10 mm

22 mm

Fig. P6.49

 6.51 The design of a beam calls for connecting two vertical rectangular
3
8 3 4-in. plates by welding them to two horizontal 1

2 3 2-in. plates 
as shown. For a vertical shear V, determine the dimension a for 
which the shear flow through the welded surfaces is maximum.

 6.52 and 6.53 An extruded beam has a uniform wall thickness t. 
Denoting by V the vertical shear and by A the cross-sectional area 
of the beam, express the maximum shearing stress as tmax 5 k(VyA) 
and determine the constant k for each of the two orientations 
shown.

Fig. P6.50

4.8 in.

6 in.

3 in. 3 in.
2 in.

B G

ED

FA

2 in.

2 in.

2 in.

a

a

in.3
8

in.1
2

in.1
2

in.3
8

Fig. P6.51

Fig. P6.52

(a)

a

a

(b)

Fig. P6.53

a
a

(a) (b)

 6.54 (a) Determine the shearing stress at point P of a thin-walled pipe 
of the cross section shown caused by a vertical shear V. (b) Show 
that the maximum shearing stress occurs for u 5 908 and is equal 
to 2VyA, where A is the cross-sectional area of the pipe.Fig. P6.54

C

rm t

P
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413Problems 6.55 For a beam made of two or more materials with different moduli 
of elasticity, show that Eq. (6.6)

  
tave 5

VQ

It

  remains valid provided that both Q and I are computed by using the 
transformed section of the beam (see Sec. 4.6) and provided further 
that t is the actual width of the beam where tave is computed.

 6.56 and 6.57 A steel bar and an aluminum bar are bonded together 
as shown to form a composite beam. Knowing that the vertical 
shear in the beam is 4 kips and that the modulus of elasticity is 
29 3 106 psi for the steel and 10.6 3 106 psi for the aluminum, 
determine (a) the average stress at the bonded surface, (b) the 
maximum shearing stress in the beam. (Hint: Use the method indi-
cated in Prob. 6.55.)

 6.58 and 6.59 A composite beam is made by attaching the timber 
and steel portions shown with bolts of 12-mm diameter spaced 
longitudinally every 200 mm. The modulus of elasticity is 10 GPa 
for the wood and 200 GPa for the steel. For a vertical shear of 4 kN, 
determine (a) the average shearing stress in the bolts, (b) the shear-
ing stress at the center of the cross section. (Hint: Use the method 
indicated in Prob. 6.55.)

Fig. P6.56

2 in.

1 in.

1.5 in.

Steel

Aluminum

Fig. P6.57

2 in.

1 in.

1.5 in.

Aluminum

Steel

Fig. P6.58

150 mm

12 mm

250 mm

12 mm
140 mm 6 mm6 mm

90 mm

90 mm

84 mm

Fig. P6.59
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 6.60 Consider the cantilever beam AB discussed in Sec. 6.8 and the 
portion ACKJ of the beam that is located to the left of the trans-
verse section CC9 and above the horizontal plane JK, where K is 
a point at a distance y , yY above the neutral axis (Fig. P6.60). 
(a) Recalling that sx 5 sY between C and E and sx 5 (sYyyY)y 
between E and K, show that the magnitude of the horizontal 
shearing force H exerted on the lower face of the portion of beam 
ACKJ is

  
H 5

1
2

 bsY a2c 2 yY 2
y2

yY
b

  (b) Observing that the shearing stress at K is

  
txy 5 lim

¢Ay0

¢H
¢A

5 lim
¢xy0

 
1
b

 
¢H
¢x

5
1
b

 
0H
0x

  and recalling that yY is a function of x defined by Eq. (6.14), derive 
Eq. (6.15).

A
J

x

C E

K
B

Plastic

Neutral axis

P

E'
C'

y

yY

Fig. P6.60

*6.9  UNSYMMETRIC LOADING OF THIN-WALLED 
MEMBERS; SHEAR CENTER

Our analysis of the effects of transverse loadings in Chap. 5 and in 
the preceding sections of this chapter was limited to members pos-
sessing a vertical plane of symmetry and to loads applied in that 
plane. The members were observed to bend in the plane of loading 
(Fig. 6.39) and, in any given cross section, the bending couple M 
and the shear V (Fig. 6.40) were found to result in normal and shear-
ing stresses defined, respectively, by the formulas

 
sx 5 2

My

I  
(4.16)

and

 
tave 5

VQ

It  
(6.6)

 In this section, the effects of transverse loadings on thin-walled 
members that do not possess a vertical plane of symmetry will be 

C

x

P

Fig. 6.39 Channel beam.

M

V

N.A.

C'

(V � P, M � Px)

Fig. 6.40 Loaded in vertical 
plane of symmetry.

414 Shearing Stresses in Beams 
and Thin-Walled Members
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415examined. Let us assume, for example, that the channel member of 
Fig. 6.39 has been rotated through 908 and that the line of action of 
P still passes through the centroid of the end section. The couple vec-
tor M representing the bending moment in a given cross section is 
still directed along a principal axis of the section (Fig. 6.41), and the 
neutral axis will coincide with that axis (cf. Sec. 4.13). Equation (4.16), 
therefore, is applicable and can be used to compute the normal stresses 
in the section. However, Eq. (6.6) cannot be used to determine the 
shearing stresses in the section, since this equation was derived for a 
member possessing a vertical plane of symmetry (cf. Sec. 6.7). Actually, 
the member will be observed to bend and twist under the applied load 
(Fig. 6.42), and the resulting distribution of shearing stresses will be 
quite different from that defined by Eq. (6.6).

MN.A.

C'

(V � P, M � Px)

V

Fig. 6.41 Load 
perpendicular to vertical 
plane of symmetry.

6.9 Unsymmetric Loading of Thin-Walled 
Members; Shear Center

C

P

Fig. 6.42 Deformation of channel 
beam when not loaded in vertical 
plane of symmetry.

N.A.

D E

AB
�

N.A.

D E

AB

(a) Shear stress (b) Shear flow q

Fig. 6.43 Stresses applied to cross section 
as a result of load shown in Fig. 6.42.

D E

AB

dF � q ds
F

V

F'
D E

AB

(a) Shear flow q (b) Resultant forces
on elements

Fig. 6.44

 The following question now arises: Is it possible to apply the 
vertical load P in such a way that the channel member of Fig. 6.42 
will bend without twisting and, if so, where should the load P be 
applied? If the member bends without twisting, then the shearing 
stress at any point of a given cross section can be obtained from 
Eq. (6.6), where Q is the first moment of the shaded area with 
respect to the neutral axis (Fig. 6.43a), and the distribution of stresses 
will look as shown in Fig. 6.43b, with t 5 0 at both A and E. We 
note that the shearing force exerted on a small element of cross-
sectional area dA 5 t ds is dF 5 t dA 5 tt ds, or dF 5 q ds (Fig.6.44a), 
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416 Shearing Stresses in Beams 
and Thin-Walled Members

P

Py

Pz

(a) (b)

e

O O

Fig. 6.47 Beam with oblique load.

where q is the shear flow q 5 tt 5 VQyI at the point considered. 
The resultant of the shearing forces exerted on the elements of the 
upper flange AB of the channel is found to be a horizontal force F 
(Fig. 6.44b) of magnitude

 F 5 #
B

A

q ds (6.17)

Because of the symmetry of the channel section about its neutral 
axis, the resultant of the shearing forces exerted on the lower flange 
DE is a force F9 of the same magnitude as F but of opposite sense. 
We conclude that the resultant of the shearing forces exerted on the 
web BD must be equal to the vertical shear V in the section:

 
V 5 #

D

B

q ds
 

(6.18)

 We now observe that the forces F and F9 form a couple of 
moment Fh, where h is the distance between the center lines of the 
flanges AB and DE (Fig. 6.45a). This couple can be eliminated if 
the vertical shear V is moved to the left through a distance e such 
that the moment of V about B is equal to Fh (Fig. 6.45b). We write 
Ve 5 Fh or

 
e 5

Fh
V  

(6.19)

and conclude that, when the force P is applied at a distance e to the 
left of the center line of the web BD, the member bends in a vertical 
plane without twisting (Fig. 6.46).
 The point O where the line of action of P intersects the axis of 
symmetry of the end section is called the shear center of that section. 
We note that, in the case of an oblique load P (Fig. 6.47a), the 
member will also be free of any twist if the load P is applied at the 
shear center of the section. Indeed, the load P can then be resolved 
into two components Pz and Py (Fig. 6.47b) corresponding respec-
tively to the loading conditions of Figs. 6.39 and 6.46, neither of 
which causes the member to twist.

F

V
V

F'D E

A
e

h

B

D E

AB

(a) Resultant forces
on elements

(b) Placement of V to
    eliminate twisting

Fig. 6.45

e

O

P

Fig. 6.46 Placement of load to 
eliminate twisting.
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Fig. 6.48

B
e

O

D E

A

t

h

b

Fig. 6.49

B

N.A.

h/2

t

A

D E

s

EXAMPLE 6.05Determine the shear center O of a channel section of uniform thickness 
(Fig. 6.48), knowing that b 5 4 in., h 5 6 in., and t 5 0.15 in.

Assuming that the member does not twist, we first determine the 
shear flow q in flange AB at a distance s from A (Fig. 6.49). Recalling 
Eq. (6.5) and observing that the first moment Q of the shaded area with 
respect to the neutral axis is Q 5 (st)(hy2), we write

 
q 5

VQ

I
5

Vsth
2I  

(6.20)

where V is the vertical shear and I the moment of inertia of the section 
with respect to the neutral axis.

Recalling Eq. (6.17), we determine the magnitude of the shearing 
force F exerted on flange AB by integrating the shear flow q from A to B:

F 5 #
b

0

q ds 5 #
b

0

Vsth
2I

 ds 5
Vth
2I #

b

0

s ds

 
F 5

Vthb2

4I  
(6.21)

The distance e from the center line of the web BD to the shear center 
O can now be obtained from Eq. (6.19):

 
e 5

Fh
V

5
Vthb2

4I
 
h
V

5
th2b2

4I  
(6.22)

The moment of inertia I of the channel section can be expressed as 
follows:

 I 5 Iweb 1 2Iflange

 5
1
12

 th3 1 2 c 1
12

 bt3 1 bt ah
2
b2 d

Neglecting the term containing t3, which is very small, we have

 I 5 1
12 th

3 1 1
2 tbh2 5 1

12 th
216b 1 h2 (6.23)

Substituting this expression into (6.22), we write

 

e 5
3b2

6b 1 h
5

b

2 1
h
3b  

(6.24)

We note that the distance e does not depend upon t and can vary from 
0 to by2, depending upon the value of the ratio hy3b. For the given chan-
nel section, we have

h
3b

5
6 in.

314 in.2 5 0.5

and

e 5
4 in.

2 1 0.5
5 1.6 in.
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418

For the channel section of Example 6.05 determine the distribution of 
the shearing stresses caused by a 2.5-kip vertical shear V applied at the 
shear center O (Fig. 6.50).

 Shearing stresses in flanges. Since V is applied at the shear 
center, there is no torsion, and the stresses in flange AB are obtained from 
Eq. (6.20) of Example 6.05. We have

 
t 5

q

t
5

VQ

It
5

Vh
2I

 s
 

(6.25)

which shows that the stress distribution in flange AB is linear. Letting 
s 5 b and substituting for I from Eq. (6.23), we obtain the value of the 
shearing stress at B:

 
tB 5

Vhb

21 1
12th

22 16b 1 h2 5
6Vb

th16b 1 h2  (6.26)

Letting V 5 2.5 kips, and using the given dimensions, we have

 tB 5
612.5 kips2 14 in.2

10.15 in.2 16 in.2 16 3 4 in. 1 6 in.2
 5 2.22 ksi

 Shearing stresses in web. The distribution of the shearing stresses 
in the web BD is parabolic, as in the case of a W-beam, and the maximum 
stress occurs at the neutral axis. Computing the first moment of the upper half 
of the cross section with respect to the neutral axis (Fig. 6.51), we write

 Q 5 bt112 h2 1 1
2 ht 114 h2 5 1

8 ht14b 1 h2 (6.27)

EXAMPLE 6.06

B

e � 1.6 in.
b � 4 in.

h � 6 in.

t � 0.15 in.

V � 2.5 kips

O

D E

A

Fig. 6.50

h/2

t

t

A

E

N.A.

D

B

h/4

b

Fig. 6.51

B

max � 3.06 ksi

D
E

N.A.

A

�

B � 2.22 ksi�

D � 2.22 ksi�

Fig. 6.52

Substituting for I and Q from (6.23) and (6.27), respectively, into the 
expression for the shearing stress, we have

tmax 5
VQ

It
5

V118 ht2 14b 1 h2
1
12 th

216b 1 h2t 5
3V14b 1 h2
2th16b 1 h2

or, with the given data,

 tmax 5
312.5 kips2 14 3 4 in. 1 6 in.2

210.15 in.2 16 in.2 16 3 4 in. 1 6 in.2
 5 3.06 ksi

 Distribution of stresses over the section. The distribution of 
the shearing stresses over the entire channel section has been plotted in 
Fig. 6.52.
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Fig. 6.53

B

6 in.

0.15 in.

1.143 in.

4 in.

V � 2.5 kips

C

D
E

A

B

1.143 in.
e � 1.6 in.

V

C
O

D E

A B

V

T

C

O

D E

A B

V � 2.5 kips

Bending Twisting

O

D E

A

a

b � t

T � 6.86 kip ? in.

(a) (b) (c) (d)

Fig. 6.54

EXAMPLE 6.07For the channel section of Example 6.05, and neglecting stress concentra-
tions, determine the maximum shearing stress caused by a 2.5-kip vertical 
shear V applied at the centroid C of the section, which is located 1.143 in. 
to the right of the center line of the web BD (Fig. 6.53).

 Equivalent force-couple system at shear center.  The shear 
center O of the cross section was determined in Example 6.05 and found 
to be at a distance e 5 1.6 in. to the left of the center line of the web 
BD. We replace the shear V (Fig. 6.54a) by an equivalent force-couple 
system at the shear center O (Fig. 6.54b). This system consists of a 2.5-kip 
force V and of a torque T of magnitude

 T 5 V1OC2 5 12.5 kips2 11.6 in. 1 1.143 in.2
 5 6.86 kip ? in.

 Stresses due to bending.  The 2.5-kip force V causes the mem-
ber to bend, and the corresponding distribution of shearing stresses in 
the section (Fig. 6.54c) was determined in Example 6.06. We recall that 
the maximum value of the stress due to this force was found to be

1tmax2bending 5 3.06 ksi

 Stresses due to twisting.  The torque T causes the member to twist, 
and the corresponding distribution of stresses is shown in Fig. 6.54d. We 
recall from Sec. 3.12 that the membrane analogy shows that, in a thin-walled 
member of uniform thickness, the stress caused by a torque T is maximum 
along the edge of the section. Using Eqs. (3.45) and (3.43) with

a 5 4 in. 1 6 in. 1 4 in. 5 14 in.
 b 5 t 5 0.15 in.  bya 5 0.0107

we have

c1 5 1
3 11 2 0.630bya2 5 1

3 11 2 0.630 3 0.01072 5 0.331

1tmax2twisting 5
T

c1ab2 5
6.86 kip ? in.

10.3312 114 in.2 10.15 in.22 5 65.8 ksi

 Combined stresses.  The maximum stress due to the combined 
bending and twisting occurs at the neutral axis, on the inside surface of 
the web, and is

tmax 5 3.06 ksi 1 65.8 ksi 5 68.9 ksi
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420 Shearing Stresses in Beams 
and Thin-Walled Members

 Turning our attention to thin-walled members possessing no 
plane of symmetry, we now consider the case of an angle shape 
subjected to a vertical load P. If the member is oriented in such a 
way that the load P is perpendicular to one of the principal centroi-
dal axes Cz of the cross section, the couple vector M representing 
the bending moment in a given section will be directed along Cz 
(Fig. 6.55), and the neutral axis will coincide with that axis (cf. Sec. 
4.13). Equation (4.16), therefore, is applicable and can be used to 
compute the normal stresses in the section. We now propose to de-
termine where the load P should be applied if Eq. (6.6) is to define 
the shearing stresses in the section, i.e., if the member is to bend 
without twisting.
 Let us assume that the shearing stresses in the section are defined 
by Eq. (6.6). As in the case of the channel member considered earlier, 
the elementary shearing forces exerted on the section can be expressed 
as dF 5 q ds, with q 5 VQyI, where Q represents a first moment 
with respect to the neutral axis (Fig. 6.56a). We note that the resultant 
of the shearing forces exerted on portion OA of the cross section is a 
force F1 directed along OA, and that the resultant of the shearing 
forces exerted on portion OB is a force F2 along OB (Fig. 6.56b). Since 
both F1 and F2 pass through point O at the corner of the angle, it 
follows that their own resultant, which is the shear V in the section, 
must also pass through O (Fig. 6.56c). We conclude that the mem-
ber will not be twisted if the line of action of the load P passes 
through the corner O of the section in which it is applied.

y

z
MN.A.

C

A

B

Fig. 6.55 Beam without plane 
of symmetry.

y

z

dF � q ds

N.A.
C

A

B

O

(a) Shear stresses (b) Resultant forces on elements (c) Placement of V to eliminate twisting

V
A

O

B

F1

F2

A

O

B

Fig. 6.56

 The same reasoning can be applied when the load P is perpen-
dicular to the other principal centroidal axis Cy of the angle section. 
And, since any load P applied at the corner O of a cross section can 
be resolved into components perpendicular to the principal axes, it 
follows that the member will not be twisted if each load is applied 
at the corner O of a cross section. We thus conclude that O is the 
shear center of the section.
 Angle shapes with one vertical and one horizontal leg are 
encountered in many structures. It follows from the preceding dis-
cussion that such members will not be twisted if vertical loads are 
applied along the center line of their vertical leg. We note from 
Fig. 6.57 that the resultant of the elementary shearing forces exerted 
on the vertical portion OA of a given section will be equal to the 
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421

shear V, while the resultant of the shearing forces on the horizontal 
portion OB will be zero:

#
A

O

q ds 5 V
    #

B

O

q ds 5 0

This does not mean, however, that there will be no shearing stress in 
the horizontal leg of the member. By resolving the shear V into com-
ponents perpendicular to the principal centroidal axes of the section 
and computing the shearing stress at every point, we would verify that 
t is zero at only one point between O and B (see Sample Prob. 6.6).
 Another type of thin-walled member frequently encountered in 
practice is the Z shape. While the cross section of a Z shape does not 
possess any axis of symmetry, it does possess a center of symmetry O 
(Fig. 6.58). This means that, to any point H of the cross section cor-
responds another point H9 such that the segment of straight line HH9 
is bisected by O. Clearly, the center of  symmetry O coincides with 
the centroid of the cross section. As you will see presently, point O 
is also the shear center of the cross section.
 As we did earlier in the case of an angle shape, we assume that 
the loads are applied in a plane perpendicular to one of the principal 
axes of the section, so that this axis is also the neutral axis of the 
section (Fig. 6.59). We further assume that the shearing stresses in 
the section are defined by Eq. (6.6), i.e., that the member is bent 
without being twisted. Denoting by Q the first moment about the 
neutral axis of portion AH of the cross section, and by Q9 the first 
moment of portion EH9, we note that Q9 5 2Q. Thus the shearing 
stresses at H and H9 have the same magnitude and the same direc-
tion, and the shearing forces exerted on small elements of area dA 
located respectively at H and H9 are equal forces that have equal 
and opposite moments about O (Fig. 6.60). Since this is true for any 
pair of symmetric elements, it follows that the resultant of the shear-
ing forces exerted on the section has a zero moment about O. This 
means that the shear V in the section is directed along a line that 
passes through O. Since this analysis can be repeated when the loads 
are applied in a plane perpendicular to the other principal axis, we 
conclude that point O is the shear center of the section.

dF � q ds

V

A

O B

A

O
B

Fig. 6.57 Angle section.

A
H

O

B

D
E

H'

Fig. 6.58 Z section.

A H

O

B

y

z
N.A.

D

E

�

�

H'

Fig. 6.59

A

dA

dF

dF

dA

H

O

B

D

EH'

Fig. 6.60

6.9 Unsymmetric Loading of Thin-Walled 
Members; Shear Center
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SAMPLE PROBLEM 6.6

Determine the distribution of shearing stresses in the thin-walled angle 
shape DE of uniform thickness t for the loading shown.

a

a

D

E

P
B

y
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z

z'

C

A
O

a

45�

1
2

a1
2

a
4

a
4

1
2 h

h

b b

n n n

m m m

n

z' z'

y' y'

A

B

O

V � P

y

z
C

O O

Vz' � P cos 45� Vy' � P cos 45� 

C

z'

y'

y'

2
1

z

�1 �1

B
e

a
a yO

A f

Vy' � P cos 45� 

y

C

45�

z'

z'

y'

a

z

�2

�2

B

e

O

A

f Vz' � P cos 45� 

y

y

C

45�

B

A
z

O

y

a
3

3
4

P
at

SOLUTION

 Shear Center.  We recall from Sec. 6.9 that the shear center of the 
cross section of a thin-walled angle shape is located at its corner. Since the 
load P is applied at D, it causes bending but no twisting of the shape.

 Principal Axes.  We locate the centroid C of a given cross section AOB. 
Since the y9 axis is an axis of symmetry, the y9 and z9 axes are the principal 
centroidal axes of the section. We recall that for the parallelogram shown 
Inn 5 1

12 bh3 and Imm 5 1
3 bh3. Considering each leg of the section as a paral-

lelogram, we now determine the centroidal moments of inertia Iy9 and Iz9:

Iy¿ 5 2 c 1
3

 a t
cos 45°

b1a cos 45°23 d 5
1
3

 ta3

Iz¿ 5 2 c 1
12

  a t
cos 45°

b 1a cos 45°23 d 5
1
12

 ta3

 Superposition.  The shear V in the section is equal to the load P. We 
resolve it into components parallel to the principal axes.

 Shearing Stresses Due to Vy  9.  We determine the shearing stress at 
point e of coordinate y:

y¿ 5 1
2 1a 1 y2 cos 45° 2 1

2a cos 45° 5 1
2 y cos 45°

Q 5 t1a 2 y2y¿ 5 1
2 t1a 2 y2y cos 45°

t1 5
Vy¿Q

Iz¿t
5
1P cos 45°2 3 12 t1a 2 y2y cos 45° 4

1 1
12 ta

32t 5
3P1a 2 y2y

ta3

The shearing stress at point f is represented by a similar function of z.

 Shearing Stresses Due to Vz9.  We again consider point e:
z¿ 5 1

2 1a 1 y2 cos 45°
Q 5 1a 2 y2  tz¿ 5 1

2 1a2 2 y22t cos 45°

t2 5
Vz¿Q

Iy¿t
5
1P cos 45°2 3 12 1a2 2 y22t cos 45° 4

113 ta32t 5
3P1a2 2 y22

4ta3

The shearing stress at point f is represented by a similar function of z.

 Combined Stresses.  Along the Vertical Leg. The shearing stress at 
point e is

te 5 t2 1 t1 5
3P1a2 2 y22

4ta3 1
3P1a 2 y2y

ta3 5
3P1a 2 y2

4ta3  3 1a 1 y2 1 4y 4
te 5

3P1a 2 y2 1a 1 5y2
4ta3  ◀

 Along the Horizontal Leg.  The shearing stress at point f is

tf 5 t2 2 t1 5
3P1a2 2 z22

4ta3 2
3P1a 2 z2z

ta3 5
3P1a 2 z2

4ta3 3 1a 1 z2 2 4z 4
tf 5

3P1a 2 z2 1a 2 3z2
4ta3  ◀
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PROBLEMS

423

 6.63 through 6.66 An extruded beam has the cross section shown. 
Determine (a) the location of the shear center O, (b) the distribu-
tion of the shearing stresses caused by the vertical shearing force 
V shown applied at O.

 6.61 and 6.62 Determine the location of the shear center O of a thin-
walled beam of uniform thickness having the cross section shown.

2a

E
F

e

O

A

D B
a

a

a

a

G

Fig. P6.61

e

E

F

O

A
a

D

H J

B

a

a

a
G

Fig. P6.62

Fig. P6.63
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V � 110 kN 
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B

O

D

C

E

192 mm

A

e

6 mm
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12 mm

V � 110 kN 

Fig. P6.64

4.0 in.

6.0 in.
A

D B

G

E F

 in.t � 1
8

V � 2.75 kips

O

e

Fig. P6.66

V � 2.75 kips

 in.t � 1
8

4 in.

2 in.

6 in.

A

B
D

O

E

G

e
F

2 in.

Fig. P6.65
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424 Shearing Stresses in Beams 
and Thin-Walled Members

 6.69 through 6.74 Determine the location of the shear center O 
of a thin-walled beam of uniform thickness having the cross section 
shown.

A

E
e

O

D

B

5 in.

4 in.

3 in.

3 in.

Fig. P6.69

60 mm
A

e

B

E F

D
O

60 mm

80 mm
40 mm

Fig. P6.71

E

60�

60�
F

e

O A
D

B

35 mm

35 mm
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Fig. P6.70

E

2 in.

2 in.

0.1 in.

1.5 in.

1.5 in.

F

e

O

A

D

B

Fig. P6.72

t

e

O

A

a

B

Fig. P6.73

e

O A
a t

B

Fig. P6.74

  6.67 through 6.68 An extruded beam has the cross section shown. 
Determine (a) the location of the shear center O, (b) the distribu-
tion of the shearing stresses caused by the vertical shearing force 
V shown applied at O.

Oz

6 mm

6 mm 30 mm

30 mm

30 mm
6 mm

30 mm

4 mm

4 mm

A
B

D E

F

e

H J

G
V � 35 kN

Iz � 1.149 � 106 mm4

Fig. P6.67

Iz � 0.933 � 106 mm4

Oz

4 mm
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30 mm

30 mm
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30 mm

6 mm

6 mm
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B

D E

F

e

H J

G
V � 35 kN

Fig. P6.68
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425Problems

 6.77 and 6.78 A thin-walled beam of uniform thickness has the cross 
section shown. Determine the dimension b for which the shear 
center O of the cross section is located at the point indicated.

 6.79 For the angle shape and loading of Sample Prob. 6.6, check that 
e q dz 5 0 along the horizontal leg of the angle and e q dy 5 P 
along its vertical leg.

 6.80 For the angle shape and loading of Sample Prob. 6.6, (a) determine 
the points where the shearing stress is maximum and the corre-
sponding values of the stress, (b) verify that the points obtained are 
located on the neutral axis corresponding to the given loading.

Fig. P6.77 Fig. P6.78
30 mm

b

A

F

J

B

D

G

O

H

E

K

60 mm

60 mm
45 mm

45 mm

60 mm

60 mm

60 mm

A

B
D

O

EF

G

b

 6.75 and 6.76 A thin-walled beam has the cross section shown. 
Determine the location of the shear center O of the cross section.

Fig. P6.75

5 in.

3 in.
B

O

e
A D

E G

F

2 in.

4 in.

Fig. P6.76
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4
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426 Shearing Stresses in Beams 
and Thin-Walled Members

 *6.81 A steel plate, 160 mm wide and 8 mm thick, is bent to form the 
channel shown. Knowing that the vertical load P acts at a point in 
the midplane of the web of the channel, determine (a) the torque 
T that would cause the channel to twist in the same way that it 
does under the load P, (b) the maximum shearing stress in the 
channel caused by the load P.

 *6.82 Solve Prob. 6.81, assuming that a 6-mm-thick plate is bent to form 
the channel shown.

 *6.83 The cantilever beam AB, consisting of half of a thin-walled pipe 
of 1.25-in. mean radius and 3

8-in. wall thickness, is subjected to a 
500-lb vertical load. Knowing that the line of action of the load 
passes through the centroid C of the cross section of the beam, 
determine (a) the equivalent force-couple system at the shear cen-
ter of the cross section, (b) the maximum shearing stress in the 
beam. (Hint: The shear center O of this cross section was shown 
in Prob. 6.73 to be located twice as far from its vertical diameter 
as its centroid C.)

 *6.84 Solve Prob. 6.83, assuming that the thickness of the beam is 
reduced to 1

4 in.

 *6.85 The cantilever beam shown consists of a Z shape of 1
4-in. thickness. 

For the given loading, determine the distribution of the shearing 
stresses along line A9B9 in the upper horizontal leg of the Z shape. 
The x9 and y9 axes are the principal centroidal axes of the cross 
section and the corresponding moments of inertia are Ix9 5 166.3 in4 
and Iy9 5 13.61 in4.

12 in.

6 in.6 in.

22.5�

A'

A'

B'

B'

C'

y

x

x'

y'

A
B

D'
D'

E'
E'

ED

3 kips

(a) (b)

Fig. P6.85

 *6.86 For the cantilever beam and loading of Prob. 6.85, determine the 
distribution of the shearing stress along line B9D9 in the vertical 
web of the Z shape.

 *6.87 Determine the distribution of the shearing stresses along line D9B9 
in the horizontal leg of the angle shape for the loading shown. The 
x9 and y9 axes are the principal centroidal axes of the cross section.

 *6.88 For the angle shape and loading of Prob. 6.87, determine the distri-
bution of the shearing stresses along line D9A9 in the vertical leg.

2a

15.8�

 Ix' � 1.428ta3

 Iy' � 0.1557ta3

0.342a

0.596a

a

A B
B'

D'
D

A'

A'

D'

x'

y'

x

y

C'
B'

P

a2
3

a
6

Fig. P6.87
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B

C

Fig. P6.83
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REVIEW AND SUMMARY

This chapter was devoted to the analysis of beams and thin-walled 
members under transverse loadings.

In Sec. 6.1 we considered a small element located in the vertical plane 
of symmetry of a beam under a transverse loading (Fig. 6.61) and 
found that normal stresses sx and shearing stresses txy were exerted 
on the transverse faces of that element, while shearing stresses tyx, 
equal in magnitude to txy, were exerted on its horizontal faces.
 In Sec. 6.2 we considered a prismatic beam AB with a vertical 
plane of symmetry supporting various concentrated and distributed 
loads (Fig. 6.62). At a distance x from end A we detached from the 

Stresses on a beam element

�yx

�xy

�x

Fig. 6.61

B

P1 P2 w

A

x

C

y

z

Fig. 6.62

y1 y1

�x
C

c

x

D

C'
N.A.

D'

y

z

Fig. 6.63

beam an element CDD9C9 of length Dx extending across the width 
of the beam from the upper surface of the beam to a horizontal plane 
located at a distance y1 from the neutral axis (Fig. 6.63). We found 

that the magnitude of the shearing force DH exerted on the lower 
face of the beam element was

¢H 5
VQ

I
 ¢x (6.4)

where V 5 vertical shear in the given transverse section
 Q 5  first moment with respect to the neutral axis of 

the shaded portion A of the section
I 5  centroidal moment of inertia of the entire cross-

sectional area

Horizontal shear in a beam
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428 Shearing Stresses in Beams 
and Thin-Walled Members

The horizontal shear per unit length, or shear flow, which was 
denoted by the letter q, was obtained by dividing both members of 
Eq. (6.4) by Dx:

 q 5
¢H
¢x

5
VQ

I
 (6.5)

Dividing both members of Eq. (6.4) by the area DA of the horizontal 
face of the element and observing that DA 5 t Dx, where t is the 
width of the element at the cut, we obtained in Sec. 6.3 the following 
expression for the average shearing stress on the horizontal face of 
the element

 tave 5
VQ

It
 (6.6)

We further noted that, since the shearing stresses txy and tyx exerted, 
respectively, on a transverse and a horizontal plane through D9 are 
equal, the expression in (6.6) also represents the average value of txy 
along the line D91 D92 (Fig. 6.64).

In Secs. 6.4 and 6.5 we analyzed the shearing stresses in a beam of 
rectangular cross section. We found that the distribution of stresses 
is parabolic and that the maximum stress, which occurs at the center 
of the section, is

 tmax 5
3
2

 
V
A

 (6.10)

where A is the area of the rectangular section. For wide-flange 
beams, we found that a good approximation of the maximum shear-
ing stress can be obtained by dividing the shear V by the cross-
 sectional area of the web.

In Sec. 6.6 we showed that Eqs. (6.4) and (6.5) could still be used to 
determine, respectively, the longitudinal shearing force DH and the 
shear flow q exerted on a beam element if the element was bounded 
by an arbitrary curved surface instead of a horizontal plane (Fig. 6.65). 

Shear flow

Shearing stresses in a beam

�yx

�ave

�ave

�xy

D'

D'
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D''1
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2D'

Fig. 6.64

�x
C
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D

C' D'
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N.A.
z

Fig. 6.65

Shearing stresses in a beam 
of rectangular cross section

Longitudinal shear on curved 
surface
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429This made it possible for us in Sec. 6.7 to extend the use of Eq. (6.6) 
to the determination of the average shearing stress in thin-walled 
members such as wide-flange beams and box beams, in the flanges of 
such members, and in their webs (Fig. 6.66).

Review and Summary

N.A.

xz�

y
t

z

(a)

N.A.

xy�

y

t

z

(b)

Fig. 6.66

In Sec. 6.8 we considered the effect of plastic deformations on the 
magnitude and distribution of shearing stresses. From Chap. 4 we 
recalled that once plastic deformation has been initiated, additional 
loading causes plastic zones to penetrate into the elastic core of a 
beam. After demonstrating that shearing stresses can occur only in 
the elastic core of a beam, we noted that both an increase in loading 
and the resulting decrease in the size of the elastic core contribute 
to an increase in shearing stresses.

In Sec. 6.9 we considered prismatic members that are not loaded 
in their plane of symmetry and observed that, in general, both bend-
ing and twisting will occur. You learned to locate the point O of the 
cross section, known as the shear center, where the loads should be 
applied if the member is to bend without twisting (Fig. 6.67) and 
found that if the loads are applied at that point, the following equa-
tions remain valid:

 
sx 5 2

My

I   
tave 5

VQ

It  
(4.16, 6.6)

Using the principle of superposition, you also learned to determine 
the stresses in unsymmetric thin-walled members such as channels, 
angles, and extruded beams [Example 6.07 and Sample Prob. 6.6]

Shearing stresses in thin-walled 
members

e

O

P

Fig. 6.67

Plastic deformations

Unsymmetric loading 
shear center
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REVIEW PROBLEMS

 6.89 A square box beam is made of two 20 3 80-mm planks and two 20 3
120-mm planks nailed together as shown. Knowing that the spacing 
between the nails is s 5 30 mm and that the vertical shear in the 
beam is V 5 1200 N, determine (a) the shearing force in each nail, 
(b) the maximum shearing stress in the beam.

s
s

s

120 mm

80 mm

20 mm

20 mm

Fig. P6.89

 6.90 The beam shown is fabricated by connecting two channel shapes 
and two plates, using bolts of 3

4-in. diameter spaced longitudinally 
every 7.5 in. Determine the average shearing stress in the bolts 
caused by a shearing force of 25 kips parallel to the y axis.

 6.91 For the beam and loading shown, consider section n-n and deter-
mine (a) the largest shearing stress in that section, (b) the shearing 
stress at point a.

C12 � 20.7

16 in. � in.

C
z

y
1
2

Fig. P6.90

90

120

1515 151530

20

20

20

40

20

72 kN

n

n

Dimensions in mm

1.5 m

0.5 m

0.8 m

a

Fig. P6.91
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431Review Problems

 6.93 For the beam and loading shown, consider section n-n and deter-
mine the shearing stress at (a) point a, (b) point b.

 6.92 For the beam and loading shown, determine the minimum 
required width b, knowing that for the grade of timber used, 
sall 5 12 MPa and tall 5 825 kPa.

2.4 kN 4.8 kN

1 m
0.5 m

150 mmA E

b

B C D

1 m1 m

7.2 kN

Fig. P6.92

Fig. P6.93 and P6.94

B b
a

A

10 in.
20 in. 20 in.

25 kips 25 kips

n
7.25 in.

in.

1.5 in.
1.5 in.

3
4

8 in.

in.3
4

in.3
4

n

 6.94 For the beam and loading shown, determine the largest shearing 
stress in section n-n.

 6.95 The composite beam shown is made by welding C200 3 17.1 
rolled-steel channels to the flanges of a W250 3 80 wide-flange 
rolled-steel shape. Knowing that the beam is subjected to a vertical 
shear of 200 kN, determine (a) the horizontal shearing force per 
meter at each weld, (b) the shearing stress at point a of the flange 
of the wide-flange shape.

112 mm

a

Fig. P6.95
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432 Shearing Stresses in Beams 
and Thin-Walled Members

 6.96 An extruded beam has the cross section shown and a uniform wall 
thickness of 3 mm. For a vertical shear of 10 kN, determine (a) the 
shearing stress at point A, (b) the maximum shearing stress in the 
beam. Also sketch the shear flow in the cross section.

60 mm
A

30 mm

16 mm16 mm
28 mm

Fig. P6.96

 6.97 The design of a beam requires welding four horizontal plates to a 
vertical 0.5 3 5-in. plate as shown. For a vertical shear V, deter-
mine the dimension h for which the shear flow through the welded 
surfaces is maximum.

Fig. P6.97

2.5 in.

2.5 in.
h

h

0.5 in.

0.5 in.

4.5 in.4.5 in.
0.5 in.

 6.98 Determine the location of the shear center O of a thin-walled 
beam of uniform thickness having the cross section shown.

e

E F

O

A
a b

D B

h

G

Fig. P6.98
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433Review Problems 6.99 Determine the location of the shear center O of a thin-walled 
beam of uniform thickness having the cross section shown.

 6.100 A thin-walled beam of uniform thickness has the cross section 
shown. Determine the dimension b for which the shear center O 
of the cross section is located at the point indicated.

E

60�

60�
F

e

O A
D

B

in.1
4

1.5 in.

1.5 in.

Fig. P6.99

Fig. P6.100

A

D E

O160 mm 200 mm

20 mm

20 mm

b
60 mm

GF

H J

B
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COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

 6.C1 A timber beam is to be designed to support a distributed load and 
up to two concentrated loads as shown. One of the dimensions of its uniform 
rectangular cross section has been specified and the other is to be determined 
so that the maximum normal stress and the maximum shearing stress in the 
beam will not exceed given allowable values sall and tall. Measuring x from 
end A and using either SI or U.S. customary units, write a computer program 
to calculate for successive cross sections, from x 5 0 to x 5 L and using given 
increments Dx, the shear, the bending moment, and the smallest value of the 
unknown dimension that satisfies in that section (1) the allowable normal 
stress requirement, (2) the allowable shearing stress requirement. Use this 
program to solve Prob. 5.65 assuming sall 5 12 MPa and tall 5 825 kPa, using 
Dx 5 0.1 m.

 6.C2 A cantilever timber beam AB of length L and of uniform rectangular 
section shown supports a concentrated load P at its free end and a uniformly 
distributed load w along its entire length. Write a computer program to deter-
mine the length L and the width b of the beam for which both the maximum 
normal stress and the maximum shearing stress in the beam reach their largest 
allowable values. Assuming sall 5 1.8 ksi and tall 5 120 psi, use this program 
to determine the dimensions L and b when (a) P 5 1000 lb and w 5 0, 
(b) P 5 0 and w 5 12.5 lb/in., (c) P 5 500 lb and w 5 12.5 lb/in.

B

t

h
A

x1

x3

x2

x4

a bL

P1 w
P2

Fig. P6.C1

w

P

B

b

8 b

L

A

Fig. P6.C2

bn

b2

V

b1

hn

h2

h1

Fig. P6.C3

 6.C3 A beam having the cross section shown is subjected to a vertical 
shear V. Write a computer program that, for loads and dimensions expressed 
in either SI or U.S. customary units, can be used to calculate the shearing 
stress along the line between any two adjacent rectangular areas forming 
the cross section. Use this program to solve (a) Prob. 6.10, (b) Prob. 6.12, 
(c) Prob. 6.21.
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435Computer Problems 6.C4 A plate of uniform thickness t is bent as shown into a shape with 
a vertical plane of symmetry and is then used as a beam. Write a computer 
program that, for loads and dimensions expressed in either SI or U.S. cus-
tomary units, can be used to determine the distribution of shearing stresses 
caused by a vertical shear V. Use this program (a) to solve Prob. 6.47, (b) to 
find the shearing stress at a point E for the shape and load of Prob. 6.50, 
assuming a thickness t 5 1

4 in.

 6.C5 The cross section of an extruded beam is symmetric with respect 
to the x axis and consists of several straight segments as shown. Write a 
computer program that, for loads and dimensions expressed in either SI or 
U.S. customary units, can be used to determine (a) the location of the shear 
center O, (b) the distribution of shearing stresses caused by a vertical force 
applied at O. Use this program to solve Probs. 6.66 and 6.70.

 6.C6 A thin-walled beam has the cross section shown. Write a computer 
program that, for loads and dimensions expressed in either SI or U.S. cus-
tomary units, can be used to determine the location of the shear center O 
of the cross section. Use the program to solve Prob. 6.75.

y1

y

x

y2

x2

x1

xn

Fig. P6.C4

x2

x1

y1

t2 t1

yn tn

e

y2

O

V

y

x

Fig. P6.C5

O

b2

t0

t1

t2

ti

tn

an

ai

ai

an

a1

a1

a2

a2

e
bi

bn

Fig. P6.C6
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The aircraft shown is being tested to 

determine how the forces due to lift 

would be distributed over the wing. 

This chapter deals with stresses and 

strains in structures and machine 

components.
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Transformations of 
Stress and Strain
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Chapter 7 Transformations of 
Stress and Strain

 7.1 Introduction
 7.2 Transformation of Plane Stress
 7.3 Principal Stresses; Maximum 

Shearing Stress
 7.4 Mohr’s Circle for Plane Stress
 7.5 General State of Stress
 7.6 Application of Mohr’s Circle to 

the Three-Dimensional Analysis 
of Stress

 *7.7 Yield Criteria for Ductile 
Materials under Plane Stress

 *7.8 Fracture Criteria for Brittle 
Materials under Plane Stress

 7.9 Stresses in Thin-Walled Pressure 
Vessels

 *7.10 Transformation of Plane Strain
 *7.11 Mohr’s Circle for Plane Strain
 *7.12 Three-Dimensional Analysis of 

Strain
 *7.13 Measurements of Strain; Strain 

Rosette

7.1 INTRODUCTION
We saw in Sec. 1.12 that the most general state of stress at a given 
point Q may be represented by six components. Three of these com-
ponents, sx, sy, and sz, define the normal stresses exerted on the faces 
of a small cubic element centered at Q and of the same orientation as 
the coordinate axes (Fig. 7.1a), and the other three, txy, tyz, and tzx,† 
the components of the shearing stresses on the same element. As we 
remarked at the time, the same state of stress will be represented by 
a different set of components if the coordinate axes are rotated 
(Fig. 7.1b). We propose in the first part of this chapter to determine 
how the components of stress are transformed under a rotation of the 
coordinate axes. The second part of the chapter will be devoted to a 
similar analysis of the transformation of the components of strain.

 Our discussion of the transformation of stress will deal mainly 
with plane stress, i.e., with a situation in which two of the faces of 
the cubic element are free of any stress. If the z axis is chosen per-
pendicular to these faces, we have sz 5 tzx 5 tzy 5 0, and the only 
remaining stress components are sx, sy, and txy (Fig. 7.2). Such a 
situation occurs in a thin plate subjected to forces acting in the mid-
plane of the plate (Fig. 7.3). It also occurs on the free surface of a 
structural element or machine component, i.e., at any point of the 
surface of that element or component that is not subjected to an 
external force (Fig. 7.4).

†We recall that tyx 5 txy, tzy 5 tyz, and txz 5 tzx.

�yz
�yx

�xy

�xz
�zx

�zy

�y

�y'z'

�y'x'

�x'z'

�z'x'

�z'y'

�x'y'

�y'

�x'

�z

�x
Q

O

z

y

x

(a)

O

z
z'

y'
y

x

x'

(b)

�z'

Q

Fig. 7.1 General state of stress at a point.
�yx

�xy

�y

�x

Fig. 7.2 Plane stress.

F1

F2

F3

F4

F5

F6

Fig. 7.3 Example of plane stress.

F1

F2

Fig. 7.4 Example of plane stress.
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4397.1 Introduction

�xy

�x'y'

�y �y'

�x

�x'Q Q

z

x x

x'

y y'

z' � z

y
�

�

(a) (b)

Fig. 7.5 Transformation of stress.

 Considering in Sec. 7.2 a state of plane stress at a given point 
Q characterized by the stress components sx, sy, and txy associated 
with the element shown in Fig. 7.5a, you will learn to determine the 
components sx9, sy9, and tx9y9 associated with that element after it 
has been rotated through an angle u about the z axis (Fig. 7.5b). In 
Sec. 7.3, you will determine the value up of u for which the stresses 
sx9 and sy9 are, respectively, maximum and minimum; these values 
of the normal stress are the principal stresses at point Q, and the 
faces of the corresponding element define the principal planes of 
stress at that point. You will also determine the value us of the angle 
of rotation for which the shearing stress is maximum, as well as the 
value of that stress.

 In Sec. 7.4, an alternative method for the solution of problems 
involving the transformation of plane stress, based on the use of 
Mohr’s circle, will be presented.
 In Sec. 7.5, the three-dimensional state of stress at a given point 
will be considered and a formula for the determination of the normal 
stress on a plane of arbitrary orientation at that point will be devel-
oped. In Sec. 7.6, you will consider the rotations of a cubic element 
about each of the principal axes of stress and note that the corre-
sponding transformations of stress can be described by three differ-
ent Mohr’s circles. You will also observe that, in the case of a state 
of plane stress at a given point, the maximum value of the shearing 
stress obtained earlier by considering rotations in the plane of stress 
does not necessarily represent the maximum shearing stress at that 
point. This will bring you to distinguish between in-plane and out-
of-plane maximum shearing stresses.
 Yield criteria for ductile materials under plane stress will be 
developed in Sec. 7.7. To predict whether a material will yield at 
some critical point under given loading conditions, you will deter-
mine the principal stresses sa and sb at that point and check whether 
sa, sb, and the yield strength sY of the material satisfy some crite-
rion. Two criteria in common use are: the maximum-shearing-strength 
criterion and the maximum-distortion-energy criterion. In Sec. 7.8, 
fracture criteria for brittle materials under plane stress will be devel-
oped in a similar fashion; they will involve the principal stresses sa 
and sb at some critical point and the ultimate strength sU of the 
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440 Transformations of Stress and Strain material. Two criteria will be discussed: the maximum-normal-stress 
criterion and Mohr’s criterion.
 Thin-walled pressure vessels provide an important application 
of the analysis of plane stress. In Sec. 7.9, we will discuss stresses in 
both cylindrical and spherical pressure vessels (Photos 7.1 and 7.2).

Photo 7.1 
Cylindrical 
pressure vessel.

Photo 7.2 Spherical pressure vessel.

 Sections 7.10 and 7.11 will be devoted to a discussion of the 
transformation of plane strain and to Mohr’s circle for plane strain. 
In Sec. 7.12, we will consider the three-dimensional analysis of strain 
and see how Mohr’s circles can be used to determine the maximum 
shearing strain at a given point. Two particular cases are of special 
interest and should not be confused: the case of plane strain and the 
case of plane stress.
 Finally, in Sec. 7.13, we discuss the use of strain gages to mea-
sure the normal strain on the surface of a structural element or 
machine component. You will see how the components Px, Py, and 
gxy characterizing the state of strain at a given point can be computed 
from the measurements made with three strain gages forming a 
strain rosette.

7.2 TRANSFORMATION OF PLANE STRESS
Let us assume that a state of plane stress exists at point Q (with sz 5 
tzx 5 tzy 5 0), and that it is defined by the stress components sx, 
sy, and txy associated with the element shown in Fig. 7.5a. We pro-
pose to determine the stress components sx9, sy9, and tx9y9 associated 
with the element after it has been rotated through an angle u about 
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the z axis (Fig. 7.5b), and to express these components in terms of 
sx, sy, txy, and u.
 In order to determine the normal stress sx9 and the shearing 
stress tx9y9 exerted on the face perpendicular to the x9 axis, we con-
sider a prismatic element with faces respectively perpendicular to 
the x, y, and x9 axes (Fig. 7.6a). We observe that, if the area of the 

7.2 Transformation of Plane Stress

�xy

�x'y'

�y �y'

�x

�x'Q Q

z

x x

x'

y y'

z' � z

y
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�

(a) (b)

Fig. 7.5 (repeated )
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x
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y' y
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x

x'

y' y

(b)

(�A cos )�

(�A cos )�

�

�x'y' �A

�xy

(�A sin )��xy

�x' �A
�x

(�A sin )��y

Fig. 7.6

oblique face is denoted by DA, the areas of the vertical and horizon-
tal faces are respectively equal to DA cos u and DA sin u. It follows 
that the forces exerted on the three faces are as shown in Fig. 7.6b. 
(No forces are exerted on the triangular faces of the element, since 
the corresponding normal and shearing stresses have all been assumed 
equal to zero.) Using components along the x9 and y9 axes, we write 
the following equilibrium equations:

gFx¿ 5 0:  sx¿ 
¢A 2 sx1¢A cos u2 cos u 2 txy1¢A cos u2 sin u

 2sy1¢A sin u2 sin u 2 txy1¢A sin u2 cos u 5 0

gFy¿ 5 0:  tx¿y¿ ¢A 1 sx1¢A cos u2 sin u 2 txy1¢A cos u2 cos u
 2sy1¢A sin u2 cos u 1 txy1¢A sin u2 sin u 5 0
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442 Transformations of Stress and Strain Solving the first equation for sx9 and the second for tx9y9, we have

  sx¿ 5 sx cos2 u 1 sy sin2 u 1 2txy sin u cos u (7.1)

  tx¿y¿ 5 2 1sx 2 sy2 sin u cos u 1 txy1cos2 u 2 sin2 u 2 (7.2)

Recalling the trigonometric relations

 sin 2u 5 2 sin u cos u    cos 2u 5 cos2 u 2 sin2 u (7.3)

and

 
cos2 u 5

1 1 cos 2u
2

    sin2 u 5
1 2 cos 2u

2  
(7.4)

we write Eq. (7.1) as follows:

 sx¿ 5 sx 
1 1 cos 2u

2
1 sy 

1 2 cos 2u
2

1 txy sin 2u

or

 
sx¿ 5

sx 1 sy

2  1
sx 2 sy

2
 cos 2u 1 txy sin 2u

 
(7.5)

Using the relations (7.3), we write Eq. (7.2) as

 
tx¿y¿ 5 2 

sx 2 sy

2
 sin 2u 1 txy cos 2u

 
(7.6)

The expression for the normal stress sy9 is obtained by replacing u in 
Eq. (7.5) by the angle u 1 908 that the y9 axis forms with the x axis. 
Since cos (2u 1 1808) 5 2cos 2u and sin (2u 1 1808) 5 2sin 2u, we 
have

 
sy¿ 5

sx 1 sy

2
2
sx 2 sy

2
 cos 2u 2 txy sin 2u

 
(7.7)

 Adding Eqs. (7.5) and (7.7) member to member, we obtain

 sx¿ 1 sy¿ 5 sx 1 sy (7.8)

Since sz 5 sz9 5 0, we thus verify in the case of plane stress that 
the sum of the normal stresses exerted on a cubic element of mate-
rial is independent of the orientation of that element.†

†Cf. first footnote on page 97.
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4437.3  PRINCIPAL STRESSES; MAXIMUM 
SHEARING STRESS

The equations (7.5) and (7.6) obtained in the preceding section are 
the parametric equations of a circle. This means that, if we choose 
a set of rectangular axes and plot a point M of abscissa sx9 and ordi-
nate tx9y9 for any given value of the parameter u, all the points thus 
obtained will lie on a circle. To establish this property we eliminate 
u from Eqs. (7.5) and (7.6); this is done by first transposing (sx 1 sy)/2 
in Eq. (7.5) and squaring both members of the equation, then squar-
ing both members of Eq. (7.6), and finally adding member to mem-
ber the two equations obtained in this fashion. We have

 
asx¿ 2

sx 1 sy

2
b2

1 tx¿y¿
2 5 asx 2 sy

2
b2

1 txy
2

 
(7.9)

Setting

save 5
sx 1 sy

2
 and R 5 Ba

sx 2 sy

2
b2

1 txy
2

 
(7.10)

we write the identity (7.9) in the form

 1sx¿ 2 save22 1 tx¿y¿
2 5 R2 (7.11)

which is the equation of a circle of radius R centered at the point C 
of abscissa save and ordinate 0 (Fig. 7.7). It can be observed that, 
due to the symmetry of the circle about the horizontal axis, the same 
result would have been obtained if, instead of plotting M, we had 
plotted a point N of abscissa sx9 and ordinate 2tx9y9 (Fig. 7.8). This 
property will be used in Sec. 7.4.

7.3 Principal Stresses; Maximum 
Shearing Stress
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C
O

R
N

Fig. 7.8 Equivalent formation of stress 
transformation circle.

Fig. 7.7 Circular relationship of 
transformed stresses.

�x'y'

�x'y'

�x'

�x'

�min

�max

�ave

D

E

C
B AO

M
R

 The two points A and B where the circle of Fig. 7.7 intersects 
the horizontal axis are of special interest: Point A corresponds to the 
maximum value of the normal stress sx9, while point B corresponds 
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444 Transformations of Stress and Strain to its minimum value. Besides, both points correspond to a zero 
value of the shearing stress tx9y9. Thus, the values up of the parameter 
u which correspond to points A and B can be obtained by setting 
tx9y9 5 0 in Eq. (7.6). We write†

 
tan 2up 5

2txy

sx 2 sy 
(7.12)

This equation defines two values 2up that are 1808 apart, and thus 
two values up that are 908 apart. Either of these values can be used 
to determine the orientation of the corresponding element (Fig. 7.9). 

†This relation can also be obtained by differentiating sx9 in Eq. (7.5) and setting the 
derivative equal to zero: dsx9ydu 5 0.

�min

�min

�max

�max

�p

�p

y

Q x

y'

x'

Fig. 7.9 Principal stresses.

The planes containing the faces of the element obtained in this way 
are called the principal planes of stress at point Q, and the corre-
sponding values smax and smin of the normal stress exerted on these 
planes are called the principal stresses at Q. Since the two values up 
defined by Eq. (7.12) were obtained by setting tx9y9 5 0 in Eq. (7.6), 
it is clear that no shearing stress is exerted on the principal planes.
 We observe from Fig. 7.7 that

 smax 5 save 1 R   and   smin 5 save 2 R (7.13)

Substituting for save and R from Eq. (7.10), we write

 
smax, min 5

sx 1 sy

2
6 Ba

sx 2 sy

2
b2

1 txy
2

 
(7.14)

Unless it is possible to tell by inspection which of the two principal 
planes is subjected to smax and which is subjected to smin, it is neces-
sary to substitute one of the values up into Eq. (7.5) in order to 
determine which of the two corresponds to the maximum value of 
the normal stress.
 Referring again to the circle of Fig. 7.7, we note that the points 
D and E located on the vertical diameter of the circle correspond to 
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445the largest numerical value of the shearing stress tx9y9. Since the abscissa 
of points D and E is save 5 (sx 1 sy)y2, the values us of the param-
eter u corresponding to these points are obtained by setting sx9 5 
(sx 1 sy)y2 in Eq. (7.5). It follows that the sum of the last two terms 
in that equation must be zero. Thus, for u 5 us, we write†

sx 2 sy

2
 cos 2us 1 txy sin 2us 5 0

or

 tan 2us 5 2  

sx 2 sy

2txy
 (7.15)

This equation defines two values 2us that are 1808 apart, and thus 
two values us that are 908 apart. Either of these values can be used 
to determine the orientation of the element corresponding to the 
maximum shearing stress (Fig. 7.10). Observing from Fig. 7.7 that 
the maximum value of the shearing stress is equal to the radius R of 
the circle, and recalling the second of Eqs. (7.10), we write

 
tmax 5 Ba

sx 2 sy

2
b2

1 txy
2

 
(7.16)

As observed earlier, the normal stress corresponding to the condition 
of maximum shearing stress is

 
s ¿ 5 save 5

sx 1 sy

2  
(7.17)

 Comparing Eqs. (7.12) and (7.15), we note that tan 2us is 
the negative reciprocal of tan 2up. This means that the angles 2us 
and 2up are 908 apart and, therefore, that the angles us and up 
are 458 apart. We thus conclude that the planes of maximum shear-
ing stress are at 458 to the principal planes. This confirms the 
results obtained earlier in Sec. 1.12 in the case of a centric axial 
loading (Fig. 1.38) and in Sec. 3.4 in the case of a torsional loading 
(Fig. 3.19.)
 We should be aware that our analysis of the transformation of 
plane stress has been limited to rotations in the plane of stress. If 
the cubic element of Fig. 7.5 is rotated about an axis other than the 
z axis, its faces may be subjected to shearing stresses larger than the 
stress defined by Eq. (7.16). As you will see in Sec. 7.5, this occurs 
when the principal stresses defined by Eq. (7.14) have the same sign, 
i.e., when they are either both tensile or both compressive. In such 
cases, the value given by Eq. (7.16) is referred to as the maximum 
in-plane shearing stress.

†This relation may also be obtained by differentiating tx9y9 in Eq. (7.6) and setting the 
derivative equal to zero: dtx9y9ydu 5 0.

�max

�max

�

�s

�s

y

Q x

x'

y'

'
� '

� '

� '

Fig. 7.10 Maximum shearing 
stress.

7.3 Principal Stresses; Maximum 
Shearing Stress
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446

For the state of plane stress shown in Fig. 7.11, determine (a) the prin-
cipal planes, (b) the principal stresses, (c) the maximum shearing stress 
and the corresponding normal stress.

 (a) Principal Planes. Following the usual sign convention, we 
write the stress components as

sx 5 150 MPa    sy 5 210 MPa    txy 5 140 MPa

Substituting into Eq. (7.12), we have

 tan 2up 5
2txy

sx 2 sy
5

2 1140 2
50 2 1210 2 5

80
60

 2up 5 53.1°    and    180° 1 53.1° 5 233.1°
 up 5 26.6°    and    116.6°

 (b) Principal Stresses. Formula (7.14) yields

 smax, min 5
sx 1 sy

2
6 Ba

sx 2 sy

2
b2

1 txy
2

 5 20 6 2 130 22 1 140 22
 smax 5 20 1 50 5 70 MPa
 smin 5 20 2 50 5 230 MPa

The principal planes and principal stresses are sketched in Fig. 7.12. Mak-
ing u 5 26.68 in Eq. (7.5), we check that the normal stress exerted on 
face BC of the element is the maximum stress:

 sx¿ 5
50 2 10

2
1

50 1 10
2

 cos 53.1° 1 40 sin 53.1°

 5 20 1 30 cos 53.1° 1 40 sin 53.1° 5 70 MPa 5 smax

 (c) Maximum Shearing Stress. Formula (7.16) yields

tmax 5 Ba
sx 2 sy

2
b2

1 txy
2 5 2 130 22 1 140 22 5 50 MPa

Since smax and smin have opposite signs, the value obtained for tmax 
actually represents the maximum value of the shearing stress at the point 
considered. The orientation of the planes of maximum shearing stress and 
the sense of the shearing stresses are best determined by passing a section 
along the diagonal plane AC of the element of Fig. 7.12. Since the faces 
AB and BC of the element are contained in the principal planes, the 
diagonal plane AC must be one of the planes of maximum shearing stress 
(Fig. 7.13). Furthermore, the equilibrium conditions for the prismatic 
element ABC require that the shearing stress exerted on AC be directed 
as shown. The cubic element corresponding to the maximum shearing 
stress is shown in Fig. 7.14. The normal stress on each of the four faces 
of the element is given by Eq. (7.17):

s ¿ 5 save 5
sx 1 sy

2
5

50 2 10
2

5 20 MPa

EXAMPLE 7.01

10 MPa

40 MPa

50 MPa

Fig. 7.11

�min � 30 MPa

�max � 70 MPa

 �p
x

� 26.6�A

B

C

Fig. 7.12

�

�

min

�max

'

�max

 �p � 26.6�

�s �p� �� 45�

45�

�18.4�

A

C

B

Fig. 7.13

'�

�max

x
�p � �18.4�

� 20 MPa

'� � 20 MPa

� 50 MPa

Fig. 7.14
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SAMPLE PROBLEM 7.1

A single horizontal force P of magnitude 150 lb is applied to end D of lever 
ABD. Knowing that portion AB of the lever has a diameter of 1.2 in., deter-
mine (a) the normal and shearing stresses on an element located at point H 
and having sides parallel to the x and y axes, (b) the principal planes and the 
principal stresses at point H.

SOLUTION

 Force-Couple System. We replace the force P by an equivalent force-
couple system at the center C of the transverse section containing point H:

 P 5 150 lb    T 5 1150 lb2 118 in.2 5 2.7 kip ? in.
 Mx 5 1150 lb2 110 in.2 5 1.5 kip ? in.

 a. Stresses Sx, Sy, Txy at Point H. Using the sign convention shown 
in Fig. 7.2, we determine the sense and the sign of each stress component 
by carefully examining the sketch of the force-couple system at point C:

sx 5 0   sy 5 1
Mc
I

5 1
11.5 kip ? in.2 10.6 in.2

1
4p 10.6 in.24   sy 5 18.84 ksi  b

 
 txy 5 1

Tc
J

5 1
12.7 kip ? in.2 10.6 in.2

1
2p 10.6 in.24      txy 5 17.96 ksi  b

We note that the shearing force P does not cause any shearing stress at 
point H.

 b. Principal Planes and Principal Stresses. Substituting the values of 
the stress components into Eq. (7.12), we determine the orientation of the 
principal planes:

 tan 2up 5
2txy

sx 2 sy
5

2 17.96 2
0 2 8.84

5 21.80

 2up 5 261.0°    and    180° 2 61.0° 5 1119°
up 5 230.5°    and    159.5°  b

Substituting into Eq. (7.14), we determine the magnitudes of the principal 
stresses:

 smax, min 5
sx 1 sy

2
6 Ba

sx 2 sy

2
b2

1 txy
2

 5
0 1 8.84

2
6 Ba0 2 8.84

2
b2

1 17.96 22 5 14.42 6 9.10

smax 5 113.52 ksi  b

smin 5 24.68 ksi  b

Considering face ab of the element shown, we make up 5 230.58 in Eq. (7.5) 
and find sx9 5 24.68 ksi. We conclude that the principal stresses are as 
shown.

Mx � 1.5 kip · in.

T � 2.7 kip · in.

H

xz

y

C

P � 150 lb

�y

�x

�xy

�xy � 7.96 ksi

�y � 8.84 ksi

�x � 0

�p � �30.5�

�max � 13.52 ksi

�min � 4.68 ksi

H
a

b

18 in.

1.2 in.
H

A

D

B

y

z

x

10 in.

4 in. P

447
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PROBLEMS

448

 7.5 through 7.8 For the given state of stress, determine (a) the 
principal planes, (b) the principal stresses.

 7.9 through 7.12 For the given state of stress, determine (a) the 
orientation of the planes of maximum in-plane shearing stress, 
(b) the maximum in-plane shearing stress, (c) the corresponding 
normal stress.

 7.1 through 7.4 For the given state of stress, determine the normal 
and shearing stresses exerted on the oblique face of the shaded tri-
angular element shown. Use a method of analysis based on the equi-
librium of that element, as was done in the derivations of Sec. 7.2.

10 ksi

15 ksi

60�

Fig. P7.1

80 MPa

40 MPa

55�

Fig. P7.2

6 ksi

60�

5 ksi

Fig. P7.3

45 MPa

27 MPa75�

18 MPa

Fig. P7.4

40 MPa

35 MPa

60 MPa

Fig. P7.5 and P7.9

12 ksi

15 ksi

4 ksi

Fig. P7.7 and P7.11

12 ksi

5 ksi

8 ksi

Fig. P7.8 and P7.12

50 MPa

10 MPa

15 MPa

Fig. P7.6 and P7.10

 7.13 through 7.16 For the given state of stress, determine the nor-
mal and shearing stresses after the element shown has been rotated 
through (a) 258 clockwise, (b) 108 counterclockwise.

90 MPa

30 MPa

60 MPa

Fig. P7.14

80 MPa

50 MPa

Fig. P7.16

12 ksi

6 ksi

8 ksi

Fig. P7.15

8 ksi

5 ksi

Fig. P7.13
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449Problems

 7.19 A steel pipe of 12-in. outer diameter is fabricated from 1
4-in.-thick 

plate by welding along a helix that forms an angle of 22.58 with a 
plane perpendicular to the axis of the pipe. Knowing that a 40-kip 
axial force P and an 80-kip ? in. torque T, each directed as shown, 
are applied to the pipe, determine s and t in directions, respec-
tively, normal and tangential to the weld.

 7.20 Two members of uniform cross section 50 3 80 mm are glued 
together along plane a-a that forms an angle of 258 with the hori-
zontal. Knowing that the allowable stresses for the glued joint are 
s 5 800 kPa and t 5 600 kPa, determine the largest centric load 
P that can be applied.

 7.17 and 7.18 The grain of a wooden member forms an angle of 158 
with the vertical. For the state of stress shown, determine (a) the 
in-plane shearing stress parallel to the grain, (b) the normal stress 
perpendicular to the grain.

400 psi

15�

Fig. P7.18

1.6 MPa

4 MPa

15�

Fig. P7.17

22.5°

in.1
4

P

T

Weld

Fig. P7.19

P

a 25�

50 mm

a

Fig. P7.20

100 kN �

100 kN

80 mm

Fig. P7.21 and P7.22

 7.21 Two steel plates of uniform cross section 10 3 80 mm are welded 
together as shown. Knowing that centric 100-kN forces are applied 
to the welded plates and that b 5 258, determine (a) the in-plane 
shearing stress parallel to the weld, (b) the normal stress perpen-
dicular to the weld.

 7.22 Two steel plates of uniform cross section 10 3 80 mm are welded 
together as shown. Knowing that centric 100-kN forces are applied 
to the welded plates and that the in-plane shearing stress parallel 
to the weld is 30 MPa, determine (a) the angle b, (b) the corre-
sponding normal stress perpendicular to the weld.
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450 Transformations of Stress and Strain

 7.25 The steel pipe AB has a 102-mm outer diameter and a 6-mm wall 
thickness. Knowing that arm CD is rigidly attached to the pipe, 
determine the principal stresses and the maximum shearing stress 
at point K.

 7.23 A 400-lb vertical force is applied at D to a gear attached to the 
solid 1-in. diameter shaft AB. Determine the principal stresses and 
the maximum shearing stress at point H located as shown on top 
of the shaft.

 7.24 A mechanic uses a crowfoot wrench to loosen a bolt at E. Knowing 
that the mechanic applies a vertical 24-lb force at A, determine the 
principal stresses and the maximum shearing stress at point H 
located as shown on top of the 3

4-in. diameter shaft.

6 in.

2 in.
D

A

B
H

C

400 lb

Fig. P7.23

24 lb

10 in.

6 in.E

B

A

H

Fig. P7.24

200 mm

6 mm

150 mm

51 mm

z x

T

A

y

D

KH

10 kN

A

B

C

Fig. P7.25

 7.26 The axle of an automobile is acted upon by the forces and couple 
shown. Knowing that the diameter of the solid axle is 32 mm, 
determine (a) the principal planes and principal stresses at point 
H located on top of the axle, (b) the maximum shearing stress at 
the same point.

3 kN

3 kN

350 N · m

0.15 m
H

0.2 m

Fig. P7.26
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451Problems

 7.30 For the state of plane stress shown, determine (a) the value of txy 
for which the in-plane shearing stress parallel to the weld is zero, 
(b) the corresponding principal stresses.

 7.27 For the state of plane stress shown, determine (a) the largest value 
of txy for which the maximum in-plane shearing stress is equal to 
or less than 12 ksi, (b) the corresponding principal stresses.

8 ksi

10 ksi

�xy

Fig. P7.27

60 MPa

20 MPa

�y

Fig. P7.28

15 ksi

8 ksi

�x

Fig. P7.29

�xy

12 MPa

2 MPa

75�

Fig. P7.30

 7.28 For the state of plane stress shown, determine the largest value of 
sy for which the maximum in-plane shearing stress is equal to or 
less than 75 MPa.

 7.29 Determine the range of values of sx for which the maximum in-
plane shearing stress is equal to or less than 10 ksi.
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452 Transformations of Stress and Strain 7.4 MOHR’S CIRCLE FOR PLANE STRESS
The circle used in the preceding section to derive some of the basic 
formulas relating to the transformation of plane stress was first 
introduced by the German engineer Otto Mohr (1835–1918) and is 
known as Mohr’s circle for plane stress. As you will see presently, 
this circle can be used to obtain an alternative method for the solu-
tion of the various problems considered in Secs. 7.2 and 7.3. This 
method is based on simple geometric considerations and does not 
require the use of specialized formulas. While originally designed 
for graphical solutions, it lends itself well to the use of a 
calculator.
 Consider a square element of a material subjected to plane 
stress (Fig. 7.15a), and let sx, sy, and txy be the components of the 
stress exerted on the element. We plot a point X of coordinates sx 
and 2txy, and a point Y of coordinates sy and 1txy (Fig. 7.15b). If 
txy is positive, as assumed in Fig. 7.15a, point X is located below the 
s axis and point Y above, as shown in Fig. 7.15b. If txy is negative, 
X is located above the s axis and Y below. Joining X and Y by a 
straight line, we define the point C of intersection of line XY with 
the s axis and draw the circle of center C and diameter XY. Noting 
that the abscissa of C and the radius of the circle are respectively 
equal to the quantities save and R defined by Eqs. (7.10), we con-
clude that the circle obtained is Mohr’s circle for plane stress. Thus 
the abscissas of points A and B where the circle intersects the s axis 
represent respectively the principal stresses smax and smin at the 
point considered.
 We also note that, since tan (XCA) 5 2txyy(sx 2 sy), the angle 
XCA is equal in magnitude to one of the angles 2up that satisfy Eq. 
(7.12). Thus, the angle up that defines in Fig. 7.15a the orientation 
of the principal plane corresponding to point A in Fig. 7.15b can be 
obtained by dividing in half the angle XCA measured on Mohr’s cir-
cle. We further observe that if sx . sy and txy . 0, as in the case 
considered here, the rotation that brings CX into CA is counterclock-
wise. But, in that case, the angle up obtained from Eq. (7.12) and 
defining the direction of the normal Oa to the principal plane is 
positive; thus, the rotation bringing Ox into Oa is also counterclock-
wise. We conclude that the senses of rotation in both parts of Fig. 7.15 
are the same; if a counterclockwise rotation through 2up is required 
to bring CX into CA on Mohr’s circle, a counterclockwise rotation 
through up will bring Ox into Oa in Fig. 7.15a.†
 Since Mohr’s circle is uniquely defined, the same circle can be 
obtained by considering the stress components sx9, sy9, and tx9y9, cor-
responding to the x9 and y9 axes shown in Fig. 7.16a. The point X9 of 
coordinates sx9 and 2tx9y9, and the point Y9 of coordinates sy9 and 
1tx9y9, are therefore located on Mohr’s circle, and the angle X9CA in 
Fig. 7.16b must be equal to twice the angle x9Oa in Fig. 7.16a. Since, 
as noted before, the angle XCA is twice the angle xOa, it follows that 

†This is due to the fact that we are using the circle of Fig 7.8 rather than the circle of 
Fig. 7.7 as Mohr’s circle.

�p

�y �max �max

�min

�min�x

�xy

O x

a

b

y

(a)

Fig. 7.15 Mohr’s circle.
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�

�
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(b)

O
B A
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�
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453the angle XCX9 in Fig. 7.16b is twice the angle xOx9 in Fig. 7.16a. Thus 
the diameter X9Y9 defining the normal and shearing stresses sx9, sy9, 
and tx9y9 can be obtained by rotating the diameter XY through an angle 
equal to twice the angle u formed by the x9and x axes in Fig. 7.16a. 
We note that the rotation that brings the diameter XY into the diameter 
X9Y9 in Fig. 7.16b has the same sense as the rotation that brings the 
xy axes into the x9y9 axes in Fig. 7.16a.

7.4 Mohr’s Circle for Plane Stress

�y

�x

�xy

O

�
��y'

�x'

y'

x'

�max

�min

�

�

x'y'

x

2

a

b

y

(a) (b)

Y'

X

ABO C

Y

,�

�

y' �x'y
( ')

X' ,�x' �x'y�( ')

Fig. 7.16

 The property we have just indicated can be used to verify the 
fact that the planes of maximum shearing stress are at 458 to the 
principal planes. Indeed, we recall that points D and E on Mohr’s 
circle correspond to the planes of maximum shearing stress, while A 
and B correspond to the principal planes (Fig. 7.17b). Since the 
diameters AB and DE of Mohr’s circle are at 908 to each other, it 
follows that the faces of the corresponding elements are at 458 to 
each other (Fig. 7.17a).

�ave� '
� '

�

�

'

(a) (b)

O

O

B C A

D

E

�max

�min

�

�

max

�max

45�
90�

�

b

d

a

e

Fig. 7.17
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454 Transformations of Stress and Strain  The construction of Mohr’s circle for plane stress is greatly simpli-
fied if we consider separately each face of the element used to define 
the stress components. From Figs. 7.15 and 7.16 we observe that, when 
the shearing stress exerted on a given face tends to rotate the element 
clockwise, the point on Mohr’s circle corresponding to that face is 
located above the s axis. When the shearing stress on a given face tends 
to rotate the element counterclockwise, the point corresponding to that 
face is located below the s axis (Fig. 7.18).† As far as the normal 
stresses are concerned, the usual convention holds, i.e., a tensile stress 
is considered as positive and is plotted to the right, while a compressive 
stress is considered as negative and is plotted to the left.

�

�

�

�

(a) Clockwise Above

�

�

(b) Counterclockwise Below

��

Fig. 7.18 Convention for plotting shearing stress on Mohr’s circle.

†The following jingle is helpful in remembering this convention. “In the kitchen, the clock 
is above, and the counter is below.”

B
G

Y

C F A (MPa)

(MPa)

O

R

X

(b)

40

20

10

50

40

�

�

�

EXAMPLE 7.02 For the state of plane stress already considered in Example 7.01, 
(a) construct Mohr’s circle, (b) determine the principal stresses, 
(c) determine the maximum shearing stress and the corresponding normal 
stress.

 (a) Construction of Mohr’s Circle. We note from Fig. 7.19a that 
the normal stress exerted on the face oriented toward the x axis is 
tensile (positive) and that the shearing stress exerted on that face tends 
to rotate the element counterclockwise. Point X of Mohr’s circle, there-
fore, will be plotted to the right of the vertical axis and below the hori-
zontal axis (Fig. 7.19b). A similar inspection of the normal stress and 
shearing stress exerted on the upper face of the element shows that 
point Y should be plotted to the left of the vertical axis and above the 
horizontal axis. Drawing the line XY, we obtain the center C of Mohr’s 
circle; its abscissa is

save 5
sx 1 sy

2
5

50 1 1210 2
2

5 20 MPa

Since the sides of the shaded triangle are

CF 5 50 2 20 5 30 MPa    and    FX 5 40 MPa

the radius of the circle is

R 5 CX 5 2 130 22 1 140 22 5 50 MPa

O x

y

10 MPa
40 MPa

50 MPa

(a)

Fig. 7.19
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 (b) Principal Planes and Principal Stresses. The principal 
stresses are

 smax 5 OA 5 OC 1 CA 5 20 1 50 5 70 MPa  

 smin 5 OB 5 OC 2 BC 5 20 2 50 5 230 MPa

Recalling that the angle ACX represents 2up (Fig. 7.19b), we write

tan 2 up 5
FX
CF

5
40
30

2 up 5 53.1°    up 5 26.6°

Since the rotation which brings CX into CA in Fig. 7.20b is counterclock-
wise, the rotation that brings Ox into the axis Oa corresponding to smax 
in Fig. 7.20a is also counterclockwise.

 (c) Maximum Shearing Stress. Since a further rotation of 908 
counterclockwise brings CA into CD in Fig. 7.20b, a further rotation of 
458 counterclockwise will bring the axis Oa into the axis Od corresponding 
to the maximum shearing stress in Fig. 7.20a. We note from Fig. 7.20b 
that tmax 5 R 5 50 MPa and that the corresponding normal stress is s9 5 
save 5 20 MPa. Since point D is located above the s axis in Fig. 7.20b, 
the shearing stresses exerted on the faces perpendicular to Od in Fig. 7.20a 
must be directed so that they will tend to rotate the element clockwise.

O

B

Y

C

D

A
(MPa)

(MPa)

O

X

(b)

max

�

�

�

�

� 50

p� � 53.1°2

90�

R � 50E

�  70max�
�  � 30min �

  �   ave � 20'� � 

p�

45�

� 70 MPamax�

�  50 MPamax�

�  30 MPamin�

  �  20 MPa'�   �  20 MPa'� 

x

y

b

a

(a)

e

d

Fig. 7.20
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456 Transformations of Stress and Strain  Mohr’s circle provides a convenient way of checking the results 
obtained earlier for stresses under a centric axial loading (Sec. 1.12) 
and under a torsional loading (Sec. 3.4). In the first case (Fig. 7.21a), 
we have sx 5 PyA, sy 5 0, and txy 5 0. The corresponding points 
X and Y define a circle of radius R 5 Py2A that passes through the 

origin of coordinates (Fig. 7.21b). Points D and E yield the orienta-
tion of the planes of maximum shearing stress (Fig. 7.21c), as well 
as the values of tmax and of the corresponding normal stresses s9:

 
tmax 5 s ¿ 5 R 5

P
2 A  

(7.18)

 In the case of torsion (Fig. 7.22a), we have sx 5 sy 5 0 and 
txy 5 tmax 5 TcyJ. Points X and Y, therefore, are located on the t axis, 

and Mohr’s circle is a circle of radius R 5 TcyJ centered at the origin 
(Fig. 7.22b). Points A and B define the principal planes (Fig. 7.22c) 
and the principal stresses:

 
smax, min 5 6 R 5 6  

Tc
J  

(7.19)

P'

x � P/A

D

E

C
Y

x

y e d

X
R

�

�x�

(b)(a) (c)

�

PP' '� 

max�

P

Fig. 7.21 Mohr’s circle for centric axial loading. 
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Fig. 7.22 Mohr’s circle for torsional loading.
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SAMPLE PROBLEM 7.2

For the state of plane stress shown, determine (a) the principal planes and 
the principal stresses, (b) the stress components exerted on the element 
obtained by rotating the given element counterclockwise through 308.

SOLUTION

 Construction of Mohr’s Circle. We note that on a face perpendicular 
to the x axis, the normal stress is tensile and the shearing stress tends to rotate 
the element clockwise; thus, we plot X at a point 100 units to the right of 
the vertical axis and 48 units above the horizontal axis. In a similar fashion, we 
examine the stress components on the upper face and plot point Y(60, 248). 
Joining points X and Y by a straight line, we define the center C of Mohr’s 
circle. The abscissa of C, which represents save, and the radius R of the circle 
can be measured directly or calculated as follows:

save 5 OC 5 1
2 1sx 1 sy2 5 1

2 1100 1 60 2 5 80 MPa

R 5 2 1CF 22 1 1FX 22 5 2 120 22 1 148 22 5 52 MPa

 a. Principal Planes and Principal Stresses. We rotate the diameter 
XY clockwise through 2up until it coincides with the diameter AB. We have

tan 2up 5
XF
CF

5
48
20

5 2.4  2up 5 67.4° i  up 5 33.7° i  b

The principal stresses are represented by the abscissas of points A and B:

 smax 5 OA 5 OC 1 CA 5 80 1 52 smax 5 1132 MPa  b

 smin 5 OB 5 OC 2 BC 5 80 2 52 smin 5 1 28 MPa  b

Since the rotation that brings XY into AB is clockwise, the rotation that 
brings Ox into the axis Oa corresponding to smax is also clockwise; we obtain 
the orientation shown for the principal planes.

 b. Stress Components on Element Rotated 308 l. Points X9 and Y9 
on Mohr’s circle that correspond to the stress components on the rotated 
element are obtained by rotating X Y counterclockwise through 2u 5 608. 
We find

 f 5 180° 2 60° 2 67.4° f 5 52.6°  b

 sx¿ 5 OK 5 OC 2 KC 5 80 2 52 cos 52.6° sx¿ 5 1 48.4 MPa  b

 sy¿ 5 OL 5 OC 1 CL 5 80 1 52 cos 52.6° sy¿ 5 1111.6 MPa  b

 tx¿y¿ 5 K  X ¿ 5 52 sin 52.6° tx¿y¿ 5 41.3 MPa  b

Since X9 is located above the horizontal axis, the shearing stress on the face 
perpendicular to O x9 tends to rotate the element clockwise.

xO
p � 33.7��

min � 28 MPa�

max � 132 MPa

a

�

2 � 60�

�

O B
K

X

LC A

Y
Y'

�  (MPa)

 � 180� � 60� � 67.4� �

�

�

 � 52.6��

�
2 p � 67.4��

(MPa)

X'�x'

�y'

�x'y'

xO
 � 30��

�y' � 111.6 MPa

�x' � 48.4 MPa

�x'y' � 41.3 MPa

x'

2

�

O B

X(100, 48)

R

F
C

Y(60, �48)

A �  (MPa)

min �
28 MPa
� m �

52 MPa
�

ave � 80 MPa�

p�

max � 132 MPa�

(MPa)

60 MPa

100 MPa

48 MPa

y

x
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SAMPLE PROBLEM 7.3

A state of plane stress consists of a tensile stress s0 5 8 ksi exerted on verti-
cal surfaces and of unknown shearing stresses. Determine (a) the magnitude 
of the shearing stress t0 for which the largest normal stress is 10 ksi, (b) the 
corresponding maximum shearing stress.

SOLUTION

 Construction of Mohr’s Circle. We assume that the shearing stresses 
act in the senses shown. Thus, the shearing stress t0 on a face perpendicular 
to the x axis tends to rotate the element clockwise and we plot the point X 
of coordinates 8 ksi and t0 above the horizontal axis. Considering a horizontal 
face of the element, we observe that sy 5 0 and that t0 tends to rotate the 
element counterclockwise; thus, we plot point Y at a distance t0 below O.
 We note that the abscissa of the center C of Mohr’s circle is

save 5 1
2 1sx 1 sy2 5 1

2 18 1 0 2 5 4 ksi

The radius R of the circle is determined by observing that the maximum 
normal stress, smax 5 10 ksi, is represented by the abscissa of point A 
and writing

 smax 5 save 1 R
 10 ksi 5 4 ksi 1 R    R 5 6 ksi

 a. Shearing Stress t0. Considering the right triangle CFX, we find

cos 2 up 5
CF
CX

5
CF
R

5
4 ksi
6 ksi

  2 up 5 48.2° i   up 5 24.1° i

 t0 5 FX 5 R sin 2 up 5 16 ksi2 sin 48.2° t0 5 4.47 ksi  b

 b. Maximum Shearing Stress. The coordinates of point D of Mohr’s 
circle represent the maximum shearing stress and the corresponding normal 
stress.

 tmax 5 R 5 6 ksi  tmax 5 6 ksi  b

 2 us 5 90° 2 2 up 5 90° 2 48.2° 5 41.8° l    ux 5 20.9° l

The maximum shearing stress is exerted on an element that is oriented as 
shown in Fig. a. (The element upon which the principal stresses are exerted 
is also shown.)

 Note. If our original assumption regarding the sense of t0 was 
reversed, we would obtain the same circle and the same answers, but the 
orientation of the elements would be as shown in Fig. b.

�0 �0 � 8 ksi
�0

�0

y

xO

�

2 p�

2

2 ksi

s�

(ksi)�

min ��

4 ksi 4 ksi

8 ksi
ave ��

max � 10 ksi�

D

R

CO

E

Y

F A

X

B

0�

0�
max�

(ksi)

x

d

a

O

s� 20.9��

p� 24.1��

0�
0�

�ave � 4 ksi

�max � 6 ksi

�min � 2 ksi

�max � 10 ksi
(a)

xO
24.1�

20.9�

0�
0�

�min � 2 ksi

�max � 10 ksi

�max � 6 ksi

�ave � 4 ksi
(b)
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PROBLEMS
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  7.31 Solve Probs. 7.5 and 7.9, using Mohr’s circle.

 7.32 Solve Probs. 7.7 and 7.11, using Mohr’s circle.

 7.33 Solve Prob. 7.10, using Mohr’s circle.

 7.34 Solve Prob. 7.12, using Mohr’s circle.

 7.35 Solve Prob. 7.13, using Mohr’s circle.

7.36 Solve Prob. 7.14, using Mohr’s circle.

 7.37 Solve Prob. 7.15, using Mohr’s circle.

7.38 Solve Prob. 7.16, using Mohr’s circle.

 7.39 Solve Prob. 7.17, using Mohr’s circle.

 7.40 Solve Prob. 7.18, using Mohr’s circle.

 7.41 Solve Prob. 7.19, using Mohr’s circle.

7.42 Solve Prob. 7.20, using Mohr’s circle.

 7.43 Solve Prob. 7.21, using Mohr’s circle.

7.44 Solve Prob. 7.22, using Mohr’s circle.

 7.45 Solve Prob. 7.23, using Mohr’s circle.

 7.46 Solve Prob. 7.24, using Mohr’s circle.

 7.47 Solve Prob. 7.25, using Mohr’s circle.

 7.48 Solve Prob. 7.26, using Mohr’s circle.

7.49 Solve Prob. 7.27, using Mohr’s circle.

 7.50 Solve Prob. 7.28, using Mohr’s circle.

7.51 Solve Prob. 7.29, using Mohr’s circle.

 7.52 Solve Prob. 7.30, using Mohr’s circle.

 7.53 Solve Prob. 7.30, using Mohr’s circle and assuming that the weld 
forms an angle of 608 with the horizontal.
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460 Transformations of Stress and Strain  7.54 and 7.55 Determine the principal planes and the principal 
stresses for the state of plane stress resulting from the superposi-
tion of the two states of stress shown.

7 ksi

4 ksi

6 ksi

4 ksi

45�

+

Fig. P7.54

25 MPa
40 MPa

35 MPa
30�

+

Fig. P7.55

 7.56 and 7.57 Determine the principal planes and the principal 
stresses for the state of plane stress resulting from the superposi-
tion of the two states of stress shown.

�

�0

�0 +
Fig. P7.56

�0

�0

30�

+

Fig. P7.57
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461Problems

 7.60 For the state of stress shown, determine the range of values of u 
for which the normal stress sx9 is equal to or less than 100 MPa.

 7.61 For the element shown, determine the range of values of txy for 
which the maximum tensile stress is equal to or less than 60 MPa.

 7.58 For the state of stress shown, determine the range of values of u 
for which the magnitude of the shearing stress tx9y9 is equal to or 
less than 8 ksi.

 7.59 For the state of stress shown, determine the range of values of u 
for which the normal stress sx9 is equal to or less than 50 MPa.

�y'

�x'

�x'y'

16 ksi

6 ksi

�

Fig. P7.58

90 MPa

60 MPa

�y'

�x'

�x'y'

�

Fig. P7.59 and P7.60 

�xy

120 MPa

20 MPa

Fig. P7.61 and P7.62

 7.62 For the element shown, determine the range of values of txy for 
which the maximum in-plane shearing stress is equal to or less than 
150 MPa.

 7.63 For the state of stress shown it is known that the normal and shear-
ing stresses are directed as shown and that sx 5 14 ksi, sy 5 9 ksi, 
and smin 5 5 ksi. Determine (a) the orientation of the principal 
planes, (b) the principal stress smax, (c) the maximum in-plane 
shearing stress.

�xy

�y

�x

Fig. P7.63
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 7.64 The Mohr’s circle shown corresponds to the state of stress given 
in Fig. 7.5a and b. Noting that sx9 5 OC 1 (CX9) cos (2up 2 2u) 
and that tx9y9 5 (CX9) sin (2up 2 2u), derive the expressions for sx9 
and tx9y9 given in Eqs. (7.5) and (7.6), respectively. [Hint: Use 
sin (A 1 B) 5 sin A cos B 1 cos A sin B and cos (A 1 B) 5 cos A 
cos B 2 sin A sin B.]

�x'y'
�xy

�y

�y'

�x'

�x

�

X'

Y

Y'

O
C

X

�

2 p�

2�

Fig. P7.64

 7.65 (a) Prove that the expression sx9sy9 2 t2
x9y9, where sx9, sy9, and tx9y9 

are components of the stress along the rectangular axes x9 and y9, is 
independent of the orientation of these axes. Also, show that the 
given expression represents the square of the tangent drawn from 
the origin of the coordinates to Mohr’s circle. (b) Using the invari-
ance property established in part a, express the shearing stress txy 
in terms of sx, sy, and the principal stresses smax and smin.

7.5 GENERAL STATE OF STRESS
In the preceding sections, we have assumed a state of plane stress 
with sz 5 tzx 5 tzy 5 0, and have considered only transformations 
of stress associated with a rotation about the z axis. We will now 
consider the general state of stress represented in Fig. 7.1a and the 
transformation of stress associated with the rotation of axes shown 
in Fig. 7.1b. However, our analysis will be limited to the determina-
tion of the normal stress sn on a plane of arbitrary orientation.
 Consider the tetrahedron shown in Fig. 7.23. Three of its faces 
are parallel to the coordinate planes, while its fourth face, ABC, is 
perpendicular to the line QN. Denoting by DA the area of face ABC, 
and by lx, ly, lz the direction cosines of line QN, we find that the 
areas of the faces perpendicular to the x, y, and z axes are, respec-
tively, (DA)lx, (DA)ly, and (DA)lz. If the state of stress at point Q is 
defined by the stress components sx, sy, sz, txy, tyz, and tzx, then 
the forces exerted on the faces parallel to the coordinate planes can 
be obtained by multiplying the appropriate stress components by the 
area of each face (Fig. 7.24). On the other hand, the forces exerted 
on face ABC consist of a normal force of magnitude sn DA directed 
along QN, and of a shearing force of magnitude t DA perpendicular 
to QN but of otherwise unknown direction. Note that, since QBC, 

�

x

z

y

O

C

B

Q

N

A

(   A)�z

�(   A)  y

�(   A)�x

�A

�

Fig. 7.23
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463QCA, and QAB, respectively, face the negative x, y, and z axes, the 
forces exerted on them must be shown with negative senses.
 We now express that the sum of the components along QN of 
all the forces acting on the tetrahedron is zero. Observing that the 
component along QN of a force parallel to the x axis is obtained by 
multiplying the magnitude of that force by the direction cosine lx, 
and that the components of forces parallel to the y and z axes are 
obtained in a similar way, we write

gFn 5 0:  sn¢A 2 1sx ¢A lx2lx 2 1txy ¢A lx2ly 2 1txz ¢A lx2lz

21tyx ¢A ly2lx 2 1sy ¢A ly2ly 2 1tyz ¢A ly2lz

21tzx ¢A lz2lx 2 1tzy ¢A lz2ly 2 1sz ¢A lz2lz 5 0

Dividing through by DA and solving for sn, we have

sn 5 sxl
2
x 1 syl

2
y 1 szl

2
z 1 2txylxly 1 2tyzlylz 1 2tzxlzlx (7.20)

 We note that the expression obtained for the normal stress sn 
is a quadratic form in lx, ly, and lz. It follows that we can select the 
coordinate axes in such a way that the right-hand member of Eq. 
(7.20) reduces to the three terms containing the squares of the direc-
tion cosines.† Denoting these axes by a, b, and c, the corresponding 
normal stresses by sa, sb, and sc, and the direction cosines of QN 
with respect to these axes by la, lb, and lc, we write

 sn 5 sal
2
a 1 sbl

2
b 1 scl

2
c (7.21)

 The coordinate axes a, b, c are referred to as the principal axes 
of stress. Since their orientation depends upon the state of stress at 
Q, and thus upon the position of Q, they have been represented in 
Fig. 7.25 as attached to Q. The corresponding coordinate planes are 
known as the principal planes of stress, and the corresponding nor-
mal stresses sa, sb, and sc as the principal stresses at Q.‡

7.5 General State of Stress

†In Sec. 9.16 of F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers, 9th ed., 
McGraw-Hill Book Company, 2010, a similar quadratic form is found to represent the 
moment of inertia of a rigid body with respect to an arbitrary axis. It is shown in Sec. 9.17 
that this form is associated with a quadric surface, and that reducing the quadratic form 
to terms containing only the squares of the direction cosines is equivalent to determining 
the principal axes of that surface.
‡For a discussion of the determination of the principal planes of stress and of the principal 
stresses, see S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3d ed., McGraw-
Hill Book Company, 1970, Sec. 77.
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Fig. 7.25 Principal stresses.
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464 Transformations of Stress and Strain 7.6  APPLICATION OF MOHR’S CIRCLE TO THE THREE-
DIMENSIONAL ANALYSIS OF STRESS

If the element shown in Fig. 7.25 is rotated about one of the principal 
axes at Q, say the c axis (Fig. 7.26), the corresponding transformation 
of stress can be analyzed by means of Mohr’s circle as if it were a 
transformation of plane stress. Indeed, the shearing stresses exerted 
on the faces perpendicular to the c axis remain equal to zero, and the 
normal stress sc is perpendicular to the plane ab in which the trans-
formation takes place and, thus, does not affect this transformation. 
We therefore use the circle of diameter AB to determine the normal 
and shearing stresses exerted on the faces of the element as it is 
rotated about the c axis (Fig. 7.27). Similarly, circles of diameter BC 
and CA can be used to determine the stresses on the element as it is 
rotated about the a and b axes, respectively. While our analysis will be 
limited to rotations about the principal axes, it could be shown that 
any other transformation of axes would lead to stresses represented in 
Fig. 7.27 by a point located within the shaded area. Thus, the radius 
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Fig. 7.27 Mohr’s circles for general 
state of stress.

of the largest of the three circles yields the maximum value of the 
shearing stress at point Q. Noting that the diameter of that circle is 
equal to the difference between smax and smin, we write

 tmax 5 1
2 0smax 2 smin 0  (7.22)

where smax and smin represent the algebraic values of the maximum 
and minimum stresses at point Q.
 Let us now return to the particular case of plane stress, which 
was discussed in Secs. 7.2 through 7.4. We recall that, if the x and 
y axes are selected in the plane of stress, we have sz 5 tzx 5 tzy 5 
0. This means that the z axis, i.e., the axis perpendicular to the plane 
of stress, is one of the three principal axes of stress. In a Mohr-circle 
diagram, this axis corresponds to the origin O, where s 5 t 5 0. 
We also recall that the other two principal axes correspond to points 
A and B where Mohr’s circle for the xy plane intersects the s axis. 
If A and B are located on opposite sides of the origin O (Fig. 7.28), 
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465the corresponding principal stresses represent the maximum and 
minimum normal stresses at point Q, and the maximum shearing 
stress is equal to the maximum “in-plane” shearing stress. As noted 
in Sec. 7.3, the planes of maximum shearing stress correspond to 
points D and E of Mohr’s circle and are at 458 to the principal planes 
corresponding to points A and B. They are, therefore, the shaded 
diagonal planes shown in Figs. 7.29a and b.

7.6 Application of Mohr’s Circle to the Three-
Dimensional Analysis of Stress
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 If, on the other hand, A and B are on the same side of O, that 
is, if sa and sb have the same sign, then the circle defining smax, 
smin, and tmax is not the circle corresponding to a transformation of 
stress within the xy plane. If sa . sb . 0, as assumed in Fig. 7.30, 
we have smax 5 sa, smin 5 0, and tmax is equal to the radius of the 
circle defined by points O and A, that is, tmax 5 1

2 smax. We also note 
that the normals Qd9 and Qe9 to the planes of maximum shearing 
stress are obtained by rotating the axis Qa through 458 within the za 
plane. Thus, the planes of maximum shearing stress are the shaded 
diagonal planes shown in Figs. 7.31a and b.
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For the state of plane stress shown in Fig. 7.32, determine (a) the three 
principal planes and principal stresses, (b) the maximum shearing stress.

 (a) Principal Planes and Principal Stresses. We construct 
Mohr’s circle for the transformation of stress in the xy plane (Fig. 7.33). 
Point X is plotted 6 units to the right of the t axis and 3 units above the 
s axis (since the corresponding shearing stress tends to rotate the element 
clockwise). Point Y is plotted 3.5 units to the right of the t axis and 3 
units below the s axis. Drawing the line XY, we obtain the center C of 
Mohr’s circle for the xy plane; its abscissa is

save 5
sx 1 sy

2
5

6 1 3.5
2

5 4.75 ksi

Since the sides of the right triangle CFX are CF 5 6 2 4.75 5 1.25 ksi 
and FX 5 3 ksi, the radius of the circle is

R 5 CX 5 211.2522 1 1322 5 3.25 ksi

The principal stresses in the plane of stress are

sa 5 OA 5 OC 1 CA 5 4.75 1 3.25 5 8.00 ksi
sb 5 OB 5 OC 2 BC 5 4.75 2 3.25 5 1.50 ksi

Since the faces of the element that are perpendicular to the z axis are 
free of stress, these faces define one of the principal planes, and the corre-
sponding principal stress is sz 5 0. The other two principal planes are 
defined by points A and B on Mohr’s circle. The angle up through which the 
element should be rotated about the z axis to bring its faces to coincide with 
these planes (Fig. 7.34) is half the angle ACX. We have

tan 2up 5
FX
CF

5
3

1.25
2up 5 67.4° i  up 5 33.7° i

EXAMPLE 7.03

Fig. 7.32
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 (b) Maximum Shearing Stress. We now draw the circles of diame-
ter OB and OA, which correspond respectively to rotations of the element 
about the a and b axes (Fig. 7.35). We note that the maximum shearing 
stress is equal to the radius of the circle of diameter OA. We thus have

tmax 5 1
2 sa 5 1

2 
18.00 ksi2 5 4.00 ksi

Since points D9 and E9, which define the planes of maximum shearing 
stress, are located at the ends of the vertical diameter of the circle cor-
responding to a rotation about the b axis, the faces of the element of Fig. 
7.34 can be brought to coincide with the planes of maximum shearing 
stress through a rotation of 458 about the b axis.
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467*7.7  YIELD CRITERIA FOR DUCTILE MATERIALS UNDER 
PLANE STRESS

Structural elements and machine components made of a ductile 
material are usually designed so that the material will not yield under 
the expected loading conditions. When the element or component is 
under uniaxial stress (Fig. 7.36), the value of the normal stress sx 
that will cause the material to yield can be obtained readily from a 
tensile test conducted on a specimen of the same material, since the 
test specimen and the structural element or machine component are 
in the same state of stress. Thus, regardless of the actual mechanism 
that causes the material to yield, we can state that the element or 
component will be safe as long as sx , sY, where sY is the yield 
strength of the test specimen.

7.7 Yield Criteria for Ductile Materials 
under Plane Stress

Fig. 7.36 Structural element under 
uniaxial stress.

PP'

x�x�

 On the other hand, when a structural element or machine com-
ponent is in a state of plane stress (Fig. 7.37a), it is found convenient 
to use one of the methods developed earlier to determine the principal 
stresses sa and sb at any given point (Fig. 7.37b). The material can 
then be regarded as being in a state of biaxial stress at that point. Since 
this state is different from the state of uniaxial stress found in a speci-
men subjected to a tensile test, it is clearly not possible to predict 
directly from such a test whether or not the structural element or 
machine component under investigation will fail. Some criterion regard-
ing the actual mechanism of failure of the material must first be estab-
lished, which will make it possible to compare the effects of both states 
of stress on the material. The purpose of this section is to present the 
two yield criteria most frequently used for ductile materials.

Maximum-Shearing-Stress Criterion.  This criterion is based on 
the observation that yield in ductile materials is caused by slippage 
of the material along oblique surfaces and is due primarily to shear-
ing stresses (cf. Sec. 2.3). According to this criterion, a given struc-
tural component is safe as long as the maximum value tmax of the 
shearing stress in that component remains smaller than the corre-
sponding value of the shearing stress in a tensile-test specimen of 
the same material as the specimen starts to yield.
 Recalling from Sec. 1.11 that the maximum value of the shear-
ing stress under a centric axial load is equal to half the value of the 
corresponding normal, axial stress, we conclude that the maximum 
shearing stress in a tensile-test specimen is 1

2 sY as the specimen 
starts to yield. On the other hand, we saw in Sec. 7.6 that, for plane 
stress, the maximum value tmax of the shearing stress is equal to 
1
2 0smax 0  if the principal stresses are either both positive or both nega-
tive, and to 1

2 0smax 2 smin 0  if the maximum stress is positive and the 

(b)

P

a�

b�

(a)

P

Fig. 7.37 Structural element in 
state of plane stress.
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468 Transformations of Stress and Strain minimum stress negative. Thus, if the principal stresses sa and sb 
have the same sign, the maximum-shearing-stress criterion gives

 0sa 0 , sY  0sb 0 , sY (7.23)

If the principal stresses sa and sb have opposite signs, the maximum-
shearing-stress criterion yields

 0sa 2 sb 0 , sY (7.24)

The relations obtained have been represented graphically in Fig. 7.38. 
Any given state of stress will be represented in that figure by a point 
of coordinates sa and sb, where sa and sb are the two principal 
stresses. If this point falls within the area shown in the figure, the 
structural component is safe. If it falls outside this area, the component 
will fail as a result of yield in the material. The hexagon associated 
with the initiation of yield in the material is known as Tresca’s hexagon 
after the French engineer Henri Edouard Tresca (1814–1885).

Maximum-Distortion-Energy Criterion.  This criterion is based 
on the determination of the distortion energy in a given material, 
i.e., of the energy associated with changes in shape in that material 
(as opposed to the energy associated with changes in volume in the 
same material). According to this criterion, also known as the von 
Mises criterion, after the German-American applied mathematician 
Richard von Mises (1883–1953), a given structural component is safe 
as long as the maximum value of the distortion energy per unit vol-
ume in that material remains smaller than the distortion energy per 
unit volume required to cause yield in a tensile-test specimen of the 
same material. As you will see in Sec. 11.6, the distortion energy per 
unit volume in an isotropic material under plane stress is

 
ud 5

1
6G

 1s2
a 2 sasb 1 s2

b2 (7.25)

where sa and sb are the principal stresses and G the modulus of 
rigidity. In the particular case of a tensile-test specimen that is start-
ing to yield, we have sa 5 sY, sb 5 0, and 1ud2Y 5 sY

2y6G. Thus, 
the maximum-distortion-energy criterion indicates that the structural 
component is safe as long as ud , (ud)Y, or

 s2
a 2 sasb 1 s2

b , s2
Y (7.26)

i.e., as long as the point of coordinates sa and sb falls within the area 
shown in Fig. 7.39. This area is bounded by the ellipse of equation

 s2
a 2 sasb 1 s2

b 5 s2
Y (7.27)

which intersects the coordinate axes at sa 5 6sY and sb 5 6sY. 
We can verify that the major axis of the ellipse bisects the first and 
third quadrants and extends from A (sa 5 sb 5 sY) to B (sa 5 sb 5 
2sY), while its minor axis extends from C (sa 5 2sb 5 20.577sY) 
to D (sa 5 2sb 5 0.577sY).
 The maximum-shearing-stress criterion and the maximum-
 distortion-energy criterion are compared in Fig. 7.40. We note that 
the ellipse passes through the vertices of the hexagon. Thus, for the 
states of stress represented by these six points, the two criteria give 
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Fig. 7.38 Tresca’s hexagon.

Fig. 7.39 Von Mises criterion.
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469the same results. For any other state of stress, the maximum-shearing-
stress  criterion is more conservative than the maximum-distortion-
energy criterion, since the hexagon is located within the ellipse.
 A state of stress of particular interest is that associated with yield 
in a torsion test. We recall from Fig. 7.22 of Sec. 7.4 that, for torsion, 
smin 5 2smax; thus, the corresponding points in Fig. 7.40 are located 
on the bisector of the second and fourth quadrants. It follows that yield 
occurs in a torsion test when sa 5 2sb 5 60.5sY according to the 
maximum-shearing-stress criterion, and when sa 5 2sb 5 60.577sY 
according to the maximum-distortion-energy criterion. But, recalling 
again Fig. 7.22, we note that sa and sb must be equal in magnitude 
to tmax, that is, to the value obtained from a torsion test for the yield 
strength tY of the material. Since the values of the yield strength sY in 
tension and of the yield strength tY in shear are given for various ductile 
materials in Appendix B, we can compute the ratio tYysY for these 
materials and verify that the values obtained range from 0.55 to 0.60. 
Thus, the maximum-distortion-energy criterion appears somewhat 
more accurate than the maximum-shearing-stress criterion as far as 
predicting yield in torsion is concerned.

*7.8  FRACTURE CRITERIA FOR BRITTLE MATERIALS 
UNDER PLANE STRESS

As we saw in Chap. 2, brittle materials are characterized by the fact 
that, when subjected to a tensile test, they fail suddenly through 
rupture—or fracture—without any prior yielding. When a structural 
element or machine component made of a brittle material is under 
uniaxial tensile stress, the value of the normal stress that causes it to 
fail is equal to the ultimate strength sU of the material as determined 
from a tensile test, since both the tensile-test specimen and the 
 element or component under investigation are in the same state of 
stress. However, when a structural element or machine component 
is in a state of plane stress, it is found convenient to first determine 
the principal stresses sa and sb at any given point, and to use one of 
the criteria indicated in this section to predict whether or not the 
structural element or machine component will fail.

Maximum-Normal-Stress Criterion.  According to this criterion, 
a given structural component fails when the maximum normal stress 
in that component reaches the ultimate strength sU obtained from 
the tensile test of a specimen of the same material. Thus, the struc-
tural component will be safe as long as the absolute values of the 
principal stresses sa and sb are both less than sU:

 0sa 0 , sU  0sb 0 , sU (7.28)

The maximum-normal-stress criterion can be expressed graphically 
as shown in Fig. 7.41. If the point obtained by plotting the values 
sa and sb of the principal stresses falls within the square area shown 
in the figure, the structural component is safe. If it falls outside that 
area, the component will fail.
 The maximum-normal-stress criterion, also known as Coulomb’s 
criterion, after the French physicist Charles Augustin de Coulomb 

7.8 Fracture Criteria for Brittle Materials 
under Plane Stress
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Fig. 7.41 Coulomb’s criterion.
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470 Transformations of Stress and Strain (1736–1806), suffers from an important shortcoming, since it is based 
on the assumption that the ultimate strength of the material is the 
same in tension and in compression. As we noted in Sec. 2.3, this is 
seldom the case, because of the presence of flaws in the material, 
such as microscopic cracks or cavities, which tend to weaken the 
material in tension, while not appreciably affecting its resistance to 
compressive failure. Besides, this criterion makes no allowance for 
effects other than those of the normal stresses on the failure mecha-
nism of the material.†

Mohr’s Criterion.  This criterion, suggested by the German engi-
neer Otto Mohr, can be used to predict the effect of a given state 
of plane stress on a brittle material, when results of various types of 
tests are available for that material.
 Let us first assume that a tensile test and a compressive test have 
been conducted on a given material, and that the values sUT and sUC 
of the ultimate strength in tension and in compression have been 
determined for that material. The state of stress corresponding to the 
rupture of the tensile-test specimen can be represented on a Mohr-
circle diagram by the circle intersecting the horizontal axis at O and 
sUT (Fig. 7.43a). Similarly, the state of stress corresponding to the 
failure of the compressive-test specimen can be represented by the 
circle intersecting the horizontal axis at O and sUC. Clearly, a state of 
stress represented by a circle entirely contained in either of these cir-
cles will be safe. Thus, if both principal stresses are positive, the state 
of stress is safe as long as sa , sUT and sb , sUT; if both principal 
stresses are negative, the state of stress is safe as long as |sa| , |sUC| 
and |sb| , |sUC|. Plotting the point of coordinates sa and sb 
(Fig. 7.43b), we verify that the state of stress is safe as long as that 
point falls within one of the square areas shown in that figure.
 In order to analyze the cases when sa and sb have opposite signs, 
we now assume that a torsion test has been conducted on the material 
and that its ultimate strength in shear, tU, has been determined. Draw-
ing the circle centered at O representing the state of stress correspond-
ing to the failure of the torsion-test specimen (Fig. 7.44a), we observe 
that any state of stress represented by a circle entirely contained in 
that circle is also safe. Mohr’s criterion is a logical extension of this 
observation: According to Mohr’s criterion, a state of stress is safe if 
it is represented by a circle located entirely within the area bounded 

†Another failure criterion known as the maximum-normal-strain criterion, or Saint- 
Venant’s criterion, was widely used during the nineteenth century. According to this cri-
terion, a given structural component is safe as long as the maximum value of the normal 
strain in that component remains smaller than the value PU of the strain at which a tensile-
test specimen of the same material will fail. But, as will be shown in Sec. 7.12, the strain 
is maximum along one of the principal axes of stress, if the deformation is elastic and the 
material homogeneous and isotropic. Thus, denoting by Pa and Pb the values of the normal 
strain along the principal axes in the plane of stress, we write

 0Pa 0 , PU  0Pb 0 , PU (7.29)

Making use of the generalized Hooke’s law (Sec. 2.12), we could express these relations 
in terms of the principal stresses sa and sb and the ultimate strength sU of the material. 
We would find that, according to the maximum-normal-strain criterion, the structural 
component is safe as long as the point obtained by plotting sa and sb falls within the area 
shown in Fig. 7.42 where n is Poisson’s ratio for the given material.
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Fig. 7.42 Saint-Venant’s criterion.

bee80288_ch07_436-511.indd Page 470  10/30/10  1:40:39 AM user-f499bee80288_ch07_436-511.indd Page 470  10/30/10  1:40:39 AM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch07/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch07



471

by the envelope of the circles corresponding to the available data. 
The remaining portions of the principal-stress diagram can now be 
obtained by drawing various circles tangent to this envelope, deter-
mining the corresponding values of sa and sb, and plotting the points 
of coordinates sa and sb (Fig. 7.44b).
 More accurate diagrams can be drawn when additional test 
results, corresponding to various states of stress, are available. If, on 
the other hand, the only available data consists of the ultimate 
strengths sUT and sUC, the envelope in Fig. 7.44a is replaced by the 
tangents AB and A9B9 to the circles corresponding respectively to 
failure in tension and failure in compression (Fig. 7.45a). From the 
similar triangles drawn in that figure, we note that the abscissa of 
the center C of a circle tangent to AB and A9B9 is linearly related 
to its radius R. Since sa 5 OC 1 R and sb 5 OC 2 R, it follows 
that sa and sb are also linearly related. Thus, the shaded area cor-
responding to this simplified Mohr’s criterion is bounded by straight 
lines in the second and fourth quadrants (Fig. 7.45b).
 Note that in order to determine whether a structural compo-
nent will be safe under a given loading, the state of stress should be 
calculated at all critical points of the component, i.e., at all points 
where stress concentrations are likely to occur. This can be done in 
a number of cases by using the stress-concentration factors given in 
Figs. 2.60, 3.29, 4.27, and 4.28. There are many instances, however, 
when the theory of elasticity must be used to determine the state of 
stress at a critical point.
 Special care should be taken when macroscopic cracks have 
been detected in a structural component. While it can be assumed 
that the test specimen used to determine the ultimate tensile strength 
of the material contained the same type of flaws (i.e., microscopic 
cracks or cavities) as the structural component under investigation, 
the specimen was certainly free of any detectable macroscopic cracks. 
When a crack is detected in a structural component, it is necessary 
to determine whether that crack will tend to propagate under the 
expected loading condition and cause the component to fail, or 
whether it will remain stable. This requires an analysis involving the 
energy associated with the growth of the crack. Such an analysis is 
beyond the scope of this text and should be carried out by the meth-
ods of fracture mechanics.

7.8 Fracture Criteria for Brittle Materials 
under Plane Stress
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SAMPLE PROBLEM 7.4

The state of plane stress shown occurs at a critical point of a steel machine 
component. As a result of several tensile tests, it has been found that the 
tensile yield strength is sY 5 250 MPa for the grade of steel used. Determine 
the factor of safety with respect to yield, using (a) the maximum-shearing-
stress criterion, and (b) the maximum-distortion-energy criterion.

SOLUTION

 Mohr’s Circle.  We construct Mohr’s circle for the given state of 
stress and find

 save 5 OC 5 1
2 1sx 1 sy2 5 1

2 180 2 402 5 20 MPa

 tm 5 R 5 21CF22 1 1FX22 5 216022 1 12522 5 65 MPa

 Principal Stresses

 sa 5 OC 1 CA 5 20 1 65 5 185 MPa
 sb 5 OC 2 BC 5 20 2 65 5 245 MPa

 a. Maximum-Shearing-Stress Criterion. Since for the grade of steel 
used the tensile strength is sY 5 250 MPa, the corresponding shearing 
stress at yield is

tY 5 1
2 sY 5 1

2 1250 MPa2 5 125 MPa

For tm 5 65 MPa:
 

F.S. 5
tY

tm
5

125 MPa
65 MPa  

F.S. 5 1.92 ◀

 b. Maximum-Distortion-Energy Criterion. Introducing a factor of 
safety into Eq. (7.26), we write

s2
a 2 sasb 1 s2

b 5 a sY

F.S.
b2

For sa 5 185 MPa, sb 5 245 MPa, and sY 5 250 MPa, we have

18522 2 1852 12452 1 14522 5 a 250
F.S.
b2

 
114.3 5

250
F.S. 

F.S. 5 2.19 ◀

 Comment.  For a ductile material with sY 5 250 MPa, we have drawn 
the hexagon associated with the maximum-shearing-stress criterion and the 
ellipse associated with the maximum-distortion-energy criterion. The given 
state of plane stress is represented by point H of coordinates sa 5 85 MPa 
and sb 5 245 MPa. We note that the straight line drawn through points 
O and H intersects the hexagon at point T and the ellipse at point M. For 
each criterion, the value obtained for F.S. can be verified by measuring the 
line segments indicated and computing their ratios:

1a2 F.S. 5
OT
OH

5 1.92
  

1b2 F.S. 5
OM
OH

5 2.19
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PROBLEMS

473

7.67 For the state of plane stress shown, determine the maximum shear-
ing stress when (a) sx 5 0 and sy 5 12 ksi, (b) sx 5 21 ksi and 
sy 5 9 ksi. (Hint: Consider both in-plane and out-of-plane shearing 
stresses.)

 7.68 For the state of stress shown, determine the maximum shearing 
stress when (a) sy 5 40 MPa, (b) sy 5 120 MPa. (Hint: Consider 
both in-plane and out-of-plane shearing stresses.)

 7.69 For the state of stress shown, determine the maximum shearing 
stress when (a) sy 5 20 MPa, (b) sy 5 140 MPa. (Hint: Consider 
both in-plane and out-of-plane shearing stresses.)

 7.70 and 7.71 For the state of stress shown, determine the maximum 
shearing stress when (a) sz 5 14 ksi, (b) sz 5 24 ksi, (c) sz 5 0.

 7.66 For the state of plane stress shown, determine the maximum shear-
ing stress when (a) sx 5 6 ksi and sy 5 18 ksi, (b) sx 5 14 ksi 
and sy 5 2 ksi. (Hint: Consider both in-plane and out-of-plane 
shearing stresses.)

8 ksi

y

z
x

σy

σx

Fig. P7.66 and P7.67

80 MPa

y

z
x

140 MPa

σy

Fig. P7.68 and P7.69

z

σz

6 ksi

y

x

7 ksi

2 ksi

Fig. P7.70

z

σz

6 ksi

y

x

5 ksi

10 ksi

Fig. P7.71
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474 Transformations of Stress and Strain  7.72 and 7.73 For the state of stress shown, determine the maxi-
mum shearing stress when (a) sz 5 0, (b) sz 5 145 MPa, (c) sz 5 
245 MPa.

 7.74 For the state of stress shown, determine two values of sy for which 
the maximum shearing stress is 10 ksi.

z

σz

75 MPa

y

x

100 MPa

20 MPa

Fig. P7.72

z

σz

75 MPa

y

x

150 MPa

70 MPa

Fig. P7.73

8 ksi

14 ksi

y

z
x

σy

Fig. P7.74

 7.75 For the state of stress shown, determine two values of sy for which 
the maximum shearing stress is 73 MPa.

 7.76 For the state of stress shown, determine the value of txy for which 
the maximum shearing stress is (a) 10 ksi, (b) 8.25 ksi.

48 MPa

50 MPa

y

z
x

σy

Fig. P7.75

3 ksi

15 ksi

y

z
x

τxy

Fig. P7.76
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475Problems 7.77 For the state of stress shown, determine the value of txy for which 
the maximum shearing stress is (a) 60 MPa, (b) 78 MPa.

40 MPa

100 MPa

y

z
x

τxy

Fig. P7.77

 7.78 For the state of stress shown, determine two values of sy for which 
the maximum shearing stress is 80 MPa.

 7.79 For the state of stress shown, determine the range of values of 
txz for which the maximum shearing stress is equal to or less than 
60 MPa.

 *7.80 For the state of stress of Prob. 7.69, determine (a) the value of sy 
for which the maximum shearing stress is as small as possible, 
(b) the corresponding value of the shearing stress.

 7.81 The state of plane stress shown occurs in a machine component 
made of a steel with sY 5 325 MPa. Using the maximum-distortion-
energy criterion, determine whether yield will occur when (a) s0 5 
200 MPa, (b) s0 5 240 MPa, (c) s0 5 280 MPa. If yield does not 
occur, determine the corresponding factor of safety.

 7.82 Solve Prob. 7.81, using the maximum-shearing-stress criterion.

 7.83 The state of plane stress shown occurs in a machine component 
made of a steel with sY 5 45 ksi. Using the maximum-distortion-
energy criterion, determine whether yield will occur when (a) txy 5 
9 ksi, (b) txy 5 18 ksi, (c) txy 5 20 ksi. If yield does not occur, 
determine the corresponding factor of safety.

z

y

x

σy

90 MPa

60 MPa

Fig. P7.78

Fig. P7.79

z

y

x

σy � 100 MPa

60 MPa

τ xz

100 MPa

σ0

σ0

Fig. P7.81

 7.84 Solve Prob. 7.83, using the maximum-shearing-stress criterion.

21 ksi

36 ksi

τ xy

Fig. P7.83
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476 Transformations of Stress and Strain  7.85 The 36-mm-diameter shaft is made of a grade of steel with a 250-MPa 
tensile yield stress. Using the maximum-shearing-stress criterion, 
determine the magnitude of the torque T for which yield occurs 
when P 5 200 kN.

 7.86 Solve Prob. 7.85, using the maximum-distortion-energy criterion.

 7.87 The 1.75-in.-diameter shaft AB is made of a grade of steel for which 
the yield strength is sY 5 36 ksi. Using the maximum-shearing-
stress criterion, determine the magnitude of the force P for which 
yield occurs when T 5 15 kip ? in.

36 mm

T A

B

P

Fig. P7.85

1.75 in.

P

T

Fig. P7.87

 7.88 Solve Prob. 7.87, using the maximum-distortion-energy criterion.

 7.89 and 7.90 The state of plane stress shown is expected to occur 
in an aluminum casting. Knowing that for the aluminum alloy used 
sUT 5 80 MPa and sUC 5 200 MPa and using Mohr’s criterion, 
determine whether rupture of the casting will occur.

100 MPa

60 MPa

10 MPa

Fig. P7.89

75 MPa

32 MPa

Fig. P7.90

 7.91 and 7.92 The state of plane stress shown is expected to occur 
in an aluminum casting. Knowing that for the aluminum alloy used 
sUT 5 10 ksi and sUC 5 30 ksi and using Mohr’s criterion, deter-
mine whether rupture of the casting will occur.

7 ksi

8 ksi

Fig. P7.91

9 ksi

15 ksi

2 ksi

Fig. P7.92
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477Problems 7.93 The state of plane stress shown will occur at a critical point in an 
aluminum casting that is made of an alloy for which sUT 5 10 ksi 
and sUC 5 25 ksi. Using Mohr’s criterion, determine the shearing 
stress t0 for which failure should be expected.

8 ksi

�0

Fig. P7.93
80 MPa

�0

Fig. P7.94

 7.94 The state of plane stress shown will occur at a critical point in 
a pipe made of an aluminum alloy for which sUT 5 75 MPa and 
sUC 5 150 MPa. Using Mohr’s criterion, determine the shearing 
stress t0 for which failure should be expected.

 7.95 The cast-aluminum rod shown is made of an alloy for which sUT 5 
60 MPa and sUC 5 120 MPa. Using Mohr’s criterion, determine the 
magnitude of the torque T for which failure should be expected.

26 kN

32 mm

T

A

B

Fig. P7.95

 7.96 The cast-aluminum rod shown is made of an alloy for which sUT 5 
70 MPa and sUC 5 175 MPa. Knowing that the magnitude T of the 
applied torques is slowly increased and using Mohr’s criterion, deter-
mine the shearing stress t0 that should be expected at rupture.

 7.97 A machine component is made of a grade of cast iron for which 
sUT 5 8 ksi and sUC 5 20 ksi. For each of the states of stress 
shown, and using Mohr’s criterion, determine the normal stress s0 
at which rupture of the component should be expected.

T'

T

�0

Fig. P7.96

1
2 �0

�0

1
2 �0

�0

1
2 �0

�0

(a) (b) (c)

Fig. P7.97
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478 Transformations of Stress and Strain 7.9 STRESSES IN THIN-WALLED PRESSURE VESSELS
Thin-walled pressure vessels provide an important application of the 
analysis of plane stress. Since their walls offer little resistance to 
bending, it can be assumed that the internal forces exerted on a given 
portion of wall are tangent to the surface of the vessel (Fig. 7.46). 
The resulting stresses on an element of wall will thus be contained 
in a plane tangent to the surface of the vessel.
 Our analysis of stresses in thin-walled pressure vessels will be lim-
ited to the two types of vessels most frequently encountered: cylindrical 
pressure vessels and spherical pressure vessels (Photos 7.3 and 7.4).

Fig. 7.46 Assumed stress distribution 
in thin-walled pressure vessels.

Photo 7.3 Cylindrical pressure vessels. Photo 7.4 Spherical pressure vessels.

 Consider a cylindrical vessel of inner radius r and wall thickness 
t containing a fluid under pressure (Fig. 7.47). We propose to deter-
mine the stresses exerted on a small element of wall with sides 
respectively parallel and perpendicular to the axis of the cylinder. 
Because of the axisymmetry of the vessel and its contents, it is clear 
that no shearing stress is exerted on the element. The normal stresses 
s1 and s2 shown in Fig. 7.47 are therefore principal stresses. The 
stress s1 is known as the hoop stress, because it is the type of stress 
found in hoops used to hold together the various slats of a wooden 
barrel, and the stress s2 is called the longitudinal stress.
 In order to determine the hoop stress s1, we detach a portion of 
the vessel and its contents bounded by the xy plane and by two planes 
parallel to the yz plane at a distance Dx from each other (Fig. 7.48). 
The forces parallel to the z axis acting on the free body defined in this 
fashion consist of the elementary internal forces s1 dA on the wall 
sections, and of the elementary pressure forces p dA exerted on the 
portion of fluid included in the free body. Note that p denotes the gage 
pressure of the fluid, i.e., the excess of the inside pressure over the 
outside atmospheric pressure. The resultant of the internal forces s1 dA 
is equal to the product of s1 and of the cross-sectional area 2t Dx of 
the wall, while the resultant of the pressure forces p dA is equal to the 
product of p and of the area 2r Dx. Writing the equilibrium equation 
oFz 5 0, we have

z

1�

1�

2�
2�

y

x

t

r

Fig. 7.47 Pressurized cylindrical vessel.

Fig. 7.48 Free body to determine 
hoop stress.
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479©Fz 5 0: s112t ¢x2 2 p12r ¢x2 5 0

and, solving for the hoop stress s1,

 
s1 5

pr

t  
(7.30)

 To determine the longitudinal stress s2, we now pass a section 
perpendicular to the x axis and consider the free body consisting of the 
portion of the vessel and its contents located to the left of the section 

7.9 Stresses in Thin-Walled Pressure Vessels

†Using the mean radius of the wall section, rm 5 r 1 1
2 t, in computing the resultant of 

the forces on that section, we would obtain a more accurate value of the longitudinal 
stress, namely,

 

s2 5
pr

2t
 

1

1 1
t

2r  

(7.319)

However, for a thin-walled pressure vessel, the term ty2r is sufficiently small to allow the 
use of Eq. (7.31) for engineering design and analysis. If a pressure vessel is not thin-walled 
(i.e., if ty2r is not small), the stresses s1 and s2 vary across the wall and must be deter-
mined by the methods of the theory of elasticity.

2�

y

z x

dA

r

t

p dA

Fig. 7.49 Free body to determine 
longitudinal stress.

(Fig. 7.49). The forces acting on this free body are the elementary inter-
nal forces s2 dA on the wall section and the elementary pressure forces 
p dA exerted on the portion of fluid included in the free body. Noting 
that the area of the fluid section is pr2 and that the area of the wall 
section can be obtained by multiplying the circumference 2pr of the 
cylinder by its wall thickness t, we write the equilibrium equation:†

oFx 5 0: s212prt2 2 p1pr22 5 0

and, solving for the longitudinal stress s2,

 
s2 5

pr

2 t  
(7.31)

We note from Eqs. (7.30) and (7.31) that the hoop stress s1 is twice 
as large as the longitudinal stress s2:

 s1 5 2s2 (7.32)
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480 Transformations of Stress and Strain  Drawing Mohr’s circle through the points A and B that corre-
spond respectively to the principal stresses s1 and s2 (Fig. 7.50), and 
recalling that the maximum in-plane shearing stress is equal to the 
radius of this circle, we have

 tmax 1in plane2 5 1
2 s2 5

pr

4t
 (7.33)

This stress corresponds to points D and E and is exerted on an ele-
ment obtained by rotating the original element of Fig. 7.47 through 
458 within the plane tangent to the surface of the vessel. The maxi-
mum shearing stress in the wall of the vessel, however, is larger. It 
is equal to the radius of the circle of diameter OA and corresponds 
to a rotation of 458 about a longitudinal axis and out of the plane of 
stress.† We have

 
tmax 5 s2 5

pr

2t  
(7.34)

 We now consider a spherical vessel of inner radius r and wall 
thickness t, containing a fluid under a gage pressure p. For reasons 
of symmetry, the stresses exerted on the four faces of a small element 
of wall must be equal (Fig. 7.51). We have

 s1 5 s2 (7.35)

To determine the value of the stress, we pass a section through the 
center C of the vessel and consider the free body consisting of the 
portion of the vessel and its contents located to the left of the section 
(Fig. 7.52). The equation of equilibrium for this free body is the 
same as for the free body of Fig. 7.49. We thus conclude that, for a 
spherical vessel,

 
s1 5 s2 5

pr

2t  
(7.36)

 Since the principal stresses s1 and s2 are equal, Mohr’s circle for 
transformations of stress within the plane tangent to the surface of the 
vessel reduces to a point (Fig. 7.53); we conclude that the in-plane 
normal stress is constant and that the in-plane maximum shearing stress 
is zero. The maximum shearing stress in the wall of the vessel, however, 
is not zero; it is equal to the radius of the circle of diameter OA and 
corresponds to a rotation of 458 out of the plane of stress. We have

 
tmax 5 1

2 s1 5
pr

4t  
(7.37)
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�1 22�
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Fig. 7.50 Mohr’s circle for element of 
cylindrical pressure vessel.
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2� 1��

Fig. 7.51 Pressurized 
spherical vessel.
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Fig. 7.52 Free body to 
determine wall stress.
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max �       1
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1 �   2�
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1
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Fig. 7.53 Mohr’s circle for element 
of spherical pressure vessel.

†It should be observed that, while the third principal stress is zero on the outer surface of 
the vessel, it is equal to 2p on the inner surface, and is represented by a point C(2p, 0) 
on a Mohr-circle diagram. Thus, close to the inside surface of the vessel, the maximum 
shearing stress is equal to the radius of a circle of diameter CA, and we have

tmax 5
1
2

 1s1 1 p2 5
pr

2t
 a1 1

t
r
b

For a thin-walled vessel, however, the term t/r is small, and we can neglect the variation 
of tmax across the wall section. This remark also applies to spherical pressure vessels.
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481

SAMPLE PROBLEM 7.5

A compressed-air tank is supported by two cradles as shown; one of the cra-
dles is designed so that it does not exert any longitudinal force on the tank. 
The cylindrical body of the tank has a 30-in. outer diameter and is fabricated 
from a 3

8-in. steel plate by butt welding along a helix that forms an angle of 
258 with a transverse plane. The end caps are spherical and have a uniform 
wall thickness of 5

16 in. For an internal gage pressure of 180 psi, determine 
(a) the normal stress and the maximum shearing stress in the spherical caps. 
(b) the stresses in directions perpendicular and parallel to the helical weld.

SOLUTION

 a. Spherical Cap. Using Eq. (7.36), we write

p 5 180 psi, t 5 5
16 in. 5 0.3125 in., r 5 15 2 0.3125 5 14.688 in.

 s1 5 s2 5
pr

2 t
5
1180 psi2 114.688 in.2

2 10.3125 in.2  s 5 4230 psi  b

We note that for stresses in a plane tangent to the cap, Mohr’s circle reduces 
to a point (A, B) on the horizontal axis and that all in-plane shearing stresses 
are zero. On the surface of the cap the third principal stress is zero and cor-
responds to point O. On a Mohr’s circle of diameter AO, point D9 represents 
the maximum shearing stress; it occurs on planes at 458 to the plane tangent 
to the cap.
 tmax 5 1

2 14230 psi2 tmax 5 2115 psi  b

 b. Cylindrical Body of the Tank. We first determine the hoop stress 
s1 and the longitudinal stress s2. Using Eqs. (7.30) and (7.32), we write

p 5 180 psi, t 5 3
8 in. 5 0.375 in., r 5 15 2 0.375 5 14.625 in.

s1 5
pr

t
5
1180 psi2 114.625 in.2

0.375 in.
5 7020 psi    s2 5 1

2s1 5 3510 psi

save 5 1
2 1s1 1 s22 5 5265 psi    R 5 1

2 1s1 2 s22 5 1755 psi

 Stresses at the Weld. Noting that both the hoop stress and the longi-
tudinal stress are principal stresses, we draw Mohr’s circle as shown.
 An element having a face parallel to the weld is obtained by rotating the 
face perpendicular to the axis Ob counterclockwise through 258. Therefore, on 
Mohr’s circle we locate the point X9 corresponding to the stress components 
on the weld by rotating radius CB counterclockwise through 2u 5 508.

sw 5 save 2 R cos 50° 5 5265 2 1755 cos 50°    sw 5 14140 psi  b

tw 5 R sin 50° 5 1755 sin 50° tw 5   1344 psi  b

Since X9 is below the horizontal axis, tw tends to rotate the element 
 counterclockwise.

8 ft

30 in.

25°

1�

2�
� � 0

a

b

1�

max�

�

�

2�� � 4230 psi

C A, B  
O

D'

b

1�

1�

2�

2� � 3510 psi

� 7020 psi

a

O

1� � 7020 psi

ave�  � 5265 psi

2�

w�

� 3510 psi

� 1755 psi

�

X'

�
2 � 50°

ACBO

R

R w��

x'

w� � 4140 psi

w� � 1344 psi

Weld
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PROBLEMS

482

 7.98 A spherical gas container made of steel has a 5-m outer diameter 
and a wall thickness of 6 mm. Knowing that the internal pressure 
is 350 kPa, determine the maximum normal stress and the maxi-
mum shearing stress in the container.

7.99 The maximum gage pressure is known to be 8 MPa in a spherical 
steel pressure vessel having a 250-mm outer diameter and a 6-mm 
wall thickness. Knowing that the ultimate stress in the steel used 
is sU 5 400 MPa, determine the factor of safety with respect to 
tensile failure.

 7.100 A basketball has a 9.5-in. outer diameter and a 0.125-in. wall thick-
ness. Determine the normal stress in the wall when the basketball 
is inflated to a 9-psi gage pressure.

7.101 A spherical pressure vessel of 900-mm outer diameter is to be 
fabricated from a steel having an ultimate stress sU 5 400 MPa. 
Knowing that a factor of safety of 4.0 is desired and that the gage 
pressure can reach 3.5 MPa, determine the smallest wall thickness 
that should be used.

 7.102 A spherical pressure vessel has an outer diameter of 10 ft and a 
wall thickness of 0.5 in. Knowing that for the steel used sall 5
12 ksi, E 5 29 3 106 psi, and n 5 0.29, determine (a) the allowable 
gage pressure, (b) the corresponding increase in the diameter of 
the vessel.

 7.103 A spherical gas container having an outer diameter of 5 m and a 
wall thickness of 22 mm is made of steel for which E 5 200 GPa 
and n 5 0.29. Knowing that the gage pressure in the container is 
increased from zero to 1.7 MPa, determine (a) the maximum nor-
mal stress in the container, (b) the corresponding increase in the 
diameter of the container.

 7.104 A steel penstock has a 750-mm outer diameter, a 12-mm wall thick-
ness, and connects a reservoir at A with a generating station at B. 
Knowing that the density of water is 1000 kg/m3, determine the 
maximum normal stress and the maximum shearing stress in the 
penstock under static conditions.

 7.105 A steel penstock has a 750-mm outer diameter and connects a 
reservoir at A with a generating station at B. Knowing that the 
density of water is 1000 kg/m3 and that the allowable normal stress 
in the steel is 85 MPa, determine the smallest thickness that can 
be used for the penstock.

 7.106 The bulk storage tank shown in Photo 7.3 has an outer diameter 
of 3.3 m and a wall thickness of 18 mm. At a time when the internal 
pressure of the tank is 1.5 MPa, determine the maximum normal 
stress and the maximum shearing stress in the tank.

A

B

750 mm

300 m

Fig. P7.104 and P7.105
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483Problems 7.107 Determine the largest internal pressure that can be applied to a 
cylindrical tank of 5.5-ft outer diameter and 5

8-in. wall thickness if 
the ultimate normal stress of the steel used is 65 ksi and a factor 
of safety of 5.0 is desired.

 7.108 A cylindrical storage tank contains liquefied propane under a pres-
sure of 1.5 MPa at a temperature of 388C. Knowing that the tank 
has an outer diameter of 320 mm and a wall thickness of 3 mm, 
determine the maximum normal stress and the maximum shearing 
stress in the tank.

 7.109 The unpressurized cylindrical storage tank shown has a 3
16-in. wall 

thickness and is made of steel having a 60-ksi ultimate strength in 
tension. Determine the maximum height h to which it can be filled 
with water if a factor of safety of 4.0 is desired. (Specific weight 
of water 5 62.4 lb/ft3.)

 7.110 For the storage tank of Prob. 7.109, determine the maximum nor-
mal stress and the maximum shearing stress in the cylindrical wall 
when the tank is filled to capacity (h 5 48 ft).

 7.111 A standard-weight steel pipe of 12-in. nominal diameter carries 
water under a pressure of 400 psi. (a) Knowing that the outside 
diameter is 12.75 in. and the wall thickness is 0.375 in., determine 
the maximum tensile stress in the pipe. (b) Solve part a, assuming 
an extra-strong pipe is used, of 12.75-in. outside diameter and 
0.5-in. wall thickness.

 7.112 The pressure tank shown has a 8-mm wall thickness and butt-welded 
seams forming an angle b 5 208 with a transverse plane. For a gage 
pressure of 600 kPa, determine, (a) the normal stress perpendicular 
to the weld, (b) the shearing stress parallel to the weld.

 7.113 For the tank of Prob. 7.112, determine the largest allowable gage 
pressure, knowing that the allowable normal stress perpendicular 
to the weld is 120 MPa and the allowable shearing stress parallel 
to the weld is 80 MPa.

 7.114 For the tank of Prob. 7.112, determine the range of values of b 
that can be used if the shearing stress parallel to the weld is not 
to exceed 12 MPa when the gage pressure is 600 kPa.

 7.115 The steel pressure tank shown has a 750-mm inner diameter and 
a 9-mm wall thickness. Knowing that the butt-welded seams form 
an angle b 5 508 with the longitudinal axis of the tank and that 
the gage pressure in the tank is 1.5 MPa, determine, (a) the normal 
stress perpendicular to the weld, (b) the shearing stress parallel to 
the weld.

 7.116 The pressurized tank shown was fabricated by welding strips of 
plate along a helix forming an angle b with a transverse plane. 
Determine the largest value of b that can be used if the normal 
stress perpendicular to the weld is not to be larger than 85 percent 
of the maximum stress in the tank.

25 ft

48 ft
h

Fig. P7.109

3 m

1.6 m

	

Fig. P7.112

	

Fig. P7.115 and P7.116

bee80288_ch07_436-511.indd Page 483  10/30/10  1:42:33 AM user-f499bee80288_ch07_436-511.indd Page 483  10/30/10  1:42:33 AM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch07/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch07



484 Transformations of Stress and Strain  7.117 The cylindrical portion of the compressed-air tank shown is fabri-
cated of 0.25-in.-thick plate welded along a helix forming an angle 
b 5 308 with the horizontal. Knowing that the allowable stress 
normal to the weld is 10.5 ksi, determine the largest gage pressure 
that can be used in the tank.

 7.118 For the compressed-air tank of Prob. 7.117, determine the gage 
pressure that will cause a shearing stress parallel to the weld of 
4 ksi.

 7.119 Square plates, each of 0.5-in. thickness, can be bent and welded 
together in either of the two ways shown to form the cylindrical 
portion of a compressed-air tank. Knowing that the allowable nor-
mal stress perpendicular to the weld is 12 ksi, determine the largest 
allowable gage pressure in each case.

20 in.

	

60 in.

Fig. P7.117

20 ft

12 ft 12 ft

45�

(a) (b)

Fig. P7.119

 7.120 The compressed-air tank AB has an inner diameter of 450 mm and 
a uniform wall thickness of 6 mm. Knowing that the gage pressure 
inside the tank is 1.2 MPa, determine the maximum normal stress 
and the maximum in-plane shearing stress at point a on the top of 
the tank.

 7.121 For the compressed-air tank and loading of Prob. 7.120, determine 
the maximum normal stress and the maximum in-plane shearing 
stress at point b on the top of the tank.

D

A

Ba

b750 mm

500 mm

750 mm

5 kN

Fig. P7.120
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485Problems 7.122 The compressed-air tank AB has a 250-mm outside diameter and 
an 8-mm wall thickness. It is fitted with a collar by which a 40-kN 
force P is applied at B in the horizontal direction. Knowing that 
the gage pressure inside the tank is 5 MPa, determine the maxi-
mum normal stress and the maximum shearing stress at point K.

 7.123 In Prob. 7.122, determine the maximum normal stress and the 
maximum shearing stress at point L.

 7.124 A pressure vessel of 10-in. inner diameter and 0.25-in. wall thick-
ness is fabricated from a 4-ft section of spirally-welded pipe AB 
and is equipped with two rigid end plates. The gage pressure inside 
the vessel is 300 psi and 10-kip centric axial forces P and P9 are 
applied to the end plates. Determine (a) the normal stress perpen-
dicular to the weld, (b) the shearing stress parallel to the weld.

 7.125 Solve Prob. 7.124, assuming that the magnitude P of the two forces 
is increased to 30 kips.

 7.126 A brass ring of 5-in. outer diameter and 0.25-in. thickness fits 
exactly inside a steel ring of 5-in. inner diameter and 0.125-in. 
thickness when the temperature of both rings is 508F. Knowing 
that the temperature of both rings is then raised to 1258F, deter-
mine (a) the tensile stress in the steel ring, (b) the corresponding 
pressure exerted by the brass ring on the steel ring.

600 mm

150 mm
A

B

150 mm

P

x

y

z

K L

Fig. P7.122

4 ft

P

P'

35�
B

A

Fig. P7.124

 7.127 Solve Prob. 7.126, assuming that the brass ring is 0.125 in. thick 
and the steel ring is 0.25 in. thick.

STEEL
ts �
Es � 29 � 106 psi
�s � 6.5 � 10–6/�F

 in.1
8

�s

BRASS
tb �
Eb � 15 � 106 psi
�s � 11.6 � 10–6/�F

 in.1
4

�b

1.5 in.

5 in.

Fig. P7.126
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486 Transformations of Stress and Strain *7.10 TRANSFORMATION OF PLANE STRAIN
Transformations of strain under a rotation of the coordinate axes will 
now be considered. Our analysis will first be limited to states of plane 
strain, i.e., to situations where the deformations of the material take 
place within parallel planes, and are the same in each of these planes. 
If the z axis is chosen perpendicular to the planes in which the defor-
mations take place, we have Pz 5 gzx 5 gzy 5 0, and the only remaining 
strain components are Px, Py, and gxy. Such a situation occurs in a plate 
subjected along its edges to uniformly distributed loads and restrained 
from expanding or contracting laterally by smooth, rigid, and fixed sup-
ports (Fig. 7.54). It would also be found in a bar of infinite length 
subjected on its sides to uniformly distributed loads since, by reason of 
symmetry, the elements located in a given transverse plane cannot 
move out of that plane. This idealized model shows that, in the actual 
case of a long bar subjected to uniformly distributed transverse loads 
(Fig. 7.55), a state of plane strain exists in any given transverse section 
that is not located too close to either end of the bar.†

†It should be observed that a state of plane strain and a state of plane stress (cf. Sec. 7.1) 
do not occur simultaneously, except for ideal materials with a Poisson ratio equal to zero. 
The constraints placed on the elements of the plate of Fig. 7.54 and of the bar of Fig. 7.55 
result in a stress sz different from zero. On the other hand, in the case of the plate of Fig. 
7.3, the absence of any lateral restraint results in sz 5 0 and Pz Z 0.

Fixed support

Fixed support

y

z x

Fig. 7.54 Plane strain example: laterally 
restrained plate.

y

z
x

Fig. 7.55 Plane strain example: bar 
of infinite length.

Q
Q

�s

�s

�s (1 � )y�

)x�

�

y

xO

y

xO

�s (1 �

��
2

� xy��
2 xy

Fig. 7.56 Plane strain element deformation.

Q

Q

�s

�

�

�s

�s (1 � )y'�

�s (1 � )x'��

y

xO xO

 x'y'��
2

� x'y'��
2

y' y'

x'
x'

�

Fig. 7.57 Transformation of plane strain 
element.

 Let us assume that a state of plane strain exists at point Q (with 
Pz 5 gzx 5 gzy 5 0), and that it is defined by the strain components 
Pz, Py, and gxy associated with the x and y axes. As we know from 
Secs. 2.12 and 2.14, this means that a square element of center Q, 
with sides of length Ds respectively parallel to the x and y axes, is 
deformed into a parallelogram with sides of length respectively equal 
to Ds (1 1 Px) and Ds (1 1 Py), forming angles of p2 2 gxy and p2 1 gxy 
with each other (Fig. 7.56). We recall that, as a result of the defor-
mations of the other elements located in the xy plane, the element 
considered may also undergo a rigid-body motion, but such a motion 
is irrelevant to the determination of the strains at point Q and will 
be ignored in this analysis. Our purpose is to determine in terms of 
Px, Py, gxy, and u the strain components Px9, Py9, and gx9y9 associated 
with the frame of reference x9y9 obtained by rotating the x and y 
axes through the angle u. As shown in Fig. 7.57, these new strain 

bee80288_ch07_436-511.indd Page 486  10/30/10  3:32:34 PM user-f499bee80288_ch07_436-511.indd Page 486  10/30/10  3:32:34 PM user-f499/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch07/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch



487components define the parallelogram into which a square with sides 
respectively parallel to the x9 and y9 axes is deformed.
 We first derive an expression for the normal strain P(u) along 
a line AB forming an arbitrary angle u with the x axis. To do so, we 
consider the right triangle ABC, which has AB for hypothenuse (Fig. 
7.58a), and the oblique triangle A9B9C9 into which triangle ABC is 
deformed (Fig. 7.58b). Denoting by Ds the length of AB, we express 
the length of A9B9 as Ds [1 1 P(u)]. Similarly, denoting by Dx and 
Dy the lengths of sides AC and CB, we express the lengths of A9C9 
and C9B9 as Dx (1 1 Px) and Dy (1 1 Py), respectively. Recalling 
from Fig. 7.56 that the right angle at C in Fig. 7.58a deforms into 
an angle equal to p2 1 gxy in Fig. 7.58b, and applying the law of 
cosines to triangle A9B9C9, we write

1A¿B¿ 22 5 1A¿C¿ 22 1 1C¿B¿ 22 2 21A¿C¿ 2 1C¿B¿ 2 cos ap
2

1 gxyb
1¢s22 31 1 P1u2 4 2 5 1¢x2211 1 Px22 1 1¢y2211 1 Py22

221¢x2 11 1 Px2 1¢y2 11 1 Py2 cos ap
2

1 gxyb (7.38)

But from Fig. 7.58a we have

 ¢x 5 1¢s2 cos u  ¢y 5 1¢s2 sin u (7.39)

and we note that, since gxy is very small,

 
cos ap

2
1 gxyb 5 2sin gxy < 2gxy 

(7.40)

Substituting from Eqs. (7.39) and (7.40) into Eq. (7.38), recalling 
that cos2 u 1 sin2 u 5 1, and neglecting second-order terms in P(u), 
Px, Py, and gxy, we write

 P1u2 5 Px cos2 u 1 Py sin
2 u 1 gxy sin u cos u (7.41)

 Equation (7.41) enables us to determine the normal strain P(u) 
in any direction AB in terms of the strain components Px, Py, gxy, and 
the angle u that AB forms with the x axis. We check that, for u 5 0, 
Eq. (7.41) yields P(0) 5 Px and that, for u 5 908, it yields P(908) 5 Py. 
On the other hand, making u 5 458 in Eq. (7.41), we obtain the normal 
strain in the direction of the bisector OB of the angle formed by the x 
and y axes (Fig. 7.59). Denoting this strain by POB, we write

 POB 5 P145°2 5 1
2 1Px 1 Py 1 gxy2 (7.42)

Solving Eq. (7.42) for gxy, we have

 gxy 5 2POB 2 1Px 1 Py2 (7.43)

This relation makes it possible to express the shearing strain associ-
ated with a given pair of rectangular axes in terms of the normal 
strains measured along these axes and their bisector. It will play a 
fundamental role in our present derivation and will also be used in 
Sec. 7.13 in connection with the experimental determination of 
shearing strains.

� �s

�x

�y

�y (1 � )y�

�x (1 � )x�

�s [1 �
( )]� �

y

A

B

C

xO

� xy��
2

(a)

y

A'

B'

C'

xO
(b)

Fig. 7.58

7.10 Transformation of Plane Strain

O

y

x

B

45	

45	

Fig. 7.59
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488 Transformations of Stress and Strain  Recalling that the main purpose of this section is to express the 
strain components associated with the frame of reference x9y9 of Fig. 
7.57 in terms of the angle u and the strain components Px, Py, and gxy 
associated with the x and y axes, we note that the normal strain Px9 
along the x9 axis is given by Eq. (7.41). Using the trigonometric rela-
tions (7.3) and (7.4), we write this equation in the alternative form

 
Px¿ 5

Px 1 Py

2
1

Px 2 Py

2
 cos 2u 1

gxy

2
 sin 2u

 
(7.44)

Replacing u by u 1 908, we obtain the normal strain along the y9 axis. 
Since cos (2u 1 1808) 5 2cos 2u and sin (2u 1 1808) 5 2sin 2u, we 
have

 
Py¿ 5

Px 1 Py

2
2

Px 2 Py

2
 cos 2u 2

gxy

2
 sin 2u

 
(7.45)

Adding Eqs. (7.44) and (7.45) member to member, we obtain

 Px¿ 1 Py¿ 5 Px 1 Py (7.46)

Since Pz 5 Pz9 5 0, we thus verify in the case of plane strain that 
the sum of the normal strains associated with a cubic element of 
material is independent of the orientation of that element.†
 Replacing now u by u 1 458 in Eq. (7.44), we obtain an expres-
sion for the normal strain along the bisector OB9 of the angle formed 
by the x9 and y9 axes. Since cos (2u 1 908) 5 2sin 2u and sin (2u 1 
908) 5 cos 2u, we have

 
POB¿ 5

Px 1 Py

2
2

Px 2 Py

2
 sin 2u 1

gxy

2
 cos 2u

 
(7.47)

Writing Eq. (7.43) with respect to the x9 and y9 axes, we express the 
shearing strain gx9y9 in terms of the normal strains measured along 
the x9 and y9 axes and the bisector OB9:

 gx¿y¿ 5 2POB¿ 2 1Px¿ 1 Py¿2 (7.48)

Substituting from Eqs. (7.46) and (7.47) into (7.48), we obtain

 gx¿y¿ 5 21Px 2 Py2 sin 2u 1 gxy cos 2u (7.49)

 Equations (7.44), (7.45), and (7.49) are the desired equations 
defining the transformation of plane strain under a rotation of axes 
in the plane of strain. Dividing all terms in Eq. (7.49) by 2, we write 
this equation in the alternative form

 

gx¿y¿

2
5 2 

Px 2 Py

2
 sin 2u 1

gxy

2
 cos 2u

 
(7.499)

and observe that Eqs. (7.44), (7.45), and (7.499) for the transforma-
tion of plane strain closely resemble the equations derived in Sec. 
7.2 for the transformation of plane stress. While the former may be 
obtained from the latter by replacing the normal stresses by the cor-
responding normal strains, it should be noted, however, that the 
shearing stresses txy and tx9y9 should be replaced by half of the cor-
responding shearing strains, i.e., by 1

2gxy and 1
2 gx¿y¿, respectively.

†Cf. first footnote on page 97.
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489*7.11 MOHR’S CIRCLE FOR PLANE STRAIN
Since the equations for the transformation of plane strain are of the 
same form as the equations for the transformation of plane stress, 
the use of Mohr’s circle can be extended to the analysis of plane 
strain. Given the strain components Px, Py, and gxy defining the defor-
mation represented in Fig. 7.56, we plot a point X1Px,2

1
2gxy2 of 

abscissa equal to the normal strain Px and of ordinate equal to minus 
half the shearing strain gxy, and a point Y1Py, 1 1

2gxy2 (Fig. 7.60). 
Drawing the diameter XY, we define the center C of Mohr’s circle 
for plane strain. The abscissa of C and the radius R of the circle are 
respectively equal to

Pave 5
Px 1 Py

2
  and  R 5 Ba

Px 2 Py

2
b2

1 agxy

2
b2

 
(7.50)

 We note that if gxy is positive, as assumed in Fig. 7.56, points 
X and Y are plotted, respectively, below and above the horizontal axis 
in Fig. 7.60. But, in the absence of any overall rigid-body rotation, 
the side of the element in Fig. 7.56 that is associated with Px is 
observed to rotate counterclockwise, while the side associated with 
Py is observed to rotate clockwise. Thus, if the shear deformation 
causes a given side to rotate clockwise, the corresponding point on 
Mohr’s circle for plane strain is plotted above the horizontal axis, and 
if the deformation causes the side to rotate counterclockwise, the 
corresponding point is plotted below the horizontal axis. We note 
that this convention matches the convention used to draw Mohr’s 
circle for plane stress.
 Points A and B where Mohr’s circle intersects the horizontal 
axis correspond to the principal strains Pmax and Pmin (Fig. 7.61a). 
We find

 Pmax 5 Pave 1 R  and  Pmin 5 Pave 2 R (7.51)

where Pave and R are defined by Eqs. (7.50). The corresponding value 
up of the angle u is obtained by observing that the shearing strain is 
zero for A and B. Setting gx9y9 5 0 in Eq. (7.49), we have

 
tan 2up 5

gxy

Px 2 Py 
(7.52)

The corresponding axes a and b in Fig. 7.61b are the principal axes 
of strain. The angle up, which defines the direction of the principal 
axis Oa in Fig. 7.61b corresponding to point A in Fig. 7.61a, is equal 
to half of the angle XCA measured on Mohr’s circle, and the rotation 
that brings Ox into Oa has the same sense as the rotation that brings 
the diameter XY of Mohr’s circle into the diameter AB.
 We recall from Sec. 2.14 that, in the case of the elastic defor-
mation of a homogeneous, isotropic material, Hooke’s law for shear-
ing stress and strain applies and yields txy 5 Ggxy for any pair of 
rectangular x and y axes. Thus, gxy 5 0 when txy 5 0, which indi-
cates that the principal axes of strain coincide with the principal axes 
of stress.

7.11 Mohr’s Circle for Plane Strain

( )y ,Y

CO

�

�

� xy� 2
1

( )x ,X � � xy� 2
1

�1
2

�1
2

Fig. 7.60 Mohr’s circle for plane strain.
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Fig. 7.61 Principal strain determination.
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490 Transformations of Stress and Strain  The maximum in-plane shearing strain is defined by points D 
and E in Fig. 7.61a. It is equal to the diameter of Mohr’s circle. 
Recalling the second of Eqs. (7.50), we write

 gmax 1in plane2 5 2R 5 21Px 2 Py22 1 g 2
xy (7.53)

 Finally, we note that the points X9 and Y9 that define the compo-
nents of strain corresponding to a rotation of the coordinate axes through 
an angle u (Fig. 7.57) are obtained by rotating the diameter XY of 
Mohr’s circle in the same sense through an angle 2u (Fig. 7.62).

Q

Q

�s

�

�

�s

�s (1 � )y'�

�s (1 � )x'��

y

xO xO

 x'y'��
2

� x'y'��
2

y' y'

x'
x'

�

Fig. 7.57 (repeated)

CO �

�
X

2

Y

Y'

X'

�1
2

Fig. 7.62

EXAMPLE 7.04 In a material in a state of plane strain, it is known that the horizontal 
side of a 10 3 10-mm square elongates by 4 mm, while its vertical side 
remains unchanged, and that the angle at the lower left corner increases 
by 0.4 3 1023 rad (Fig. 7.63). Determine (a) the principal axes and prin-
cipal strains, (b) the maximum shearing strain and the corresponding 
 normal strain.

 (a) Principal Axes and Principal Strains. We first determine 
the coordinates of points X and Y on Mohr’s circle for strain. We have

Px 5
14 3 1026 m
10 3 103 m

5 1400 m
  

Py 5 0 
 
` gxy

2
` 5 200 m

Since the side of the square associated with Px rotates clockwise, point X 
of coordinates Px and |gxyy2| is plotted above the horizontal axis. Since 
Py 5 0 and the corresponding side rotates counterclockwise, point Y is 
plotted directly below the origin (Fig. 7.64). Drawing the diameter XY, 
we determine the center C of Mohr’s circle and its radius R. We have

OC 5
Px 1 Py

2
5 200 m

  
OY 5 200 m

R 5 21OC22 1 1OY22 5 21200 m22 1 1200 m22 5 283 m

The principal strains are defined by the abscissas of points A and B. We 
write

Pa 5 OA 5 OC 1 R 5 200 m 1 283 m 5 483 m 
Pb 5 OB 5 OC 2 R 5 200 m 2 283 m 5 283 m

The principal axes Oa and Ob are shown in Fig. 7.65. Since OC 5 OY, 
the angle at C in triangle OCY is 458. Thus, the angle 2up that brings XY 
into AB is 458i and the angle up bringing Ox into Oa is 22.58i.

� 0.4 	 10–3 rad�
2

10 mm

10 mm
10 mm � 4 m

xx

yy




Fig. 7.63

X(400, 200)

Y(0, � 200)

CO

� p2

AB

D

E

�1
2 (
)

� (
)

Fig. 7.64
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491

*7.12 THREE-DIMENSIONAL ANALYSIS OF STRAIN
We saw in Sec. 7.5 that, in the most general case of stress, we can 
determine three coordinate axes a, b, and c, called the principal axes of 
stress. A small cubic element with faces respectively perpendicular to 
these axes is free of shearing stresses (Fig. 7.25); i.e., we have tab 5 
tbc 5 tca 5 0. As recalled in the preceding section, Hooke’s law for 
shearing stress and strain applies when the deformation is elastic and 
the material homogeneous and isotropic. It follows that, in such a case, 
gab 5 gbc 5 gca 5 0, i.e., the axes a, b, and c are also principal axes of 
strain. A small cube of side equal to unity, centered at Q and with faces 
respectively perpendicular to the principal axes, is deformed into a rect-
angular parallelepiped of sides 1 1 Pa, 1 1 Pb, and 1 1 Pc (Fig. 7.67).

 (b) Maximum Shearing Strain. Points D and E define the maxi-
mum in-plane shearing strain which, since the principal strains have opposite 
signs, is also the actual maximum shearing strain (see Sec. 7.12). We have

gmax

2
5 R 5 283 m  gmax 5 566 m

The corresponding normal strains are both equal to

P¿ 5 OC 5 200 m

The axes of maximum shearing strain are shown in Fig. 7.66.

O
� p � 22.5�

y

x

b

a

Fig. 7.65

O

22.5�

y

d
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x

Fig. 7.66
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b
c

c

Q

a

c

b

Fig. 7.25 (repeated)

Q

c

a

b

1 � b�

1 � c�

1 � a�

Fig. 7.67 Principal strains.

7.12 Three-Dimensional Analysis of Strain
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492 Transformations of Stress and Strain

 If the element of Fig. 7.67 is rotated about one of the principal 
axes at Q, say the c axis (Fig. 7.68), the method of analysis developed 
earlier for the transformation of plane strain can be used to deter-
mine the strain components Px, Py, and gxy associated with the faces 
perpendicular to the c axis, since the derivation of this method did 
not involve any of the other strain components.† We can, therefore, 
draw Mohr’s circle through the points A and B corresponding to the 
principal axes a and b (Fig. 7.69). Similarly, circles of diameters BC 
and CA can be used to analyze the transformation of strain as the 
element is rotated about the a and b axes, respectively.

Q

c

a

b

1 � b�

1 � c�

1 � a�

Fig. 7.67 (repeated)

z � c

Q

a

b

y x

�1 � x

�1 � c

�1 � y

xy��
2 �

Fig. 7.68

†We note that the other four faces of the element remain rectangular and that the edges 
parallel to the c axis remain unchanged.

O C B

�

A
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max

max

�

�

1
2

�1
2

Fig. 7.69 Mohr’s circle for three-
dimensional analysis of strain.

 The three-dimensional analysis of strain by means of Mohr’s 
circle is limited here to rotations about principal axes (as was the 
case for the analysis of stress) and is used to determine the maximum 
shearing strain gmax at point Q. Since gmax is equal to the diameter 
of the largest of the three circles shown in Fig. 7.69, we have

 gmax 5 0Pmax 2 Pmin 0  (7.54)

where Pmax and Pmin represent the algebraic values of the maximum 
and minimum strains at point Q.
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493 Returning to the particular case of plane strain, and selecting 
the x and y axes in the plane of strain, we have Pz 5 gzx 5 gzy 5 0. 
Thus, the z axis is one of the three principal axes at Q, and the cor-
responding point in the Mohr-circle diagram is the origin O, where 
P 5 g 5 0. If the points A and B that define the principal axes within 
the plane of strain fall on opposite sides of O (Fig. 7.70a), the cor-
responding principal strains represent the maximum and minimum 
normal strains at point Q, and the maximum shearing strain is equal 
to the maximum in-plane shearing strain corresponding to points D 
and E. If, on the other hand, A and B are on the same side of O 
(Fig. 7.70b), that is, if Pa and Pb have the same sign, then the maxi-
mum shearing strain is defined by points D9 and E9 on the circle of 
diameter OA, and we have gmax 5 Pmax.
 We now consider the particular case of plane stress encoun-
tered in a thin plate or on the free surface of a structural element 
or machine component (Sec. 7.1). Selecting the x and y axes in the 
plane of stress, we have sz 5 tzx 5 tzy 5 0 and verify that the z axis 
is a principal axis of stress. As we saw earlier, if the deformation is 
elastic and if the material is homogeneous and isotropic, it follows 
from Hooke’s law that gzx 5 gzy 5 0; thus, the z axis is also a principal 
axis of strain, and Mohr’s circle can be used to analyze the transfor-
mation of strain in the xy plane. However, as we shall see presently, 
it does not follow from Hooke’s law that Pz 5 0; indeed, a state of 
plane stress does not, in general, result in a state of plane strain.†
 Denoting by a and b the principal axes within the plane of 
stress, and by c the principal axis perpendicular to that plane, we let 
sx 5 sa, sy 5 sb, and sz 5 0 in Eqs. (2.28) for the generalized 
Hooke’s law (Sec. 2.12) and write

 
 Pa 5

sa

E
2
nsb

E  
(7.55)

 
 Pb 5 2 

nsa

E
1
sb

E  
(7.56)

 
 Pc 5 2 

n

E
 1sa 1 sb2 (7.57)

Adding Eqs. (7.55) and (7.56) member to member, we have

 
Pa 1 Pb 5

1 2 n

E
 1sa 1 sb2 (7.58)

Solving Eq. (7.58) for sa 1 sb and substituting into Eq. (7.57), we 
write

 
Pc 5 2

n

1 2 n
 1Pa 1 Pb2 (7.59)

The relation obtained defines the third principal strain in terms of 
the “in-plane’’ principal strains. We note that, if B is located between 
A and C on the Mohr-circle diagram (Fig. 7.71), the maximum shear-
ing strain is equal to the diameter CA of the circle corresponding to 
a rotation about the b axis, out of the plane of stress.

7.12 Three-Dimensional Analysis of Strain

†See footnote on page 486.
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Fig. 7.70 Mohr’s circle for plane strain.
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Fig. 7.71 Mohr’s circle strain analysis 
for plane stress.
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EXAMPLE 7.05 As a result of measurements made on the surface of a machine compo-
nent with strain gages oriented in various ways, it has been established 
that the principal strains on the free surface are Pa 5 1400 3 1026 in./in. 
and Pb 5 250 3 1026 in./in. Knowing that Poisson’s ratio for the given 
material is n 5 0.30, determine (a) the maximum in-plane shearing strain, 
(b) the true value of the maximum shearing strain near the surface of the 
component.

 (a) Maximum In-Plane Shearing Strain. We draw Mohr’s circle 
through the points A and B corresponding to the given principal strains 
(Fig. 7.72). The maximum in-plane shearing strain is defined by points D 
and E and is equal to the diameter of Mohr’s circle:

gmax 1in plane2 5 400 3 1026 1 50 3 1026 5 450 3 1026 rad

 (b) Maximum Shearing Strain. We first determine the third 
principal strain Pc. Since we have a state of plane stress on the surface of 
the machine component, we use Eq. (7.59) and write

 Pc 5 2 
n

1 2 n
 1Pa 1 Pb2

 5 2 
0.30
0.70

 1400 3 1026 2 50 3 10262 5 2150 3 1026 in./in.

Drawing Mohr’s circles through A and C and through B and C (Fig. 7.73), 
we find that the maximum shearing strain is equal to the diameter of the 
circle of diameter CA:

gmax 5 400 3 1026 1 150 3 1026 5 550 3 1026 rad

We note that, even though Pa and Pb have opposite signs, the maximum 
in-plane shearing strain does not represent the true maximum shearing 
strain.

494

Fig. 7.72
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Fig. 7.73

*7.13 MEASUREMENTS OF STRAIN; STRAIN ROSETTE
The normal strain can be determined in any given direction on the 
surface of a structural element or machine component by scribing 
two gage marks A and B across a line drawn in the desired direction 
and measuring the length of the segment AB before and after the 
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495load has been applied. If L is the undeformed length of AB and d 
its deformation, the normal strain along AB is PAB 5 dyL.
 A more convenient and more accurate method for the mea-
surement of normal strains is provided by electrical strain gages. A 
typical electrical strain gage consists of a length of thin wire arranged 
as shown in Fig. 7.74 and cemented to two pieces of paper. In order 
to measure the strain PAB of a given material in the direction AB, the 
gage is cemented to the surface of the material, with the wire folds 
running parallel to AB. As the material elongates, the wire increases 
in length and decreases in diameter, causing the electrical resistance 
of the gage to increase. By measuring the current passing through a 
properly calibrated gage, the strain PAB can be determined accurately 
and continuously as the load is increased.
 The strain components Px and Py can be determined at a given 
point of the free surface of a material by simply measuring the normal 
strain along x and y axes drawn through that point. Recalling Eq. (7.43) 
of Sec. 7.10, we note that a third measurement of normal strain, made 
along the bisector OB of the angle formed by the x and y axes, enables 
us to determine the shearing strain gxy as well (Fig. 7.75):

 gxy 5 2POB 2 1Px 1 Py2 (7.43)

 It should be noted that the strain components Px, Py, and gxy at 
a given point could be obtained from normal strain measurements 
made along any three lines drawn through that point (Fig. 7.76). Denot-
ing respectively by u1, u2, and u3 the angle each of the three lines forms 
with the x axis, by P1, P2, and P3 the corresponding strain measurements, 
and substituting into Eq. (7.41), we write the three equations

  P1 5 Px cos2 u1 1 Py sin
2 u1 1 gxy sin u1 cos u1 

  P2 5 Px cos2 u2 1 Py sin
2 u2 1 gxy sin u2 cos u2 (7.60)

  P3 5 Px cos2 u3 1 Py sin
2 u3 1 gxy sin u3 cos u3 

which can be solved simultaneously for Px, Py, and gxy.†
 The arrangement of strain gages used to measure the three 
normal strains P1, P2, and P3 is known as a strain rosette. The rosette 
used to measure normal strains along the x and y axes and their 
bisector is referred to as a 458 rosette (Fig. 7.75). Another rosette 
frequently used is the 608 rosette (see Sample Prob. 7.7).

7.13 Measurements of Strain; Strain Rosette

A

B

Fig. 7.74 Electrical strain gage.
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�OB
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Fig. 7.75

L1

L2

L3

O x

�2

�1

�3

�2
�3

�1

Fig. 7.76 Strain rosette.

†It should be noted that the free surface on which the strain measurements are made is 
in a state of plane stress, while Eqs. (7.41) and (7.43) were derived for a state of plane 
strain. However, as observed earlier, the normal to the free surface is a principal axis of 
strain and the derivations given in Sec. 7.10 remain valid.
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SAMPLE PROBLEM 7.6

A cylindrical storage tank used to transport gas under pressure has an inner 
diameter of 24 in. and a wall thickness of 3

4 in. Strain gages attached to 
the surface of the tank in transverse and longitudinal directions indicate 
strains of 255 3 1026 and 60 3 1026 in./in. respectively. Knowing that a 
torsion test has shown that the modulus of rigidity of the material used in 
the tank is G 5 11.2 3 106 psi, determine (a) the gage pressure inside 
the tank, (b) the principal stresses and the maximum shearing stress in the 
wall of the tank.

24 in.

1
2

SOLUTION

 a. Gage Pressure Inside Tank. We note that the given strains are the 
principal strains at the surface of the tank. Plotting the corresponding points 
A and B, we draw Mohr’s circle for strain. The maximum in-plane shearing 
strain is equal to the diameter of the circle.

gmax 1in plane2 5 P1 2 P2 5 255 3 1026 2 60 3 1026 5 195 3 1026 rad

From Hooke’s law for shearing stress and strain, we have

 tmax 1in plane2 5 Ggmax 1in plane2
 5 111.2 3 106 psi2 1195 3 1026 rad2
 5 2184 psi 5 2.184 ksi

Substituting this value and the given data in Eq. (7.33), we write

tmax 1in plane2 5
pr

4t   
2184 psi 5

p112 in.2
410.75 in.2

Solving for the gage pressure p, we have

p 5 546 psi ◀

 b. Principal Stresses and Maximum Shearing Stress. Recalling that, 
for a thin-walled cylindrical pressure vessel, s1 5 2s2, we draw Mohr’s circle 
for stress and obtain

 s2 5 2tmax 1in plane2 5 212.184 ksi2 5 4.368 ksi s2 5 4.37 ksi ◀

 s1 5 2s2 5 214.368 ksi2  s1 5 8.74 ksi ◀

The maximum shearing stress is equal to the radius of the circle of diameter 
OA and corresponds to a rotation of 458 about a longitudinal axis.

 tmax 5 1
2 s1 5 s2 5 4.368 ksi tmax 5 4.37 ksi ◀

�

�

A
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SAMPLE PROBLEM 7.7

Using a 608 rosette, the following strains have been determined at point Q 
on the surface of a steel machine base:

P1 5 40 m  P2 5 980 m  P3 5 330 m

Using the coordinate axes shown, determine at point Q, (a) the strain com-
ponents Px, Py, and gxy, (b) the principal strains, (c) the maximum shearing 
strain. (Use n 5 0.29.)

SOLUTION

 a. Strain Components ex, ey, Gxy. For the coordinate axes shown

u1 5 0  u2 5 60°  u3 5 120°

Substituting these values into Eqs. (7.60), we have

 P1 5 Px112  1 Py102  1 gxy102 112
 P2 5 Px10.50022  1 Py10.86622 1 gxy10.8662 10.5002
 P3 5 Px120.50022 1 Py10.86622 1 gxy10.8662 120.5002

Solving these equations for Px, Py, and gxy, we obtain

Px 5 P1  Py 5 1
3 12P2 1 2P3 2 P12  gxy 5

P2 2 P3

0.866

Substituting the given values for P1, P2, and P3, we have

Px 5 40 m Py 5 1
3 3219802 1 213302 2 40 4   Py 5 1860 m ◀

 gxy 5 1980 2 3302y0.866 gxy 5 750 m ◀

These strains are indicated on the element shown.

 b. Principal Strains. We note that the side of the element associated 
with Px rotates counterclockwise; thus, we plot point X below the horizontal 
axis, i.e., X(40, 2375). We then plot Y(860, 1375) and draw Mohr’s circle.

Pave 5 1
2 1860 m 1 40 m2 5 450 m

R 5 21375 m22 1 1410 m22 5 556 m

tan 2up 5
375 m
410 m

  2up 5 42.4°i  up 5 21.2°i

Points A and B correspond to the principal strains. We have

 Pa 5 Pave 2 R 5 450 m 2 556 m Pa 5 2106 m ◀

 Pb 5 Pave 1 R 5 450 m 1 556 m Pb 5 11006 m ◀

Since sz 5 0 on the surface, we use Eq. (7.59) to find the principal strain Pc:

Pc 5 2
n

1 2 n
 1Pa 1 Pb2 5 2

0.29
1 2 0.29

 12106 m 1 1006 m2 Pc 5 2368 m ◀

 c. Maximum Shearing Strain. Plotting point C and drawing Mohr’s 
circle through points B and C, we obtain point D9 and write

 1
2 gmax 5 1

2 11006 m 1 368 m2 gmax 5 1374 m ◀
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PROBLEMS

498

 7.128 through 7.131 For the given state of plane strain, use the 
method of Sec. 7.10 to determine the state of plane strain associ-
ated with axes x9 and y9 rotated through the given angle u.

Px Py gxy u

7.128 and 7.132 2500m 1250m 0 158 l
7.129 and 7.133 1240m 1160m 1150m 608 i
7.130 and 7.134 2800m 1450m 1200m 258 i
7.131 and 7.135 0 1320m 2100m 308 l

 7.132 through 7.135 For the given state of plane strain, use Mohr’s 
circle to determine the state of plane strain associated with axes x9 
and y9 rotated through the given angle u.

 7.136 through 7.139 The following state of strain has been mea-
sured on the surface of a thin plate. Knowing that the surface of 
the plate is unstressed, determine (a) the direction and magnitude 
of the principal strains, (b) the maximum in-plane shearing strain, 
(c) the maximum shearing strain. (Use n 5 1

3)

 Px Py gxy

7.136 2260m 260m 1480m
7.137 2600m 2400m 1350m
7.138 1160m 2480m 2600m
7.139 130m 1570m 1720m

 7.140 through 7.143 For the given state of plane strain, use Mohr’s 
circle to determine(a) the orientation and magnitude of the prin-
cipal strains, (b) the maximum in-plane strain, (c) the maximum 
shearing strain.

 Px Py gxy

7.140 160m 1240m 250m
7.141 1400m 1200m 1375m
7.142 1300m 160m 1100m
7.143 2180m 2260m 1315m

 7.144 Determine the strain Px knowing that the following strains have 
been determined by use of the rosette shown:

  P1 5 1480m  P2 5 2120m  P3 5 180m

y
y'

x'

x
�

Fig. P7.128 through P7.135

x

30	

45	

15	

2

3

1

Fig. P7.144
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499Problems 7.145 The strains determined by the use of the rosette shown during the 
test of a machine element are

  P1 5 1600m  P2 5 1450m  P3 5 275m

  Determine (a) the in-plane principal strains, (b) the in-plane maxi-
mum shearing strain.

 7.146 The rosette shown has been used to determine the following strains 
at a point on the surface of a crane hook:

  P1 5 1420 3 1026 in./in.    P2 5 245 3 1026 in./in.
  P4 5 1165 3 1026 in./in.

  (a) What should be the reading of gage 3? (b) Determine the 
principal strains and the maximum in-plane shearing strain.

 7.147 The strains determined by the use of the rosette attached as shown 
during the test of a machine element are

  P1 5 293.1 3 1026 in./in.    P2 5 1385 3 1026 in./in.
  P3 5 1210 3 1026 in./in.

  Determine (a) the orientation and magnitude of the principal 
strains in the plane of the rosette, (b) the maximum in-plane shear-
ing strain.

 7.148 Using a 458 rosette, the strains P1, P2, and P3 have been determined 
at a given point. Using Mohr’s circle, show that the principal strains 
are:

  
Pmax, min 5

1
2
1P1 1 P32 6  

1

22
c 1P1 2 P222 1 1P2 2 P322 d

1/2

  (Hint: The shaded triangles are congruent.)

y
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Fig. P7.145

x

45	 45	

45	

2

3

4

1

Fig. P7.146

75	

75	

3

x

1

2

Fig. P7.147

O
A

C
B

min�

1�

3�

2�

max�

�
2

45	

45	

2

3

1

�

Fig. P7.148

bee80288_ch07_436-511.indd Page 499  10/30/10  3:34:07 PM user-f499bee80288_ch07_436-511.indd Page 499  10/30/10  3:34:07 PM user-f499/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch07/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch



500 Transformations of Stress and Strain  7.149 Show that the sum of the three strain measurements made with a 608 
rosette is independent of the orientation of the rosette and equal to

  P1 1 P2 1 P3 5 3Pavg

  where Pavg is the abscissa of the center of the corresponding Mohr’s 
circle.

x

60�

60�

�

2

3

1

Fig. P7.149

2 in.

T

T'
�

Fig. P7.150

 7.150 A single strain gage is cemented to a solid 4-in.-diameter steel shaft 
at an angle b 5 258 with a line parallel to the axis of the shaft. 
Knowing that G 5 11.5 3 106 psi, determine the torque T indi-
cated by a gage reading of 300 3 1026 in./in.

�

Fig. P7.152

 7.151 Solve Prob. 7.150, assuming that the gage forms an angle b 5 358 
with a line parallel to the axis of the shaft.

 7.152 A single strain gage forming an angle b 5 188 with a horizontal 
plane is used to determine the gage pressure in the cylindrical steel 
tank shown. The cylindrical wall of the tank is 6-mm thick, has a 
600-mm inside diameter, and is made of a steel with E 5 200 GPa 
and n 5 0.30. Determine the pressure in the tank indicated by a 
strain gage reading of 280m.

 7.153 Solve Prob. 7.152, assuming that the gage forms an angle b 5 358 
with a horizontal plane.
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501Problems 7.154 The given state of plane stress is known to exist on the surface of a 
machine component. Knowing that E 5 200 GPa and G 5 77.2 GPa, 
determine the direction and magnitude of the three principal strains 
(a) by determining the corresponding state of strain [use Eq. (2.43) 
and Eq. (2.38)] and then using Mohr’s circle for strain, (b) by using 
Mohr’s circle for stress to determine the principal planes and princi-
pal stresses and then determining the corresponding strains.

 7.155 The following state of strain has been determined on the surface 
of a cast-iron machine part:

  Px 5 2720m  Py 5 2400m  gxy 5 1660m

  Knowing that E 5 69 GPa and G 5 28 GPa, determine the prin-
cipal planes and principal stresses (a) by determining the corre-
sponding state of plane stress [use Eq. (2.36), Eq. (2.43), and the 
first two equations of Prob. 2.72] and then using Mohr’s circle for 
stress, (b) by using Mohr’s circle for strain to determine the orien-
tation and magnitude of the principal strains and then determine 
the corresponding stresses.

 7.156 A centric axial force P and a horizontal force Qx are both applied 
at point C of the rectangular bar shown. A 458 strain rosette on 
the surface of the bar at point A indicates the following strains:

  P1 5 260 3 1026 in./in.  P2 5 1240 3 1026 in./in.
  P3 5 1200 3 1026 in./in.

  Knowing that E 5 29 3 106 psi and n 5 0.30, determine the 
magnitudes of P and Qx.

150 MPa

75 MPa

Fig. P7.154

 7.157 Solve Prob. 7.156, assuming that the rosette at point A indicates 
the following strains:

  P1 5 230 3 1026 in./in.    P2 5 1250 3 1026 in./in.
  P3 5 1100 3 1026 in./in.

1 in. 
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12 in.
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45�
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Fig. P7.156
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502

REVIEW AND SUMMARY
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Fig. 7.77

Considering first a state of plane stress at a given point Q [Sec. 7.2] 
and denoting by sx, sy, and txy the stress components associated 
with the element shown in Fig. 7.77a, we derived the following for-
mulas defining the components sx9, sy9, and tx9y9 associated with that 
element after it had been rotated through an angle u about the z axis 
(Fig. 7.77b):

 sx¿ 5
sx 1 sy

2
1
sx 2 sy

2
 cos 2u 1 txy sin 2u

 
(7.5)

 sy¿ 5
sx 1 sy

2
2
sx 2 sy

2
 cos 2u 2 txy sin 2u

 
(7.7)

 tx¿y¿ 5 2 
sx 2 sy

2
 sin 2u 1 txy cos 2u

 
(7.6)

 In Sec. 7.3, we determined the values up of the angle of rotation 
which correspond to the maximum and minimum values of the nor-
mal stress at point Q. We wrote

 
tan 2up 5

2txy

sx 2 sy 
(7.12)

The two values obtained for up are 908 apart (Fig. 7.78) and define 
the principal planes of stress at point Q. The corresponding values 

min

min

max

max

�p

�p

y

Q x

y'

x'

Fig. 7.78

Transformation of plane stress

The first part of this chapter was devoted to a study of the transfor-
mation of stress under a rotation of axes and to its application to the 
solution of engineering problems, and the second part to a similar 
study of the transformation of strain.

Principal planes. Principal stresses
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503of the normal stress are called the principal stresses at Q; we 
obtained

 
smax, min 5

sx 1 sy

2
6 Ba

sx 2 sy

2
b2

1 t2
xy 

(7.14)

We also noted that the corresponding value of the shearing stress is 
zero. Next, we determined the values us of the angle u for which the 
largest value of the shearing stress occurs. We wrote

 
tan 2us 5 2 

sx 2 sy

2txy  
(7.15)

The two values obtained for us are 908 apart (Fig. 7.79). We also 
noted that the planes of maximum shearing stress are at 458 to the 
principal planes. The maximum value of the shearing stress for a 
rotation in the plane of stress is

 
tmax 5 Ba

sx 2 sy

2
b2

1 t2
xy 

(7.16)

and the corresponding value of the normal stresses is

 
s¿ 5 save 5

sx 1 sy

2  
(7.17)

We saw in Sec. 7.4 that Mohr’s circle provides an alternative method, 
based on simple geometric considerations, for the analysis of the 

Review and Summary
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Fig. 7.79

Maximum in-plane shearing stress

Mohr’s circle for stress

transformation of plane stress. Given the state of stress shown in 
black in Fig. 7.80a, we plot point X of coordinates sx, 2txy and point 
Y of coordinates sy, 1txy (Fig. 7.80b). Drawing the circle of diame-
ter XY, we obtain Mohr’s circle. The abscissas of the points of inter-
section A and B of the circle with the horizontal axis represent the 
principal stresses, and the angle of rotation bringing the diameter XY 
into AB is twice the angle up defining the principal planes in 
Fig. 7.80a, with both angles having the same sense. We also noted 
that diameter DE defines the maximum shearing stress and the 
 orientation of the corresponding plane (Fig. 7.81) [Example 7.02, 
Sample Probs. 7.2 and 7.3].
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504 Transformations of Stress and Strain Considering a general state of stress characterized by six stress com-
ponents [Sec. 7.5], we showed that the normal stress on a plane of 
arbitrary orientation can be expressed as a quadratic form of the direc-
tion cosines of the normal to that plane. This proves the existence of 
three principal axes of stress and three principal stresses at any given 
point. Rotating a small cubic element about each of the three principal 
axes [Sec. 7.6], we drew the corresponding Mohr’s circles that yield 
the values of smax, smin, and tmax (Fig. 7.82). In the particular case of 
plane stress, and if the x and y axes are selected in the plane of stress, 
point C coincides with the origin O. If A and B are located on opposite 
sides of O, the maximum shearing stress is equal to the maximum 
“in-plane’’ shearing stress as determined in Secs. 7.3 or 7.4. If A and 
B are located on the same side of O, this will not be the case. If sa . 
sb . 0, for instance the maximum shearing stress is equal to 1

2 sa and 
corresponds to a rotation out of the plane of stress (Fig. 7.83).

General state of stress

O
C B

�

A

min







max

max�

Fig. 7.82
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�
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� max
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1
2 a 

a

Fig. 7.83

Yield criteria for ductile materials under plane stress were developed 
in Sec. 7.7. To predict whether a structural or machine component will 
fail at some critical point due to yield in the material, we first determine 
the principal stresses sa and sb at that point for the given loading 
condition. We then plot the point of coordinates sa and sb. If this point 
falls within a certain area, the component is safe; if it falls outside, the 
component will fail. The area used with the maximum-shearing-strength 
criterion is shown in Fig. 7.84 and the area used with the maximum-
distortion-energy criterion in Fig. 7.85. We note that both areas depend 
upon the value of the yield strength sY of the material.

Yield criteria for ductile materials

Y�

� Y a
Y

Y

b

�

�

O

Fig. 7.84
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Fig. 7.85
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505Fracture criteria for brittle materials under plane stress were devel-
oped in Sec. 7.8 in a similar fashion. The most commonly used is 
Mohr’s criterion, which utilizes the results of various types of test 
available for a given material. The shaded area shown in Fig. 7.86 is 
used when the ultimate strengths sUT and sUC have been deter-
mined, respectively, from a tension and a compression test. Again, 
the principal stresses sa and sb are determined at a given point of 
the structural or machine component being investigated. If the cor-
responding point falls within the shaded area, the component is safe; 
if it falls outside, the component will rupture.

Review and Summary

Fracture criteria for brittle materials

Cylindrical pressure vessels
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a

Fig. 7.86
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Fig. 7.88

In Sec. 7.9, we discussed the stresses in thin-walled pressure vessels 
and derived formulas relating the stresses in the walls of the vessels 
and the gage pressure p in the fluid they contain. In the case of a 
cylindrical vessel of inside radius r and thickness t (Fig. 7.87), we 
obtained the following expressions for the hoop stress s1 and the 
longitudinal stress s2:

 
s1 5

pr

t   
s2 5

pr

2 t 
(7.30, 7.31)

We also found that the maximum shearing stress occurs out of the 
plane of stress and is

 
tmax 5 s2 5

pr

2 t 
(7.34)

In the case of a spherical vessel of inside radius r and thickness t 
(Fig. 7.88), we found that the two principal stresses are equal:

 
s1 5 s2 5

pr

2 t 
(7.36)

Again, the maximum shearing stress occurs out of the plane of stress; 
it is

 
tmax 5 1

2s1 5
pr

4t  
(7.37)

Spherical pressure vessels
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506 Transformations of Stress and Strain
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Fig. 7.89

The last part of the chapter was devoted to the transformation of 
strain. In Secs. 7.10 and 7.11, we discussed the transformation of 
plane strain and introduced Mohr’s circle for plane strain. The dis-
cussion was similar to the corresponding discussion of the transfor-
mation of stress, except that, where the shearing stress t was used, 
we now used 1

2 g, that is, half the shearing strain. The formulas 
obtained for the transformation of strain under a rotation of axes 
through an angle u were

 Px¿ 5
Px 1 Py

2
1

Px 2 Py

2
 cos 2u 1

gxy

2
 sin 2u

 
(7.44)

 Py¿ 5
Px 1 Py

2
2

Px 2 Py

2
 cos 2u 2

gxy

2
 sin 2u

 
(7.45)

 gx¿y¿ 5 21Px 2 Py2 sin  2u 1 gxy cos 2u  (7.49)

Using Mohr’s circle for strain (Fig. 7.89), we also obtained the fol-
lowing relations defining the angle of rotation up corresponding to 
the principal axes of strain and the values of the principal strains
Pmax and Pmin:

 
tan 2up 5

gxy

Px 2 Py  
(7.52)

Pmax 5 Pave 1 R  and  Pmin 5 Pave 2 R (7.51)

where

Pave 5
Px 1 Py

2   
and 

 
R 5 Ba

Px 2 Py

2
b2

1 agxy

2
b2

 
(7.50)

The maximum shearing strain for a rotation in the plane of strain 
was found to be

gmax 1in plane2 5 2R 5 21Px 2 Py22 1 g2
xy (7.53)

 Section 7.12 was devoted to the three-dimensional analysis of 
strain, with application to the determination of the maximum shear-
ing strain in the particular cases of plane strain and plane stress. In 
the case of plane stress, we also found that the principal strain Pc in 
a direction perpendicular to the plane of stress could be expressed 
as follows in terms of the “in-plane’’ principal strains Pa and Pb:

 
Pc 5 2

n

1 2 n
 1Pa 1 Pb2 (7.59)

Finally, we discussed in Sec. 7.13 the use of strain gages to measure 
the normal strain on the surface of a structural element or machine 
component. Considering a strain rosette consisting of three gages 
aligned along lines forming respectively, angles u1, u2, and u3 with 
the x axis (Fig. 7.90), we wrote the following relations among the 
measurements P1, P2, P3 of the gages and the components Px, Py, gxy 
characterizing the state of strain at that point:

  P1 5 Px cos2 u1 1 Py sin
2 u1 1 gxy sin u1 cos u1 

  P2 5 Px cos2 u2 1 Py sin
2 u2 1 gxy sin u2 cos u2 (7.60)

  P3 5 Px cos2 u3 1 Py sin
2 u3 1 gxy sin u3 cos u3 

 These equations can be solved for Px, Py, and gxy, once P1, P2, 
and P3 have been determined.

Transformation of plane strain

Mohr’s circle for strain

Strain gages. Strain rosette

L1

L2

L3

O x

�2

�1

�3

�2
�3

�1

Fig. 7.90
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507

REVIEW PROBLEMS

 7.158 Two wooden members of 80 3 120-mm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing 
that b 5 228 and that the maximum allowable stresses in the joint 
are, respectively, 400 kPa in tension (perpendicular to the splice) 
and 600 kPa in shear (parallel to the splice), determine the largest 
centric load P that can be applied.

P'

P

80 mm �

120 mm

Fig. P7.158 and P7.159

P

a

�
a

Fig. P7.160

7.159 Two wooden members of 80 3 120-mm uniform rectangular cross 
section are joined by the simple glued scarf splice shown. Knowing 
that b 5 258 and that centric loads of magnitude P 5 10 kN are 
applied to the members as shown, determine (a) the in-plane 
shearing stress parallel to the splice, (b) the normal stress perpen-
dicular to the splice.

 7.160 The centric force P is applied to a short post as shown. Knowing 
that the stresses on plane a-a are s 5 215 ksi and t 5 5 ksi, 
determine (a) the angle b that plane a-a forms with the horizontal, 
(b) the maximum compressive stress in the post.

 7.161 Determine the principal planes and the principal stresses for the 
state of plane stress resulting from the superposition of the two 
states of stress shown.

0
00

0

30	

30	

Fig. P7.161
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508 Transformations of Stress and Strain

 7.163 For the state of stress shown, determine the maximum shearing 
stress when (a) tyz 5 17.5 ksi, (b) tyz 5 8 ksi, (c) tyz 5 0.

z
x

τyz

3 ksi12 ksi

y

Fig. P7.163

�xy

14 ksi

24 ksi

Fig. P7.164

 7.164 The state of plane stress shown occurs in a machine component 
made of a steel with sY 5 30 ksi. Using the maximum-distortion-
energy criterion, determine whether yield will occur when (a) txy 5 
6 ksi, (b) txy 5 12 ksi, (c) txy 5 14 ksi. If yield does not occur, 
determine the corresponding factor of safety.

 7.162 For the state of stress shown, determine the maximum shearing 
stress when (a) sz 5 124 MPa, (b) sz 5 224 MPa, (c) sz 5 0.

z

σz

36 MPa

y

x

42 MPa

12 MPa

Fig. P7.162

bee80288_ch07_436-511.indd Page 508  10/30/10  3:36:01 PM user-f499bee80288_ch07_436-511.indd Page 508  10/30/10  3:36:01 PM user-f499/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch07/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch



509Review Problems

T

Fig. P7.165 and 
P7.166

 7.165 A torque of magnitude T 5 12 kN ? m is applied to the end of a 
tank containing compressed air under a pressure of 8 MPa. Know-
ing that the tank has a 180-mm inner diameter and a 12-mm wall 
thickness, determine the maximum normal stress and the maxi-
mum shearing stress in the tank.

 7.166 The tank shown has a 180-mm inner diameter and a 12-mm wall 
thickness. Knowing that the tank contains compressed air under a 
pressure of 8 MPa, determine the magnitude T of the applied 
torque for which the maximum normal stress is 75 MPa.

 7.167 The brass pipe AD is fitted with a jacket used to apply a hydrostatic 
pressure of 500 psi to portion BC of the pipe. Knowing that the 
pressure inside the pipe is 100 psi, determine the maximum normal 
stress in the pipe.

 7.168 For the assembly of Prob. 7.167, determine the normal stress in 
the jacket (a) in a direction perpendicular to the longitudinal axis 
of the jacket, (b) in a direction parallel to that axis.

 7.169 Determine the largest in-plane normal strain, knowing that the 
following strains have been obtained by the use of the rosette 
shown:

  P1 5 250 3 1026 in./in.    P2 5 1360 3 1026 in./in.
  P3 5 1315 3 1026 in./in.

D

2 in.

4 in.

A

B

C

0.12 in.

0.15 in.

Fig. P7.167

x
45	 45	

2

3

1

Fig. P7.169
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COMPUTER PROBLEMS

The following problems are to be solved with a computer.

7.C1 A state of plane stress is defined by the stress components sx, sy,
and txy associated with the element shown in Fig. P7.C1a. (a) Write a com-
puter program that can be used to calculate the stress components sx9, sy9,
and tx9y9 associated with the element after it has rotated through an angle u
about the z axis (Fig. P.7C1b). (b) Use this program to solve Probs. 7.13 
through 7.16.

�xy

�x'y'

y y'

x

x'Q Q

z

x x

x'

y y'

z

y
�

�

(a) (b)

Fig. P7.C1

7.C2 A state of plane stress is defined by the stress components sx, sy,
and txy associated with the element shown in Fig. P7.C1a. (a) Write a 
computer program that can be used to calculate the principal axes, the 
principal stresses, the maximum in-plane shearing stress, and the maxi-
mum shearing stress. (b) Use this program to solve Probs. 7.5, 7.9, 7.68, 
and 7.69.

 7.C3 (a) Write a computer program that, for a given state of plane stress 
and a given yield strength of a ductile material, can be used to determine 
whether the material will yield. The program should use both the maximum 
shearing-strength criterion and the maximum-distortion-energy criterion. It 
should also print the values of the principal stresses and, if the material does 
not yield, calculate the factor of safety. (b) Use this program to solve Probs. 
7.81, 7.82, and 7.164.

 7.C4 (a) Write a computer program based on Mohr’s fracture criterion 
for brittle materials that, for a given state of plane stress and given values 
of the ultimate strength of the material in tension and compression, can be 
used to determine whether rupture will occur. The program should also 
print the values of the principal stresses. (b) Use this program to solve 
Probs. 7.91 and 7.92 and to check the answers to Probs. 7.93 and 7.94.
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511Computer Problems 7.C5 A state of plane strain is defined by the strain components Px, Py, 
and gxy associated with the x and y axes. (a) Write a computer program that 
can be used to calculate the strain components Px9, Py9, and gx9y9 associated 
with the frame of reference x9y9 obtained by rotating the x and y axes 
through an angle u. (b) Use this program to solve Probs. 7.129 and 7.131.

y
y'

x'

x
�

Fig. P7.C5

 7.C6 A state of strain is defined by the strain components Px, Py, and gxy 
associated with the x and y axes. (a) Write a computer program that can be 
used to determine the orientation and magnitude of the principal strains, 
the maximum in-plane shearing strain, and the maximum shearing strain. 
(b) Use this program to solve Probs. 7.136 through 7.139.

 7.C7 A state of plane strain is defined by the strain components Px, Py, 
and gxy measured at a point. (a) Write a computer program that can be used 
to determine the orientation and magnitude of the principal strains, the 
maximum in-plane shearing strain, and the magnitude of the shearing strain. 
(b) Use this program to solve Probs. 7.140 through 7.143.

 7.C8 A rosette consisting of three gages forming, respectively, angles of 
u1, u2, and u3 with the x axis is attached to the free surface of a machine 
component made of a material with a given Poisson’s ratio y. (a) Write a 
computer program that, for given readings P1, P2, and P3 of the gages, can 
be used to calculate the strain components associated with the x and y axes 
and to determine the orientation and magnitude of the three principal 
strains, the maximum in-plane shearing strain, and the maximum shearing 
strain. (b) Use this program to solve Probs. 7.144, 7.145, 7.146, and 7.169.
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Due to gravity and wind load, the post 

supporting the sign shown is subjected 

simultaneously to compression, bending, 

and torsion. In this chapter you will 

learn to determine the stresses created 

by such combined loadings in structures 

and machine components.
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Principal Stresses under a 
Given Loading

8C H A P T E R
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514

Chapter 8 Principal Stresses 
under a Given Loading

 *8.1 Introduction
 *8.2 Principal Stresses in a Beam
 *8.3 Design of Transmission Shafts
 *8.4 Stresses under Combined 

Loadings
 

*8.1 INTRODUCTION
In the first part of this chapter, you will apply to the design of beams 
and shafts the knowledge that you acquired in Chap. 7 on the trans-
formation of stresses. In the second part of the chapter, you will learn 
how to determine the principal stresses in structural members and 
machine elements under given loading conditions.
 In Chap. 5 you learned to calculate the maximum normal stress 
sm occurring in a beam under a transverse loading (Fig. 8.1a) and 
check whether this value exceeded the allowable stress sall for the 
given material. If it did, the design of the beam was not acceptable. 
While the danger for a brittle material is actually to fail in tension, 
the danger for a ductile material is to fail in shear (Fig. 8.1b). The 
fact that sm . sall indicates that |M|max is too large for the cross sec-
tion selected, but does not provide any information on the actual 
mechanism of failure. Similarly, the fact that tm . tall simply indi-
cates that |V|max is too large for the cross section selected. While the 
danger for a ductile material is actually to fail in shear (Fig. 8.2a), 
the danger for a brittle material is to fail in tension under the prin-
cipal stresses (Fig. 8.2b). The distribution of the principal stresses in 
a beam will be discussed in Sec. 8.2.
 Depending upon the shape of the cross section of the beam and 
the value of the shear V in the critical section where |M| 5 |M|max, it 
may happen that the largest value of the normal stress will not occur 
at the top or bottom of the section, but at some other point within the 
section. As you will see in Sec. 8.2, a combination of large values of sx 
and txy near the junction of the web and the flanges of a W-beam or 
an S-beam can result in a value of the principal stress smax (Fig. 8.3) 
that is larger than the value of sm on the surface of the beam.

 Section 8.3 will be devoted to the design of transmission shafts 
subjected to transverse loads as well as to torques. The effect of both 
the normal stresses due to bending and the shearing stresses due to 
torsion will be taken into account.
 In Sec. 8.4 you will learn to determine the stresses at a given 
point K of a body of arbitrary shape subjected to a combined loading. 
First, you will reduce the given loading to forces and couples in the 
section containing K. Next, you will calculate the normal and shearing 
stresses at K. Finally, using one of the methods for the transformation 
of stresses that you learned in Chap. 7, you will determine the principal 
planes, principal stresses, and maximum shearing stress at K.

�m

�max

�m
� '

(a) (b)

Fig. 8.1

�m

� '

� '

(a) (b)

Fig. 8.2

�max

Fig. 8.3 Principal stresses at the 
junction of a flange and web in 
an I-shaped beam.
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5158.2 Principal Stresses in a Beam*8.2 PRINCIPAL STRESSES IN A BEAM
Consider a prismatic beam AB subjected to some arbitrary transverse 
loading (Fig. 8.4). We denote by V and M, respectively, the shear 
and bending moment in a section through a given point C. We recall 
from Chaps. 5 and 6 that, within the elastic limit, the stresses exerted 
on a small element with faces perpendicular, respectively, to the x 
and y axes reduce to the normal stresses sm 5 McyI if the element 
is at the free surface of the beam, and to the shearing stresses tm 5 
VQyIt if the element is at the neutral surface (Fig. 8.5).

 At any other point of the cross section, an element of material 
is subjected simultaneously to the normal stresses

 
sx 5 2

My

I  
(8.1)

where y is the distance from the neutral surface and I the centroidal 
moment of inertia of the section, and to the shearing stresses

 
txy 5 2

VQ

It  
(8.2)

where Q is the first moment about the neutral axis of the portion of 
the cross-sectional area located above the point where the stresses are 
computed, and t the width of the cross section at that point. Using 
either of the methods of analysis presented in Chap. 7, we can obtain 
the principal stresses at any point of the cross section (Fig. 8.6).
 The following question now arises: Can the maximum normal 
stress smax at some point within the cross section be larger than 
the value of sm 5 McyI computed at the surface of the beam? If 
it can, then the determination of the largest normal stress in the 
beam will involve a great deal more than the computation of |M|max 
and the use of Eq. (8.1). We can obtain an answer to this question 
by investigating the distribution of the principal stresses in a  narrow 

B

w

A
C

D

P

Fig. 8.4 Transversely loaded prismatic 
beam.

Fig. 8.5 Stress elements at 
selected points of a beam.

�m �m

�m �m

�m

�xy

�x�x

c

y

y

xO

 c

�m �m

�m �m

�min

�min

�max

�max

c

y

y

xO

 c

Fig. 8.6 Principal stresses at 
selected points of a beam.
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516 Principal Stresses under a Given Loading rectangular cantilever beam subjected to a concentrated load P at 
its free end (Fig. 8.7). We recall from Sec. 6.5 that the normal and 
shearing stresses at a distance x from the load P and a distance y 
above the neutral surface are given, respectively, by Eq. (6.13) and 
Eq. (6.12). Since the moment of inertia of the cross section is

I 5
bh3

12
5
1bh2 12c22

12
5

Ac2

3

where A is the cross-sectional area and c the half-depth of the beam, 
we write

 
sx 5

Pxy

I
5

Pxy
1
3 Ac2 5 3 

P
A

 
xy

c2  
(8.3)

and

 
txy 5

3
2

 
P
A

 a1 2
y2

c2b (8.4)

 Using the method of Sec. 7.3 or Sec. 7.4, the value of smax can 
be determined at any point of the beam. Figure 8.8 shows the results 
of the computation of the ratios smaxysm and sminysm in two sections 
of the beam, corresponding respectively to x 5 2c and x 5 8c. In 

c

c

b
x

y�x �xy

P

Fig. 8.7 Narrow rectangular 
cantilever beam supporting a single 
concentrated load.

1.0

y/c �min/�m �min/�m�max/�m �max/�m

x � 2c x � 8c

0.8

0.6

0.4

0.2

� 0.2

� 0.4

� 0.6

� 0.8

� 1.0

0

0

�0.010

�0.040

�0.090

�0.160

�0.360

�0.490

�0.640

�0.810

�1.000

�0.250

1.000

0.810

0.640

0.490

0.360

0.160

0.090

0.040

0.010

0

0.250

0

�0.001

�0.003

�0.007

�0.017

�0.217

�0.407

�0.603

�0.801

�1.000

�0.063

1.000

0.801

0.603

0.407

0.217

0.017

0.007

0.003

0.001

0

0.063

y � � c

x � 2c x � 8c

y � � c

y � 0

P

Fig. 8.8 Distribution of principal stresses in two transverse sections of a rectangular cantilever beam supporting a single 
con centrated load.
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517each section, these ratios have been determined at 11 different 
points, and the orientation of the principal axes has been indicated 
at each point.†
 It is clear that smax does not exceed sm in either of the two 
sections considered in Fig. 8.8 and that, if it does exceed sm else-
where, it will be in sections close to the load P, where sm is small 
compared to tm.‡ But, for sections close to the load P, Saint-Venant’s 
principle does not apply, Eqs. (8.3) and (8.4) cease to be valid, except 
in the very unlikely case of a load distributed parabolically over the 
end section (cf. Sec. 6.5), and more advanced methods of analysis 
taking into account the effect of stress concentrations should be 
used. We thus conclude that, for beams of rectangular cross section, 
and within the scope of the theory presented in this text, the maxi-
mum normal stress can be obtained from Eq. (8.1).
 In Fig. 8.8 the directions of the principal axes were determined 
at 11 points in each of the two sections considered. If this analysis 
were extended to a larger number of sections and a larger number 
of points in each section, it would be possible to draw two orthogonal 
systems of curves on the side of the beam (Fig. 8.9). One system 
would consist of curves tangent to the principal axes corresponding 
to smax and the other of curves tangent to the principal axes corre-
sponding to smin. The curves obtained in this manner are known as 
the stress trajectories. A trajectory of the first group (solid lines) 
defines at each of its points the direction of the largest tensile stress, 
while a trajectory of the second group (dashed lines) defines the 
direction of the largest compressive stress.§
 The conclusion we have reached for beams of rectangular cross 
section, that the maximum normal stress in the beam can be obtained 
from Eq. (8.1), remains valid for many beams of nonrectangular cross 
section. However, when the width of the cross section varies in such 
a way that large shearing stresses txy will occur at points close to the 
surface of the beam, where sx is also large, a value of the principal 
stress smax larger than sm may result at such points. One should be 
particularly aware of this possibility when selecting W-beams or 
S-beams, and calculate the principal stress smax at the junctions b and 
d of the web with the flanges of the beam (Fig. 8.10). This is done 
by determining sx and txy at that point from Eqs. (8.1) and (8.2), 
respectively, and using either of the methods of analysis of Chap. 7 
to obtain smax (see Sample Prob. 8.1). An alternative procedure, used 
in design to select an acceptable section, consists of using for txy the 
maximum value of the shearing stress in the section, tmax 5 VyAweb, 
given by Eq. (6.11) of Sec. 6.4. This leads to a slightly larger, and thus 
conservative, value of the principal stress smax at the junction of the 
web with the flanges of the beam (see Sample Prob. 8.2).

8.2 Principal Stresses in a Beam

†See Prob. 8.C2, which refers to a program that can be written to obtain the results shown 
in Fig. 8.8.
‡As will be verified in Prob. 8.C2, smax exceeds sm if x # 0.544c.
§A brittle material, such as concrete, will fail in tension along planes that are perpendicular 
to the tensile-stress trajectories. Thus, to be effective, steel reinforcing bars should be 
placed so that they intersect these planes. On the other hand, stiffeners attached to the 
web of a plate girder will be effective in preventing buckling only if they intersect planes 
perpendicular to the compressive-stress trajectories.

Tensile

Compressive

P

Fig. 8.9 Stress trajectories.

a

b

c

d

e

Fig. 8.10 Key stress 
analysis locations 
in I-shaped beams.
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518 Principal Stresses under a Given Loading *8.3 DESIGN OF TRANSMISSION SHAFTS
When we discussed the design of transmission shafts in Sec. 3.7, we 
considered only the stresses due to the torques exerted on the shafts. 
However, if the power is transferred to and from the shaft by means 
of gears or sprocket wheels (Fig. 8.11a), the forces exerted on the 
gear teeth or sprockets are equivalent to force-couple systems applied 
at the centers of the corresponding cross sections (Fig. 8.11b). This 
means that the shaft is subjected to a transverse loading, as well as 
to a torsional loading.

 The shearing stresses produced in the shaft by the transverse 
loads are usually much smaller than those produced by the torques 
and will be neglected in this analysis.† The normal stresses due to 
the transverse loads, however, may be quite large and, as you will 
see presently, their contribution to the maximum shearing stress tmax 
should be taken into account.

†For an application where the shearing stresses produced by the transverse loads must be 
considered, see Probs. 8.21 and 8.22.

C

A

B
P1

P2

P3

C

(a)

CAy

Az

P2

P3

T3

T2

T1

P1

C
(b)

y

z

Bz

By

x

Fig. 8.11 Loadings on gear-shaft systems.
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519 Consider the cross section of the shaft at some point C. We 
represent the torque T and the bending couples My and Mz acting, 
respectively, in a horizontal and a vertical plane by the couple vec-
tors shown (Fig. 8.12a). Since any diameter of the section is a prin-
cipal axis of inertia for the section, we can replace My and Mz by 
their resultant M (Fig. 8.12b) in order to compute the normal 
stresses sx exerted on the section. We thus find that sx is maximum 
at the end of the diameter perpendicular to the vector representing 
M (Fig. 8.13). Recalling that the values of the normal stresses at 
that point are, respectively, sm 5 McyI and zero, while the shearing 
stress is tm 5 TcyJ, we plot the corresponding points X and Y on a 
Mohr-circle diagram (Fig. 8.14) and determine the value of the 
maximum shearing stress:

tmax 5 R 5 Ba
sm

2
b2

1 1tm22 5 Ba
Mc
2I
b2

1 aTc
J
b2

Recalling that, for a circular or annular cross section, 2I 5 J, we 
write

 
tmax 5

c
J
2M2 1 T 

2

 
(8.5)

 It follows that the minimum allowable value of the ratio Jyc for 
the cross section of the shaft is

 

J
c

5
A2M2 1 T 

2
 Bmax

tall  
(8.6)

where the numerator in the right-hand member of the expression 
obtained represents the maximum value of 2M2 1 T 

2 in the shaft, 
and tall the allowable shearing stress. Expressing the bending moment 
M in terms of its components in the two coordinate planes, we can 
also write

 

J
c

5
A2My

2 1 Mz
2 1 T 

2
 Bmax

tall  
(8.7)

Equations (8.6) and (8.7) can be used to design both solid and hollow 
circular shafts and should be compared with Eq. (3.22) of Sec. 3.7, 
which was obtained under the assumption of a torsional loading only.
 The determination of the maximum value of 2My

2 1 Mz
2 1 T 

2 
will be facilitated if the bending-moment diagrams corresponding 
to My and Mz are drawn, as well as a third diagram representing the 
values of T along the shaft (see Sample Prob. 8.3).

8.3 Design of Transmission Shafts 

C

Mz

My

C

M

(a) (b)

TT

Fig. 8.12 Resultant loading on the cross 
section of a shaft.

m�

m�
m�

M

T

Fig. 8.13 Maximum 
stress element.

max�

�

�

m�

m�

AC

X

Y

OB

D

Fig. 8.14 Mohr’s circle analysis.
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520

SAMPLE PROBLEM 8.1

A 160-kN force is applied as shown at the end of a W200 3 52 rolled-steel 
beam. Neglecting the effect of fillets and of stress concentrations, determine 
whether the normal stresses in the beam satisfy a design specification that 
they be equal to or less than 150 MPa at section A-A9.

SOLUTION

 Shear and Bending Moment. At section A-A9, we have

 MA 5 1160 kN2 10.375 m2 5 60 kN ? m
 VA 5 160 kN

 Normal Stresses on Transverse Plane. Referring to the table of 
Properties of Rolled-Steel Shapes in Appendix C, we obtain the data shown 
and then determine the stresses sa and sb.
 At point a:

sa 5
MA

S
5

60 kN ? m
511 3 1026 m3 5 117.4 MPa

 At point b:

sb 5 sa 
yb

c
5 1117.4 MPa2 90.4 mm

103 mm
5 103.0 MPa

We note that all normal stresses on the transverse plane are less than 150 MPa.

 Shearing Stresses on Transverse Plane
 At point a:

Q 5 0  ta 5 0

 At point b:

Q 5 1206 3 12.62 196.72 5 251.0 3 103 mm3 5 251.0 3 1026 m3

tb 5
VAQ

It
5
1160 kN2 1251.0 3 1026 m32
152.9 3 1026 m42 10.00787 m2 5 96.5 MPa

 Principal Stress at Point b. The state of stress at point b consists of 
the normal stress sb 5 103.0 MPa and the shearing stress tb 5 96.5 MPa. 
We draw Mohr’s circle and find

 smax 5
1
2

 sb 1 R 5
1
2

 sb 1 Ba
1
2

 sbb
2

1 tb
2

 5
103.0

2
1 Ba

103.0
2
b2

1 196.522
 smax 5 160.9 MPa

The specification, smax # 150 MPa, is not satisfied ◀

 Comment. For this beam and loading, the principal stress at point b 
is 36% larger than the normal stress at point a. For L $ 881 mm, the maxi-
mum normal stress would occur at point a.

A

A'
160 kN

L � 375 mm

VA

MA

0.375 m

160 kN

a�

b�

12.6 mm
206 mm

c � 103 mm

206 mm

yb � 90.4 mm

7.87 mm

I � 52.9 � 10–6m4

S � 511 � 10–6m3

a

b
c

12.6 mm
206 mm

96.7 mm103 mm

a

b

c

b� max�

max�

min�

b�

b�

b�

b�

�

�

Y

X

A O C

R

2

B

a

b c

L � 881 mm

W200 � 52

P
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521

SAMPLE PROBLEM 8.2

The overhanging beam AB supports a uniformly distributed load of 3.2 kips/
ft and a concentrated load of 20 kips at C. Knowing that for the grade of 
steel to be used sall 5 24 ksi and tall 5 14.5 ksi, select the wide-flange 
shape that should be used.

SOLUTION

 Reactions at A and D. We draw the free-body diagram of the beam. 
From the equilibrium equations SMD 5 0 and SMA 5 0 we find the values 
of RA and RD shown in the diagram.
 Shear and Bending-Moment Diagrams. Using the methods of Secs. 
5.2 and 5.3, we draw the diagrams and observe that

ƒ M ƒ max 5 239.4 kip ? ft 5 2873 kip ? in.  ƒ V ƒ max 5 43 kips
 Section Modulus. For |M|max 5 2873 kip ? in. and sall 5 24 ksi, the 
minimum acceptable section modulus of the rolled-steel shape is

Smin 5
ƒ M ƒ max

sall
5

2873 kip ? in.

24 ksi
5 119.7 in3

 Selection of Wide-Flange Shape. From the table of Properties of 
Rolled-Steel Shapes in Appendix C, we compile a list of the lightest shapes 
of a given depth that have a section modulus larger than Smin.

B
DC

20 kips

3.2 kips/ft
9 ft

20 ft
5 ft

A

DC
59 kips41 kips

41 kips

12.2 kips
16 kips

– 7.8 kips

239.4 kip · ft

– 43 kips

– 40 kip · ft

(– 279.4)
( 239.4)

(40)

9 ft 11 ft
5 ft

V

x

x

M

B

20 kips

3.2 kips/ft

A

tw � 0.400 in.

Aweb � twd � 8.40 in2

W21 � 62

S � 127 in3d � 21 in.

� 22.6 ksia�

� 21.3 ksib�10.5 in.

9.88 in.

a

b

tf � 0.615 in.

A
C O B

Y

X

b � 1.45 ksi

b � 1.45 ksi

� b � 21.3 ksi

�

�

b � 21.3 ksi

�max � 21.4 ksi

�

�

�

We now select the lightest shape available, namely W21 3 62 ◀

 Shearing Stress. Since we are designing the beam, we will conserva-
tively assume that the maximum shear is uniformly distributed over the web 
area of a W21 3 62. We write

tm 5
Vmax

Aweb
5

43 kips

8.40 in2 5 5.12 ksi , 14.5 ksi  (OK)

 Principal Stress at Point b. We check that the maximum principal 
stress at point b in the critical section where M is maximum does not exceed 
sall 5 24 ksi. We write

 sa 5
Mmax

S
5

2873 kip ? in.

127 in3 5 22.6 ksi

 sb 5 sa 
yb

c
5 122.6 ksi2 9.88 in.

10.50 in.
5 21.3 ksi

Conservatively,  tb 5
V

Aweb
5

12.2 kips

8.40 in2 5 1.45 ksi

We draw Mohr’s circle and find

smax 5 1
2sb 1 R 5

21.3 ksi
2

1 Ba
21.3 ksi

2
b2

1 11.45 ksi22
smax 5 21.4 ksi # 24 ksi (OK) ◀

Shape S (in3)

W24 3 68 154
W21 3 62 127
W18 3 76 146
W16 3 77 134
W14 3 82 123
W12 3 96 131
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SAMPLE PROBLEM 8.3

The solid shaft AB rotates at 480 rpm and transmits 30 kW from the motor 
M to machine tools connected to gears G and H; 20 kW is taken off at gear 
G and 10 kW at gear H. Knowing that tall 5 50 MPa, determine the smallest 
permissible diameter for shaft AB.

SOLUTION

 Torques Exerted on Gears. Observing that f 5 480 rpm 5 8 Hz, we 
determine the torque exerted on gear E:

TE 5
P

2pf
5

30 kW
2p18 Hz2 5 597 N ? m

The corresponding tangential force acting on the gear is

FE 5
TE

rE
5

597 N ? m
0.16 m

5 3.73 kN

A similar analysis of gears C and D yields

TC 5
20 kW

2p18 Hz2 5 398 N ? m   FC 5 6.63 kN

TD 5
10 kW

2p18 Hz2 5 199 N ? m   FD 5 2.49 kN

We now replace the forces on the gears by equivalent force-couple systems.
 Bending-Moment and Torque Diagrams

522

200

G

A

H

C

B

M

D E

rE � 160

rC � 60 rD � 80

200

Dimensions in mm

200 200

A C D E

rC � 0.060 m

rE � 0.160 m

FE � 3.73 kN

FC � 6.63 kN
FD � 2.49 kN

rD � 0.080 m

B

A
C D E

y TD � 199 N · m
FE � 3.73 kN

FD � 2.49 kN
TE � 597 N · m

FC � 6.63 kN

TC � 398 N · m

B
x

z

My

Mz

y

x

T

FC � 6.63 kN
FE � 3.73 kN

FC � 6.63 kN

1244 N · m
1160 N · m

580 N · m

FD � 2.49 kN TE � 597 N · m

597 N · m398 N · m

TD � 199 N · m

TC � 398 N · m

2.80 kN0.932 kN

0.6 m

373 N · m 560 N · m186 N · m

0.2 m

A E

y

B
x

z

Mz

A C D E B

6.22 kN 2.90 kN0.2 m
0.4 m

A

A

y

BC

C

D

D

x

z

My
C D

E B

A

A

y

T

B

B

C

C

D

D

E

E

x

z

 Critical Transverse Section. By computing 2M 
2
y 1 M 

2
z 1 T 

2 at all poten-
tially critical sections, we find that its maximum value occurs just to the right of D:
2M 

2
y 1 M 

2
z 1 T 

2
max 5 21116022 1 137322 1 159722 5 1357 N ? m

 Diameter of Shaft. For tall 5 50 MPa, Eq. (7.32) yields

J

c
5
2M 

2
y 1 M 

2
z 1 T 

2
max

tall
5

1357 N ? m
50 MPa

5 27.14 3 1026 m3

For a solid circular shaft of radius c, we have
J

c
5
p

2
 c3 5 27.14 3 1026  c 5 0.02585 m 5 25.85 mm

Diameter 5 2c 5 51.7 mm ◀
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PROBLEMS

523

 8.1 A W10 3 39 rolled-steel beam supports a load P as shown. Knowing 
that P 5 45 kips, a 5 10 in., and sall 5 18 ksi, determine (a) the 
maximum value of the normal stress sm in the beam, (b) the maxi-
mum value of the principal stress smax at the junction of the flange 
and web, (c) whether the specified shape is acceptable as far as these 
two stresses are concerned.

 8.2 Solve Prob. 8.1, assuming that P 5 22.5 kips and a 5 20 in.

 8.3 An overhanging W920 3 449 rolled-steel beam supports a load 
P as shown. Knowing that P 5 700 kN, a 5 2.5 m, and sall 5 
100 MPa, determine (a) the maximum value of the normal stress 
sm in the beam, (b) the maximum value of the principal stress smax 
at the junction of the flange and web, (c) whether the specified 
shape is acceptable as far as these two stresses are concerned.

 8.4 Solve Prob. 8.3, assuming that P 5 850 kN and a 5 2.0 m.

 8.5 and 8.6 (a) Knowing that sall 5 24 ksi and tall 5 14.5 ksi, select 
the most economical wide-flange shape that should be used to 
support the loading shown. (b) Determine the values to be expected 
for sm, tm, and the principal stress smax at the junction of a flange 
and the web of the selected beam.

 8.7 and 8.8 (a) Knowing that sall 5 160 MPa and tall 5 100 MPa, 
select the most economical metric wide-flange shape that should 
be used to support the loading shown. (b) Determine the values 
to be expected for sm, tm, and the principal stress smax at the junc-
tion of a flange and the web of the selected beam.

A D
CB

a a10 ft

P P

Fig. P8.1

P

B

CA

a a

Fig. P8.3

D
B C

12.5 kips2 kips/ft

9 ft
3 ft 3 ft

A

Fig. P8.5

D

B C

6 ft 12 ft

A

6 ft

10 kips15 kips

Fig. P8.6

D
B C

A

1.5 m
3.6 m

1.5 m

275 kN

275 kN

Fig. P8.7

A
B

C

4.5 m 2.7 m

2.2 kN/m
40 kN

Fig. P8.8
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524 Principal Stresses under a Given Loading  8.9 through 8.14 Each of the following problems refers to a 
rolled-steel shape selected in a problem of Chap. 5 to support a 
given loading at a minimal cost while satisfying the requirement 
sm # sall. For the selected design, determine (a) the actual value 
of sm in the beam, (b) the maximum value of the principal stress 
smax at the junction of a flange and the web.

   8.9  Loading of Prob. 5.73 and selected W530 3 66 shape.
   8.10 Loading of Prob. 5.74 and selected W530 3 92 shape.
   8.11 Loading of Prob. 5.77 and selected S15 3 42.9 shape.
   8.12 Loading of Prob. 5.78 and selected S12 3 31.8 shape.
   8.13 Loading of Prob. 5.75 and selected S460 3 81.4 shape.
   8.14 Loading of Prob. 5.76 and selected S510 3 98.2 shape.

 8.15 The vertical force P1 and the horizontal force P2 are applied as 
shown to disks welded to the solid shaft AD. Knowing that the 
diameter of the shaft is 1.75 in. and that tall 5 8 ksi, determine 
the largest permissible magnitude of the force P2.

 8.16 The two 500-lb forces are vertical and the force P is parallel to the 
z axis. Knowing that tall 5 8 ksi, determine the smallest permissible 
diameter of the solid shaft AE.

A

3 in.
10 in.

10 in.

8 in.
B

C
D

6 in.

P1

P2

Fig. P8.15

B

7 in.
7 in.

7 in.
7 in.

4 in.

4 in.

y

A

E

x

z B

C

500 lb

P

6 in.
D

500 lb

Fig. P8.16

D

100 mm

60 mm

90 mm

4 kN

QB

C

A

y

z

x

80 mm

140 mm

Fig. P8.18

 8.17 For the gear-and-shaft system and loading of Prob. 8.16, determine 
the smallest permissible diameter of shaft AE, knowing that the shaft 
is hollow and has an inner diameter that is 2

3 the outer diameter.

 8.18 The 4-kN force is parallel to the x axis, and the force Q is parallel 
to the z axis. The shaft AD is hollow. Knowing that the inner diam-
eter is half the outer diameter and that tall 5 60 MPa, determine 
the smallest permissible outer diameter of the shaft.
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525Problems 8.19 Neglecting the effect of fillets and of stress concentrations, deter-
mine the smallest permissible diameters of the solid rods BC and 
CD. Use tall 5 60 MPa.

 8.20 Knowing that rods BC and CD are of diameter 24 mm and 36 mm, 
respectively, determine the maximum shearing stress in each rod. 
Neglect the effect of fillets and of stress concentrations.

 8.21 It was stated in Sec. 8.3 that the shearing stresses produced in a 
shaft by the transverse loads are usually much smaller than those 
produced by the torques. In the preceding problems their effect 
was ignored and it was assumed that the maximum shearing stress 
in a given section occurred at point H (Fig. P8.21a) and was equal 
to the expression obtained in Eq. (8.5), namely,

   
tH 5

c
J
2M2 1 T 

2

  Show that the maximum shearing stress at point K (Fig. P8.21b), 
where the effect of the shear V is greatest, can be expressed as

   
tK 5

c
JB 1M cos b22 1 a2

3
cV 1 Tb2

  where b is the angle between the vectors V and M. It is clear that 
the effect of the shear V cannot be ignored when tK $ tH. (Hint: 
Only the component of M along V contributes to the shearing 
stress at K.)

 8.22 Assuming that the magnitudes of the forces applied to disks A and 
C of Prob. 8.15 are, respectively, P1 5 1080 lb and P2 5 810 lb, 
and using the expressions given in Prob. 8.21, determine the values 
of tH and tK in a section (a) just to the left of B, (b) just to the 
left of C.

 8.23 The solid shafts ABC and DEF and the gears shown are used to 
transmit 20 hp from the motor M to a machine tool connected 
to shaft DEF. Knowing that the motor rotates at 240 rpm and 
that tall 5 7.5 ksi, determine the smallest permissible diameter 
of (a) shaft ABC, (b) shaft DEF.

 8.24 Solve Prob. 8.23, assuming that the motor rotates at 360 rpm.

D

1250 N500 N

B
C

A

160 mm

200 mm

180 mm

Fig. P8.19 and P8.20

H

90�

O

V

M

T

90�

(a)

(b)

O

M

T
K

�

Fig. P8.21

M

A
B

3.5 in. D

6 in.

8 in.
4 in.

E

F

C

Fig. P8.23
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526 Principal Stresses under a Given Loading  8.25 The solid shaft AB rotates at 360 rpm and transmits 20 kW from 
the motor M to machine tools connected to gears E and F. Knowing 
that tall 5 45 MPa and assuming that 10 kW is taken off at each 
gear, determine the smallest permissible diameter of shaft AB.

M

120 mm

120 mm

0.2 m

0.2 m

0.2 mA

C
F

E

B

D

Fig. P8.25

 8.26 Solve Prob. 8.25, assuming that the entire 20 kW is taken off at 
gear E.

 8.27 The solid shaft ABC and the gears shown are used to transmit 
10 kW from the motor M to a machine tool connected to gear D. 
Knowing that the motor rotates at 240 rpm and that tall 5 60 MPa, 
determine the smallest permissible diameter of shaft ABC.

90 mm

100 mm
M

C

B

D

E

C

A

Fig. P8.27

 8.28 Assuming that shaft ABC of Prob. 8.27 is hollow and has an outer 
diameter of 50 mm, determine the largest permissible inner diam-
eter of the shaft.
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 8.29 The solid shaft AE rotates at 600 rpm and transmits 60 hp from 
the motor M to machine tools connected to gears G and H. Know-
ing that tall 5 8 ksi and that 40 hp is taken off at gear G and 20 hp 
is taken off at gear H, determine the smallest permissible diameter 
of shaft AE.

*8.4 STRESSES UNDER COMBINED LOADINGS
In Chaps. 1 and 2 you learned to determine the stresses caused by 
a centric axial load. In Chap. 3, you analyzed the distribution of 
stresses in a cylindrical member subjected to a twisting couple. In 
Chap. 4, you determined the stresses caused by bending couples and, 
in Chaps. 5 and 6, the stresses produced by transverse loads. As you 
will see presently, you can combine the knowledge you have acquired 
to determine the stresses in slender structural members or machine 
components under fairly general loading conditions.
 Consider, for example, the bent member ABDE of circular 
cross section that is subjected to several forces (Fig. 8.15). In order 
to determine the stresses produced at points H or K by the given 
loads, we first pass a section through these points and determine the 
force-couple system at the centroid C of the section that is required 
to maintain the equilibrium of portion ABC.† This system represents 
the internal forces in the section and, in general, consists of three 

M

A

3 in.

C

F

B

4 in.

6 in.

6 in.

8 in.

C

D

H

G

4 in.

4 in.

E

Fig. P8.29

†The force-couple system at C can also be defined as equivalent to the forces acting on 
the portion of the member located to the right of the section (see Example 8.01).

8.4 Stresses under Combined Loadings

 8.30 Solve Prob. 8.29, assuming that 30 hp is taken off at gear G and 
30 hp is taken off at gear H.

F3

F4

F6

F5

F2

F1
B

D

E

K

H

A

Fig. 8.15 Member ABDE subjected to 
several forces.
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528 Principal Stresses under a Given Loading

force components and three couple vectors that will be assumed 
directed as shown (Fig. 8.16).
 The force P is a centric axial force that produces normal stresses 
in the section. The couple vectors My and Mz cause the member to 
bend and also produce normal stresses in the section. They have 
therefore been grouped with the force P in part a of Fig. 8.17 and 
the sums sx of the normal stresses they produce at points H and K 
have been shown in part a of Fig. 8.18. These stresses can be deter-
mined as shown in Sec. 4.14.
 On the other hand, the twisting couple T and the shearing 
forces Vy and Vz produce shearing stresses in the section. The sums 
txy and txz of the components of the shearing stresses they produce 
at points H and K have been shown in part b of Fig. 8.18 and can 
be determined as indicated in Secs. 3.4 and 6.3.† The normal and 
shearing stresses shown in parts a and b of Fig. 8.18 can now be 
combined and displayed at points H and K on the surface of the 
member (Fig. 8.19).
 The principal stresses and the orientation of the principal 
planes at points H and K can be determined from the values of sx, 
txy, and txz at each of these points by one of the methods presented 
in Chap. 7 (Fig. 8.20). The values of the maximum shearing stress 
at each of these points and the corresponding planes can be found 
in a similar way.
 The results obtained in this section are valid only to the extent 
that the conditions of applicability of the superposition principle 
(Sec. 2.12) and of Saint-Venant’s principle (Sec. 2.17) are met. This 
means that the stresses involved must not exceed the proportional 
limit of the material, that the deformations due to one of the loadings 
must not affect the determination of the stresses due to the others, 
and that the section used in your analysis must not be too close to 
the points of application of the given forces. It is clear from the first 
of these requirements that the method presented here cannot be 
applied to plastic deformations.

†Note that your present knowledge allows you to determine the effect of the twisting 
couple T only in the cases of circular shafts, of members with a rectangular cross section 
(Sec. 3.12), or of thin-walled hollow members (Sec. 3.13).

My

T
P

Mz

VzF3

F2

F1
Vy

B

y

x

z

C

A

Fig. 8.16 Determination of internal forces 
at the section for stress analysis.

My Vy

Vz

P

Mz

C
T

(a) (b)

C

Fig. 8.17 Internal forces separated into 
(a) those causing normal stresses (b) those 
causing shearing stresses.

C

H

K

(a) (b)

CK

x�

xy�x�

C

H

CK

xz�

Fig. 8.18 Normal stresses and 
shearing stresses.

K

H
xz�

xy�

x�

x�

Fig. 8.19 Combined 
stresses.

K

H

p


p


Fig. 8.20 Principal 
stresses and orientation 
of principal planes.
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529 

EXAMPLE 8.01Two forces P1 and P2, of magnitude P1 5 15 kN and P2 5 18 kN, are applied 
as shown to the end A of bar AB, which is welded to a cylindrical member 
BD of radius c 5 20 mm (Fig. 8.21). Knowing that the distance from A to 
the axis of member BD is a 5 50 mm and assuming that all stresses remain 
below the proportional limit of the material, determine (a) the normal and 
shearing stresses at point K of the transverse section of member BD located 
at a distance b 5 60 mm from end B, (b) the principal axes and principal 
stresses at K, (c) the maximum shearing stress at K.

 Internal Forces in Given Section. We first replace the forces P1 and 
P2 by an equivalent system of forces and couples applied at the center C of 
the section containing point K (Fig. 8.22). This system, which represents the 
internal forces in the section, consists of the following forces and couples:

 1. A centric axial force F equal to the force P1, of magnitude

F 5 P1 5 15 kN

 2. A shearing force V equal to the force P2, of magnitude

V 5 P2 5 18 kN

 3.  A twisting couple T of torque T equal to the moment of P2 about 
the axis of member BD:

T 5 P2 
a 5 118 kN2 150 mm2 5 900 N ? m

 4.  A bending couple My, of moment My equal to the moment of P1 
about a vertical axis through C:

My 5 P1a 5 115 kN2 150 mm2 5 750 N ? m

 5.  A bending couple Mz, of moment Mz equal to the moment of P2 
about a transverse, horizontal axis through C:

Mz 5 P2 
b 5 118 kN2 160 mm2 5 1080 N ? m

The results obtained are shown in Fig. 8.23.

 a. Normal and Shearing Stresses at Point K. Each of the 
forces and couples shown in Fig. 8.23 can produce a normal or shearing 
stress at point K. Our purpose is to compute separately each of these 
stresses, and then to add the normal stresses and add the shearing stresses. 
But we must first determine the geometric properties of the section.

 Geometric Properties of the Section We have

 A 5 pc2 5 p10.020 m22 5 1.257 3 1023 m2

 Iy 5 Iz 5 1
4pc4 5 1

4p10.020 m24 5 125.7 3 1029 m4

 JC 5 1
2pc4 5 1

2p10.020 m24 5 251.3 3 1029 m4

We also determine the first moment Q and the width t of the area of the 
cross section located above the z axis. Recalling that y 5 4cy3p for a 
semicircle of radius c, we have

 Q 5 A¿y 5 a1
2

 pc2b a 4c
3p
b 5

2
3

 c3 5
2
3

 10.020 m23
 5 5.33 3 1026 m3

and
t 5 2c 5 210.020 m2 5 0.040 m

 Normal Stresses. We observe that normal stresses are produced at 
K by the centric force F and the bending couple My, but that the couple Mz 

HD

K

B

A P1 � 15 kN

P2 � 18 kN

b � 60 mm a � 50 mm

Fig. 8.21

K

D
H

C

Mz 

My

V
F

T

Fig. 8.22

T � 900 N · m

y

3�
4c

x

C
K

z

V � 18 kN

F � 15 kN

y �

Mz

�x
�xy

My � 750 N · m

Fig. 8.23
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does not produce any stress at K, since K is located on the neutral axis cor-
responding to that couple. Determining each sign from Fig. 8.23, we write

 sx 5 2 
F
A

1
My c

Iy
5 211.9 MPa 1

1750 N ? m2 10.020 m2
125.7 3 1029 m4

 5 211.9 MPa 1 119.3 MPa
 sx 5 1107.4 MPa

 Shearing Stresses. These consist of the shearing stress (txy)V due 
to the vertical shear V and of the shearing stress (txy)twist caused by the 
torque T. Recalling the values obtained for Q, t, Iz, and JC, we write

 1txy2V 5 1
VQ

Iz t
5 1

118 3 103 N2 1 5.33 3 1026 m32
1125.7 3 1029 m42 10.040 m2

 5 119.1 MPa

 1txy2twist 5 2
Tc
JC

5 2
1900 N ? m2 10.020 m2

251.3 3 1029 m4 5 271.6 MPa

Adding these two expressions, we obtain txy at point K.

 txy 5 1txy2V 1 1txy2twist 5 119.1 MPa 2 71.6 MPa
 txy 5 252.5 MPa

In Fig. 8.24, the normal stress sx and the shearing stresses and txy have 
been shown acting on a square element located at K on the surface of 
the cylindrical member. Note that shearing stresses acting on the longi-
tudinal sides of the element have been included.

 b. Principal Planes and Principal Stresses at Point K. We can 
use either of the two methods of Chap. 7 to determine the principal 
planes and principal stresses at K. Selecting Mohr’s circle, we plot point 
X of coordinates sx 5 1107.4 MPa and 2txy 5 152.5 MPa and point Y 
of coordinates sy 5 0 and 1txy 5 252.5 MPa and draw the circle of 
diameter XY (Fig. 8.25). Observing that

OC 5 CD 5 1
2 1107.42 5 53.7 MPa  DX 5 52.5 MPa

we determine the orientation of the principal planes:

tan 2up 5
DX
CD

5
52.5
53.7

5 0.97765
  

2up 5 44.4° i

 up 5 22.2° i

We now determine the radius of the circle,

R 5 2153.722 1 152.522 5 75.1 MPa

and the principal stresses,

 smax 5 OC 1 R 5 53.7 1 75.1 5 128.8 MPa
 smin 5 OC 2 R 5 53.7 2 75.1 5 221.4 MPa

The results obtained are shown in Fig. 8.26.

 c. Maximum Shearing Stress at Point K. This stress corre-
sponds to points E and F in Fig. 8.25. We have

tmax 5 CE 5 R 5 75.1 MPa

Observing that 2us 5 908 2 2up 5 908 2 44.48 5 45.68, we conclude that 
the planes of maximum shearing stress form an angle up 5 22.8° l with 
the horizontal. The corresponding element is shown in Fig. 8.27. Note 
that the normal stresses acting on this element are represented by OC in 
Fig. 8.25 and are thus equal to 153.7 MPa.

530

D

A

�x � 	107.4 MPa

�xy� 
52.5 MPa

15 kN

18 kN

Fig. 8.24

�

A

F

X

Y

OB
D

E

 (MPa)

�

2
52.5

53.7 53.7
107.4

s�

2 p�
 (MPa)C

Fig. 8.25

�max � 128.8 MPa

�min � 
21.4 MPa

D

A

15 kN

18 kN

�p � 22.2�

B

Fig. 8.26

D

A

15 kN

18 kN

�s � 22.8�

� � 53.7 MPa

B

�max � 75.1 MPa

Fig. 8.27
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531

SAMPLE PROBLEM 8.4

A horizontal 500-lb force acts at point D of crankshaft AB which is held in 
static equilibrium by a twisting couple T and by reactions at A and B. Know-
ing that the bearings are self-aligning and exert no couples on the shaft, 
determine the normal and shearing stresses at points H, J, K, and L located 
at the ends of the vertical and horizontal diameters of a transverse section 
located 2.5 in. to the left of bearing B.

SOLUTION

 Free Body. Entire Crankshaft. A 5 B 5 250 lb

1l©Mx 5 0:    21500 lb2 11.8 in.2 1 T 5 0  T 5 900 lb ? in.

 Internal Forces in Transverse Section. We replace the reaction B and 
the twisting couple T by an equivalent force-couple system at the center C 
of the transverse section containing H, J, K, and L.

 V 5 B 5 250 lb   T 5 900 lb ? in.
 My 5 1250 lb2 12.5 in.2 5 625 lb ? in.

The geometric properties of the 0.9-in.-diameter section are

A 5 p10.45 in.22 5 0.636 in2   I 5 1
4p10.45 in.24 5 32.2 3 1023 in4

J 5 1
2p10.45 in.24 5 64.4 3 1023 in4

 Stresses Produced by Twisting Couple T. Using Eq. (3.8), we determine 
the shearing stresses at points H, J, K, and L and show them in Fig. (a).

t 5
Tc
J

5
1900 lb ? in.2 10.45 in.2

64.4 3 1023 in4 5 6290 psi

 Stresses Produced by Shearing Force V. The shearing force V pro-
duces no shearing stresses at points J and L. At points H and K we first 
compute Q for a semicircle about a vertical diameter and then determine 
the shearing stress produced by the shear force V 5 250 lb. These stresses 
are shown in Fig. (b).

 Q 5 a1
2

 pc2b a 4c
3p
b 5

2
3

c3 5
2
3

 10.45 in.23 5 60.7 3 1023 in3

 t 5
VQ

It
5
1250 lb2 160.7 3 1023 in32
132.2 3 1023 in42 10.9 in.2 5 524 psi

 Stresses Produced by the Bending Couple My. Since the bending 
couple My acts in a horizontal plane, it produces no stresses at H and K. 
Using Eq. (4.15), we determine the normal stresses at points J and L and 
show them in Fig. (c).

s 5
0My 0 c

I
5
1625 lb ? in.2 10.45 in.2

32.2 3 1023 in4 5 8730 psi

 Summary. We add the stresses shown and obtain the total normal and 
shearing stresses at points H, J, K, and L.

4.5 in.

0.90 in.A

E

D
K

G

H
J

B T

4.5 in.

2.5 in.

1.8 in.

500 lb

A

D

B

z

y

x

4.5 in.
4.5 in.

2.5 in.

1.8 in.
500 lb

A � 250 lb

B � 250 lb

T

E

J C

G
K

H

L

My � 625 lb · in.

T � 900 lb · in.

0.9-in. diameter

V � 250 lb

J

K

H

L

� � 6290 psi

� � 6290 psi

� � 6290 psi

� � 6290 psi

(a)

J

K

H

L

� � 524 psi

� � 524 psi

� � 0

(b)

� � 0

� � 0

J

K

H

L
� � 8730 psi

� � 8730 psi(c)

J

K

H

L

� � 5770 psi

� � 6290 psi

� � 6290 psi

� � 6810 psi

� � 8730 psi

� � 8730 psi
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SAMPLE PROBLEM 8.5

Three forces are applied as shown at points A, B, and D of a short steel post. 
Knowing that the horizontal cross section of the post is a 40 3 140-mm 
rectangle, determine the principal stresses, principal planes and maximum 
shearing stress at point H.

SOLUTION

 Internal Forces in Section EFG. We replace the three applied forces 
by an equivalent force-couple system at the center C of the rectangular 
section EFG. We have

 Vx 5 230 kN P 5 50 kN Vz 5 275 kN
 Mx 5 150 kN2 10.130 m2 2 175 kN2 10.200 m2 5 28.5 kN ? m
 My 5 0  Mz 5 130 kN2 10.100 m2 5 3 kN ? m

 We note that there is no twisting couple about the y axis. The geo-
metric properties of the rectangular section are

 A 5 10.040 m2 10.140 m2 5 5.6 3 1023 m2

 Ix 5 1
12 10.040 m2 10.140 m23 5 9.15 3 1026 m4

 Iz 5 1
12 10.140 m2 10.040 m23 5 0.747 3 1026 m4

 Normal Stress at H. We note that normal stresses sy are produced 
by the centric force P and by the bending couples Mx and Mz. We deter-
mine the sign of each stress by carefully examining the sketch of the force-
couple system at C.

 sy 5 1
P
A

1
0Mz 0 a

Iz
 2
0Mx 0b

Ix

 5
50 kN

5.6 3 1023 m2 1
13 kN ? m2 10.020 m2

0.747 3 1026 m4 2
18.5 kN ? m2 10.025 m2 

9.15 3 1026 m4

 sy 5 8.93 MPa 1 80.3 MPa 2 23.2 MPa sy 5 66.0 MPa ◀

 Shearing Stress at H. Considering first the shearing force Vx, we note 
that Q 5 0 with respect to the z axis, since H is on the edge of the cross 
section. Thus Vx produces no shearing stress at H. The shearing force Vz 
does produce a shearing stress at H and we write

 Q 5 A1y1 5 3 10.040 m2 10.045 m2 4 10.0475 m2 5 85.5 3 1026 m3

 
 tyz 5

VzQ

Ixt
 5
175 kN2 185.5 3 1026 m32
19.15 3 1026 m42 10.040 m2  tyz 5 17.52 MPa ◀

 Principal Stresses, Principal Planes, and Maximum Shearing Stress 
at H. We draw Mohr’s circle for the stresses at point H

 
tan 2up 5

17.52
33.0   

2up 5 27.96° up 5 13.98° ◀

 R 5 2133.022 1 117.5222 5 37.4 MPa tmax 5 37.4 MPa ◀

 smax 5 OA 5 OC 1 R 5 33.0 1 37.4 smax 5 70.4 MPa ◀

smin 5 OB 5 OC 2 R 5 33.0 2 37.4   smin 5 27.4 MPa ◀
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70 mm

100 mm

25 mm
200 mm

130 mm

75 kN

50 kN

30 kN

20 mm40 mm

z x

E

A

B

y

G

D

F
H

140 mm

E C

F

H
G

z

y

Mx � 8.5 kN · m

Vx � 30 kN
P � 50 kN

Vz � 75 kN

Mz � 3 kN · m x

E

C

G
H b � 0.025 m

0.040 m

a � 0.020 m

0.140 m

Fz

Mz � 8.5 kN · m

Mz � 3 kN · m

H
C

A1

Vz

�yz

t � 0.040 m

0.045 m
0.025 m

y1 � 0.0475 m

z

CO
B

33.0 33.0

13.98�

AD

R
Y

Z

2�p

max�

y � 66.0 MPa�

y�

yz � 17.52 MPa�

 (MPa)�

 (MPa)�

max�

max�

min�

min�

yz�
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PROBLEMS

533

 8.31 A 6-kip force is applied to the machine element AB as shown. 
Knowing that the uniform thickness of the element is 0.8 in., deter-
mine the normal and shearing stresses at (a) point a, (b) point b, 
(c) point c.

 8.32 A 6-kip force is applied to the machine element AB as shown. 
Knowing that the uniform thickness of the element is 0.8 in., deter-
mine the normal and shearing stresses at (a) point d, (b) point e, 
(c) point f.

 8.33 For the bracket and loading shown, determine the normal and 
shearing stresses at (a) point a, (b) point b.

 8.34 through 8.36 Member AB has a uniform rectangular cross 
section of 10 3 24 mm. For the loading shown, determine the 
normal and shearing stresses at (a) point H, (b) point K.

6 kips8 in. 8 in.

35�

8 in.

1.5 in.
1.5 in.

B a

b

c

d

A

e

f

Fig. P8.31 and P8.32

20 mm

100 mm

18 mm

4 kN

a b

60�

Fig. P8.33

30�

60 mm

60 mm
KH

G

B

A

12 mm

12 mm

40 mm

9 kN

Fig. P8.34

30�

60 mm

60 mm
KH

G

B

A

12 mm

12 mm

40 mm

9 kN

Fig. P8.35

30�

60 mm

60 mm
KH

G

B

A

12 mm

12 mm

40 mm

9 kN

Fig. P8.36
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534 Principal Stresses under a Given Loading  8.37 Several forces are applied to the pipe assembly shown. Knowing 
that the pipe has inner and outer diameters equal to 1.61 and 
1.90 in., respectively, determine the normal and shearing stresses 
at (a) point H, (b) point K.

4 in.

6 in.

4 in.

H

y

z
K

150 lb

50 lb
x

10 in.

150 lb

200 lb

D

Fig. P8.37

 8.38 The steel pile AB has a 100-mm outer diameter and an 8-mm wall 
thickness. Knowing that the tension in the cable is 40 kN, deter-
mine the normal and shearing stresses at point H.

 8.39 The billboard shown weighs 8000 lb and is supported by a struc-
tural tube that has a 15-in. outer diameter and a 0.5-in. wall thick-
ness. At a time when the resultant of the wind pressure is 3 kips, 
located at the center C of the billboard, determine the normal and 
shearing stresses at point H.

50 mm

225 mm

20 mm

A

H
E

D

B

z

x

y

t � 8 mm

60�

Fig. P8.38

2 ft

8 ft

H

x
x

zH

z

3 ft

6 ft
3 ft

9 ft

3 ft

3 kips

8 kips

C

y

Fig. P8.39

F

c

K

H

l

Fig. P8.40

 8.40 A thin strap is wrapped around a solid rod of radius c 5 20 mm 
as shown. Knowing that l 5 100 mm and F 5 5 kN, determine the 
normal and shearing stresses at (a) point H, (b) point K.
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535Problems 8.41 A vertical force P of magnitude 60 lb is applied to the crank at point 
A. Knowing that the shaft BDE has a diameter of 0.75 in., determine 
the principal stresses and the maximum shearing stress at point H 
located at the top of the shaft, 2 in. to the right of support D.

 8.42 A 13-kN force is applied as shown to the 60-mm-diameter cast-iron 
post ABD. At point H, determine (a) the principal stresses and 
principal planes, (b) the maximum shearing stress.

 8.43 A 10-kN force and a 1.4-kN ? m couple are applied at the top of 
the 65-mm diameter brass post shown. Determine the principal 
stresses and maximum shearing stress at (a) point H, (b) point K.

 8.44 Forces are applied at points A and B of the solid cast-iron bracket 
shown. Knowing that the bracket has a diameter of 0.8 in., deter-
mine the principal stresses and the maximum shearing stress at 
(a) point H, (b) point K.

60°

8 in.

2 in.

5 in.

1 in.

z

E
D

H

A

x
B

y
P

Fig. P8.41

H

A

B

D

x

z

E

13 kN 300 mm

125 mm
150 mm

100 mm

y

Fig. P8.42

C

240 mm

1.4 kN · m

10 kN

H K

Fig. P8.43

H

B

A
z

y

x
K

600 lb

3.5 in.
2.5 in.

1 in.

2500 lb

Fig. P8.44

 8.45 Three forces are applied to the bar shown. Determine the normal 
and shearing stresses at (a) point a, (b) point b, (c) point c.

 8.46 Solve Prob. 8.45, assuming that h 5 12 in.

h � 10.5 in.

0.9 in.

4.8 in.
1.8 in.

0.9 in. 2.4 in.

50 kips

2 kips

6 kips

2 in.

1.2 in.

1.2 in.

a
b c

C

Fig. P8.45
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536 Principal Stresses under a Given Loading  8.47 Three forces are applied to the bar shown. Determine the normal 
and shearing stresses at (a) point a, (b) point b, (c) point c.

 8.48 Solve Prob. 8.47, assuming that the 750-N force is directed verti-
cally upward.

 8.49 For the post and loading shown, determine the principal stresses, 
principal planes, and maximum shearing stress at point H.

 8.50 For the post and loading shown, determine the principal stresses, 
principal planes, and maximum shearing stress at point K.

 8.51 Two forces are applied to the small post BD as shown. Knowing 
that the vertical portion of the post has a cross section of 1.5 3 
2.4 in., determine the principal stresses, principal planes, and maxi-
mum shearing stress at point H.

24 mm

15 mm

32 mm

60 mm

180 mm
a

b c

C

40 mm

30 mm

500 N

750 N

10 kN

16 mm

Fig. P8.47

50 mm
50 mm

75 mm
75 mm

50 kN

120 kN

y

z x

30�

C

375 mm

H K

Fig. P8.49 and P8.50

6000 lb

500 lb

4 in.

6 in.

3.25 in.

1.75 in.

2.4 in.1.5 in.

y

H

B

D

z

x

1 in.

Fig. P8.51
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537Problems 8.52 Solve Prob. 8.51, assuming that the magnitude of the 6000-lb force 
is reduced to 1500 lb.

 8.53 Three steel plates, each 13 mm thick, are welded together to form 
a cantilever beam. For the loading shown, determine the normal 
and shearing stresses at points a and b.

 8.54 Three steel plates, each 13 mm thick, are welded together to form 
a cantilever beam. For the loading shown, determine the normal 
and shearing stresses at points d and e.

 8.55 Two forces are applied to a W8 3 28 rolled-steel beam as shown. 
Determine the principal stresses and maximum shearing stress at 
point a.

C

C

x

y

a
b d

e

400 mm60 mm
30 mm

60 mm 75 mm

9 kN

13 kN

150 mm

t � 13 mm

Fig. P8.53 and P8.54

 8.56 Two forces are applied to a W8 3 28 rolled-steel beam as shown. 
Determine the principal stresses and maximum shearing stress at 
point b.

y

a

a

b

b

90 kips

24 in.

4 in.

W8 � 28

20 kips
x

Fig. P8.55 and P8.56
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538 Principal Stresses under a Given Loading  8.57 Two forces P1 and P2 are applied as shown in directions perpen-
dicular to the longitudinal axis of a W310 3 60 beam. Knowing 
that P1 5 25 kN and P2 5 24 kN, determine the principal stresses 
and the maximum shearing stress at point a.

 8.58 Two forces P1 and P2 are applied as shown in directions perpen-
dicular to the longitudinal axis of a W310 3 60 beam. Knowing 
that P1 5 25 kN and P2 5 24 kN, determine the principal stresses 
and the maximum shearing stress at point b.

 8.59 A vertical force P is applied at the center of the free end of cantilever 
beam AB. (a) If the beam is installed with the web vertical (b 5 0) 
and with its longitudinal axis AB horizontal, determine the magnitude 
of the force P for which the normal stress at point a is 1120 MPa. 
(b) Solve part a, assuming that the beam is installed with b 5 38.

y

a

0.6 m

1.2 m

75 mm

W310 � 60

P1

P2

a

b b

x

Fig. P8.57 and P8.58

W250 � 44.8

l � 1.25 m a

A

B

	

P

Fig. P8.59A

a

B

	

C

b

h

P

l

Fig. P8.60

 8.60 A force P is applied to a cantilever beam by means of a cable 
attached to a bolt located at the center of the free end of the beam. 
Knowing that P acts in a direction perpendicular to the longitudi-
nal axis of the beam, determine (a) the normal stress at point a in 
terms of P, b, h, l, and b, (b) the values of b for which the normal 
stress at a is zero.
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539Problems *8.61 A 5-kN force P is applied to a wire that is wrapped around bar AB 
as shown. Knowing that the cross section of the bar is a square of 
side d 5 40 mm, determine the principal stresses and the maxi-
mum shearing stress at point a.

 *8.62 Knowing that the structural tube shown has a uniform wall thick-
ness of 0.3 in., determine the principal stresses, principal planes, 
and maximum shearing stress at (a) point H, (b) point K.

 *8.63 The structural tube shown has a uniform wall thickness of 0.3 in. 
Knowing that the 15-kip load is applied 0.15 in. above the base of 
the tube, determine the shearing stress at (a) point a, (b) point b.

 *8.64 For the tube and loading of Prob. 8.63, determine the principal 
stresses and the maximum shearing stress at point b.

d

P

d
2

A

a

B

Fig. P8.61

H

K

3 in.

2 in.
10 in.

0.15 in.

9 kips

4 in.

6 in.

Fig. P8.62
3 in.

10 in.
15 kips

4 in.
2 in.

1.5 in.

a

A

b

Fig. P8.63
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540

REVIEW AND SUMMARY

�m �m

�m �m

�min

�min

�max

�max

c

y

y

xO

 c

Fig. 8.28

a

b

c

d

e

Fig. 8.29

Principal planes and principal 
stresses in a beam

This chapter was devoted to the determination of the principal 
stresses in beams, transmission shafts, and bodies of arbitrary shape 
subjected to combined loadings.
 We first recalled in Sec. 8.2 the two fundamental relations 
derived in Chaps. 5 and 6 for the normal stress sx and the shearing 
stress txy at any given point of a cross section of a prismatic beam,

  
sx 5 2

My

I   
txy 5 2

VQ

It  
(8.1, 8.2)

 where V 5 shear in the section
 M 5 bending moment in the section
 y 5 distance of the point from the neutral surface
 I 5 centroidal moment of inertia of the cross section
 Q 5  first moment about the neutral axis of the portion 

of the cross section located above the given point
 t 5 width of the cross section at the given point

Using one of the methods presented in Chap. 7 for the transforma-
tion of stresses, we were able to obtain the principal planes and 
principal stresses at the given point (Fig. 8.28).
 We investigated the distribution of the principal stresses in a 
narrow rectangular cantilever beam subjected to a concentrated load 
P at its free end and found that in any given transverse section—
except close to the point of application of the load—the maximum 
principal stress smax did not exceed the maximum normal stress sm 
occurring at the surface of the beam.
 While this conclusion remains valid for many beams of non-
rectangular cross section, it may not hold for W-beams or S-beams, 
where smax at the junctions b and d of the web with the flanges of 
the beam (Fig. 8.29) may exceed the value of sm occurring at points 
a and e. Therefore, the design of a rolled-steel beam should include 
the computation of the maximum principal stress at these points. 
(See Sample Probs. 8.1 and 8.2.)
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541Review and SummaryIn Sec. 8.3, we considered the design of transmission shafts sub-
jected to transverse loads as well as to torques. Taking into account 
the effect of both the normal stresses due to the bending moment M 
and the shearing stresses due to the torque T in any given trans-
verse section of a cylindrical shaft (either solid or hollow), we found 
that the minimum allowable value of the ratio Jyc for the cross 
 section was

  

J
c

5
A2M 

2 1 T 
2

 Bmax

tall  
(8.6)

In preceding chapters, you learned to determine the stresses in 
prismatic members caused by axial loadings (Chaps. 1 and 2), tor-
sion (Chap. 3), bending (Chap. 4), and transverse loadings (Chaps. 5 
and 6). In the second part of this chapter (Sec. 8.4), we combined 
this knowledge to determine stresses under more general loading 
conditions.

 For instance, to determine the stresses at point H or K of the 
bent member shown in Fig. 8.30, we passed a section through these 
points and replaced the applied loads by an equivalent force-couple 
system at the centroid C of the section (Fig. 8.31). The normal and 
shearing stresses produced at H or K by each of the forces and cou-
ples applied at C were determined and then combined to obtain the 
resulting normal stress sx and the resulting shearing stresses txy and 
txz at H or K. Finally, the principal stresses, the orientation of the 
principal planes, and the maximum shearing stress at point H or K 
were determined by one of the methods presented in Chap. 7 from 
the values obtained for sx, txy, and txz.

Design of transmission shafts 
under transverse loads 

Stresses under general 
loading conditions

My

T
P

Mz

VzF3

F2

F1
Vy

B

y

x

z

C

A

Fig. 8.31

F3

F4

F6

F5

F2

F1
B

D

E

K

H

A

Fig. 8.30
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542

REVIEW PROBLEMS

 8.65 (a) Knowing that sall 5 24 ksi and tall 5 14.5 ksi, select the most 
economical wide-flange shape that should be used to support the 
loading shown. (b) Determine the values to be expected for sm, 
tm, and the principal stress smax at the junction of a flange and the 
web of the selected beam.

 8.66 Determine the smallest allowable diameter of the solid shaft 
ABCD, knowing that tall 5 60 MPa and that the radius of disk B
is r 5 80 mm.

 8.67 Using the notation of Sec. 8.3 and neglecting the effect of shear-
ing stresses caused by transverse loads, show that the maximum 
normal stress in a circular shaft can be expressed as follows:

   
smax 5

c
J
3 1M2

y 1 M2
z 212 1 1M2

y 1 M2
z 1 T 

2212 4max

 8.68 The solid shaft AB rotates at 450 rpm and transmits 20 kW from 
the motor M to machine tools connected to gears F and G. Know-
ing that tall 5 55 MPa and assuming that 8 kW is taken off at 
gear F and 12 kW is taken off at gear G, determine the smallest 
permissible diameter of shaft AB.

A
B

C

12 ft 6 ft

1.5 kips/ft

Fig. P8.65

150 mm

T � 600 N · m

P
B

C

A

D

150 mm

r

Fig. P8.66

M

A

F

150 mm

225 mm

60 mm

225 mm

D 100 mm 60 mm

150 mm

G

E

B

Fig. P8.68
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543Review Problems 8.69 Two 1.2-kip forces are applied to an L-shaped machine element 
AB as shown. Determine the normal and shearing stresses at 
(a) point a, (b) point b, (c) point c.

B

a c
b

A

12 in.

6 in.

1.2 kips

1.2 kips

1.0 in.

0.5 in.

1.8 in.

1.0 in.

Fig. P8.69

 8.70 Two forces are applied to the pipe AB as shown. Knowing that the 
pipe has inner and outer diameters equal to 35 and 42 mm, respec-
tively, determine the normal and shearing stresses at (a) point a, 
(b) point b.

 8.71 A close-coiled spring is made of a circular wire of radius r that is 
formed into a helix of radius R. Determine the maximum shearing 
stress produced by the two equal and opposite forces P and P9. 
(Hint: First determine the shear V and the torque T in a transverse 
cross section.)

 8.72 Three forces are applied to a 4-in.-diameter plate that is attached to 
the solid 1.8-in. diameter shaft AB. At point H, determine (a) the prin-
cipal stresses and principal planes, (b) the maximum shearing stress.

8 in.

2 in.

2 in. 6 kips

2.5 kips

6 kips

H

y

z x

B

A

Fig. P8.72

75 mm

45 mm

1500 N

1200 N

45 mm

A

B

z

x

y

20 mm

a b

Fig. P8.70

P P

T

V

R

r

P'

R

Fig. P8.71
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544 Principal Stresses under a Given Loading  8.73 Knowing that the bracket AB has a uniform thickness of 5
8  in., deter-

mine (a) the principal planes and principal stresses at point K, (b) the 
maximum shearing stress at point K.

 8.74 Three forces are applied to the machine component ABD as 
shown. Knowing that the cross section containing point H is a 
20 3 40-mm rectangle, determine the principal stresses and the 
maximum shearing stress at point H.

 8.75 Knowing that the structural tube shown has a uniform wall thick-
ness of 0.25 in., determine the normal and shearing stresses at the 
three points indicated.

30�

2 in.
5 in.

K

A

3 kips

2.5 in.

B

Fig. P8.73
50 mm

150 mm

160 mm

40 mm

3 kN

0.5 kN

2.5 kN

20 mm

z

x

y

A

B

D

H

Fig. P8.74

2.75 in.

b c

1500 lb

1500 lb
5 in.

6 in.3 in.

600 lb
600 lb

20 in.

0.25 in.

3 in.

a

Fig. P8.75
300 mm

600 N

A

B

b
a

C

40 mm

60 mm

	

Fig. P8.76

 8.76 The cantilever beam AB will be installed so that the 60-mm side 
forms an angle b between 0 and 908 with the vertical. Knowing 
that the 600-N vertical force is applied at the center of the free 
end of the beam, determine the normal stress at point a when 
(a) b 5 0, (b) b 5 908. (c) Also, determine the value of b for which 
the normal stress at point a is a maximum and the corresponding 
value of that stress.
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COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

 8.C1 Let us assume that the shear V and the bending moment M have 
been determined in a given section of a rolled-steel beam. Write a computer 
program to calculate in that section, from the data available in Appendix C, 
(a) the maximum normal stress sm, (b) the principal stress smax at the junc-
tion of a flange and the web. Use this program to solve parts a and b of the 
following problems:
(1) Prob. 8.1 (Use V 5 45 kips and M 5 450 kip ? in.)
(2) Prob. 8.2 (Use V 5 22.5 kips and M 5 450 kip ? in.)
(3) Prob. 8.3 (Use V 5 700 kN and M 5 1750 kN ? m)
(4) Prob. 8.4 (Use V 5 850 kN and M 5 1700 kN ? m)

 8.C2 A cantilever beam AB with a rectangular cross section of width b
and depth 2c supports a single concentrated load P at its end A. Write a 
computer program to calculate, for any values of xyc and yyc, (a) the ratios 
smaxysm and sminysm, where smax and smin are the principal stresses at point 
K(x, y) and sm the maximum normal stress in the same transverse section, 
(b) the angle up that the principal planes at K form with a transverse and a 
horizontal plane through K. Use this program to check the values shown in 
Fig. 8.8 and to verify that smax exceeds sm if x # 0.544c, as indicated in the 
second footnote on page 517.

 8.C3 Disks D1, D2, . . . , Dn are attached as shown in Fig. 8.C3 to the 
solid shaft AB of length L, uniform diameter d, and allowable shearing stress 
tall. Forces P1, P2, . . . , Pn of known magnitude (except for one of them) 
are applied to the disks, either at the top or bottom of its vertical diameter, 
or at the left or right end of its horizontal diameter. Denoting by ri the 
radius of disk Di and by ci its distance from the support at A, write a com-
puter program to calculate (a) the magnitude of the unknown force Pi, 
(b) the smallest permissible value of the diameter d of shaft AB. Use this 
program to solve Prob. 8.18.

c

c

b
x

y

K
A

B

�max

p

�min

P

Fig. P8.C2
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D1

ci

y

z

D2 Di

P1

Pi

Pn

L

Dn

x

B

P2

ri

Fig. P8.C3
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546 Principal Stresses under a Given Loading  8.C4 The solid shaft AB of length L, uniform diameter d, and allowable 
shearing stress tall rotates at a given speed expressed in rpm (Fig. 8.C4). 
Gears G1, G2, . . . , Gn are attached to the shaft and each of these gears 
meshes with another gear (not shown), either at the top or bottom of its 
vertical diameter, or at the left or right end of its horizontal diameter. One 
of these gears is connected to a motor and the rest of them to various 
machine tools. Denoting by ri the radius of disk Gi, by ci its distance from 
the support at A, and by Pi the power transmitted to that gear (1 sign) or 
taken off that gear (2 sign), write a computer program to calculate the 
smallest permissible value of the diameter d of shaft AB. Use this program 
to solve Probs. 8.27 and 8.68.

 8.C5 Write a computer program that can be used to calculate the normal 
and shearing stresses at points with given coordinates y and z located on 
the surface of a machine part having a rectangular cross section. The inter-
nal forces are known to be equivalent to the force-couple system shown. 
Write the program so that the loads and dimensions can be expressed in 
either SI or U.S. customary units. Use this program to solve (a) Prob. 8.45b, 
(b) Prob. 8.47a.

A
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x

y

B

ci

G1

G2 Gi

Gn

L

ri

Fig. P8.C4
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547Computer Problems 8.C6 Member AB has a rectangular cross section of 10 3 24 mm. For 
the loading shown, write a computer program that can be used to determine 
the normal and shearing stresses at points H and K for values of d from 0 to 
120 mm, using 15-mm increments. Use this program to solve Prob. 8.35.

 *8.C7 The structural tube shown has a uniform wall thickness of 0.3 in. 
A 9-kip force is applied at a bar (not shown) that is welded to the end of 
the tube. Write a computer program that can be used to determine, for any 
given value of c, the principal stresses, principal planes, and maximum 
shearing stress at point H for values of d from 23 in. to 3 in., using one-
inch increments. Use this program to solve Prob. 8.62a.

30�

120 mm

KH

d

B

A

12 mm

12 mm

40 mm

9 kN

Fig. P8.C6

H

x

z

c

y

d 3 in.
3 in.
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4 in.

10 in.

Fig. P8.C7
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The photo shows a multiple-girder 

bridge during construction. The design 

of the steel girders is based on both 

strength considerations and deflection 

evaluations.
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Deflection of Beams

9C H A P T E R 
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Chapter 9 Deflection of Beams
 9.1 Introduction
 9.2  Deformation of a Beam under 

Transverse Loading
 9.3 Equation of the Elastic Curve
 *9.4  Direct Determination of the 

Elastic Curve from the Load 
Distribution

 9.5 Statically Indeterminate Beams
 *9.6  Using Singularity Functions to 

Determine the Slope and 
Deflection of a Beam

 9.7 Method of Superposition
 9.8  Application of Superposition to 

Statically Indeterminate Beams
 *9.9 Moment-Area Theorems
 *9.10  Application to Cantilever Beams 

and Beams with Symmetric 
Loadings

 *9.11 Bending-Moment Diagrams by 
Parts

 *9.12  Application of Moment-Area 
Theorems to Beams with 
Unsymmetric Loadings

 *9.13 Maximum Deflection
 *9.14  Use of Moment-Area Theorems 

with Statically Indeterminate 
Beams

9.1 INTRODUCTION
In the preceding chapter we learned to design beams for strength. 
In this chapter we will be concerned with another aspect in the 
design of beams, namely, the determination of the deflection. Of 
particular interest is the determination of the maximum deflection of 
a beam under a given loading, since the design specifications of a 
beam will generally include a maximum allowable value for its deflec-
tion. Also of interest is that a knowledge of the deflections is required 
to analyze indeterminate beams. These are beams in which the num-
ber of reactions at the supports exceeds the number of equilibrium 
equations available to determine these unknowns.
 We saw in Sec. 4.4 that a prismatic beam subjected to pure 
bending is bent into an arc of circle and that, within the elastic range, 
the curvature of the neutral surface can be expressed as

 
1
r

5
M
EI

 (4.21)

where M is the bending moment, E the modulus of elasticity, and I 
the moment of inertia of the cross section about its neutral axis.
 When a beam is subjected to a transverse loading, Eq. (4.21) 
remains valid for any given transverse section, provided that Saint-
Venant’s principle applies. However, both the bending moment and 
the curvature of the neutral surface will vary from section to section. 
Denoting by x the distance of the section from the left end of the 
beam, we write

 
1
r

5
M 1x2
EI

 (9.1)

The knowledge of the curvature at various points of the beam will 
enable us to draw some general conclusions regarding the deforma-
tion of the beam under loading (Sec. 9.2).
 To determine the slope and deflection of the beam at any given 
point, we first derive the following second-order linear differential 
equation, which governs the elastic curve characterizing the shape of 
the deformed beam (Sec. 9.3):

d 2y

dx2 5
M 1x2
EI

 If the bending moment can be represented for all values of x 
by a single function M(x), as in the case of the beams and loadings 
shown in Fig. 9.1, the slope u 5 dyydx and the deflection y at any 
point of the beam may be obtained through two successive integra-
tions. The two constants of integration introduced in the process 
will be determined from the boundary conditions indicated in the 
figure.
 However, if different analytical functions are required to 
 represent the bending moment in various portions of the beam, 
different differential equations will also be required, leading to 

B

B

xA

A

y

y

(a) Cantilever beam

(b) Simply supported beam

[ yA�0 ] [ yB�0 ]

x

[ yA�0]
[  A� 0]�

Fig. 9.1 Situations where bending 
moment can be given by a single 
function M(x).
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5519.1 Introductiondifferent functions defining the elastic curve in the various por-
tions of the beam. In the case of the beam and loading of Fig. 9.2, 
for example, two differential equations are required, one for the 
portion of beam AD and the other for the portion DB. The first 
equation yields the functions u1 and y1, and the second the func-
tions u2 and y2. Altogether, four constants of integration must be 
determined; two will be obtained by writing that the deflection is 
zero at A and B, and the other two by expressing that the portions 
of beam AD and DB have the same slope and the same deflection 
at D.
 You will observe in Sec. 9.4 that in the case of a beam support-
ing a distributed load w(x), the elastic curve can be obtained directly 
from w(x) through four successive integrations. The constants intro-
duced in this process will be determined from the boundary values 
of V, M, u, and y.
 In Sec. 9.5, we will discuss statically indeterminate beams 
where the reactions at the supports involve four or more unknowns. 
The three equilibrium equations must be supplemented with equa-
tions obtained from the boundary conditions imposed by the 
supports.
 The method described earlier for the determination of the 
 elastic curve when several functions are required to represent the 
bending moment M can be quite laborious, since it requires match-
ing slopes and deflections at every transition point. You will see in 
Sec. 9.6 that the use of singularity functions (previously discussed in 
Sec. 5.5) considerably simplifies the determination of u and y at any 
point of the beam.
 The next part of the chapter (Secs. 9.7 and 9.8) is devoted to 
the method of superposition, which consists of determining sepa-
rately, and then adding, the slope and deflection caused by the vari-
ous loads applied to a beam. This procedure can be facilitated by 
the use of the table in Appendix D, which gives the slopes and 
deflections of beams for various loadings and types of support.
 In Sec. 9.9, certain geometric properties of the elastic curve 
will be used to determine the deflection and slope of a beam at a 
given point. Instead of expressing the bending moment as a function 
M(x) and integrating this function analytically, the diagram represent-
ing the variation of MyEI over the length of the beam will be drawn 
and two moment-area theorems will be derived. The first moment-
area theorem will enable us to calculate the angle between the tan-
gents to the beam at two points; the second moment-area theorem 
will be used to calculate the vertical distance from a point on the 
beam to a tangent at a second point.
 The moment-area theorems will be used in Sec. 9.10 to deter-
mine the slope and deflection at selected points of cantilever beams 
and beams with symmetric loadings. In Sec. 9.11 you will find that 
in many cases the areas and moments of areas defined by the MyEI 
diagram may be more easily determined if you draw the bending-
moment diagram by parts. As you study the moment-area method, 
you will observe that this method is particularly effective in the case 
of beams of variable cross section.

BA

D

y

[x � 0, y1 � 0]

� �

x

x �     L,  1 � 2
1
4[ [  

x �     L, y1 � y2
1
4[ [

x �  L, y2 �  0[ [
P

Fig. 9.2 Situation where two sets of 
equations are required.
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552 Defl ection of Beams  Beams with unsymmetric loadings and overhanging beams will 
be considered in Sec. 9.12. Since for an unsymmetric loading the 
maximum deflection does not occur at the center of a beam, you will 
learn in Sec. 9.13 how to locate the point where the tangent is hori-
zontal in order to determine the maximum deflection. Section 9.14 
will be devoted to the solution of problems involving statically inde-
terminate beams.

9.2  DEFORMATION OF A BEAM UNDER
TRANSVERSE LOADING

At the beginning of this chapter, we recalled Eq. (4.21) of Sec. 4.4, 
which relates the curvature of the neutral surface and the bending 
moment in a beam in pure bending. We pointed out that this equa-
tion remains valid for any given transverse section of a beam sub-
jected to a transverse loading, provided that Saint-Venant’s principle 
applies. However, both the bending moment and the curvature of 
the neutral surface will vary from section to section. Denoting by x 
the distance of the section from the left end of the beam, we write

 
1
r

5
M 1x2
EI

 (9.1)

 Consider, for example, a cantilever beam AB of length L sub-
jected to a concentrated load P at its free end A (Fig. 9.3a). We have 
M(x) 5 2Px and, substituting into (9.1),

1
r

5 2  

Px
EI

which shows that the curvature of the neutral surface varies linearly 
with x, from zero at A, where rA itself is infinite, to 2PLyEI at B, 
where |rB| 5 EIyPL (Fig. 9.3b).
 Consider now the overhanging beam AD of Fig. 9.4a that sup-
ports two concentrated loads as shown. From the free-body diagram 
of the beam (Fig. 9.4b), we find that the reactions at the supports are 
RA 5 1 kN and RC 5 5 kN, respectively, and draw the corresponding 
bending-moment diagram (Fig. 9.5a). We note from the diagram that 
M, and thus the curvature of the beam, are both zero at each end of 
the beam, and also at a point E located at x 5 4 m. Between A and 
E the bending moment is positive and the beam is concave upward; 

B
A x

A� �

(a)

P

L

A

(b)

P

�

�

B�

B

Fig. 9.3 Cantilever beam with 
concentrated load.

(a)

Fig. 9.4 Overhanging beam with two concentrated loads.

(b)

DA
B C    

4 kN 2 kN

 RC � 5 kNRA � 1 kN
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B C
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4 kN 2 kN
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553

between E and D the bending moment is negative and the beam is 
concave downward (Fig. 9.5b). We also note that the largest value of 
the curvature (i.e., the smallest value of the radius of curvature) 
occurs at the support C, where |M| is maximum.
 From the information obtained on its curvature, we get a fairly 
good idea of the shape of the deformed beam. However, the analysis 
and design of a beam usually require more precise information on 
the deflection and the slope of the beam at various points. Of par-
ticular importance is the knowledge of the maximum deflection of 
the beam. In the next section Eq. (9.1) will be used to obtain a 
 relation between the deflection y measured at a given point Q on 
the axis of the beam and the distance x of that point from some fixed 
origin (Fig. 9.6). The relation obtained is the equation of the elastic 
curve, i.e., the equation of the curve into which the axis of the beam 
is transformed under the given loading (Fig. 9.6b).†

9.3 EQUATION OF THE ELASTIC CURVE
We first recall from elementary calculus that the curvature of a plane 
curve at a point Q(x,y) of the curve can be expressed as

 
1
r

5

d2y

dx 2

c 1 1 ady

dx
b2 d 3y2 (9.2)

where dyydx and d2yydx2 are the first and second derivatives of the 
function y(x) represented by that curve. But, in the case of the elastic 
curve of a beam, the slope dyydx is very small, and its square is 
negligible compared to unity. We write, therefore,

 
1
r

5
d2y

dx2  (9.3)

Substituting for 1yr from (9.3) into (9.1), we have

 
d2y

dx2 5
M 1x2
EI

 (9.4)

9.3 Equation of the Elastic Curve

†It should be noted that, in this chapter, y represents a vertical displacement, while it was 
used in previous chapters to represent the distance of a given point in a transverse section 
from the neutral axis of that section.
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Fig. 9.5 Moment-curvature relationship for beam of Fig. 9.4.
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Fig. 9.6 Elastic curve for beam of 
Fig. 9.4.
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554 Defl ection of Beams The equation obtained is a second-order linear differential equation; 
it is the governing differential equation for the elastic curve.
 The product EI is known as the flexural rigidity and, if it varies 
along the beam, as in the case of a beam of varying depth, we must 
express it as a function of x before proceeding to integrate Eq. (9.4). 
However, in the case of a prismatic beam, which is the case consid-
ered here, the flexural rigidity is constant. We may thus multiply both 
members of Eq. (8.4) by EI and integrate in x. We write

 EI 

dy

dx
5 #

x

0

 M 1x2 dx 1 C1 (9.5)

where C1 is a constant of integration. Denoting by u(x) the angle, 
measured in radians, that the tangent to the elastic curve at Q forms 
with the horizontal (Fig. 9.7), and recalling that this angle is very 
small, we have

dy

dx
5 tan u . u 1x2

Thus, we write Eq. (9.5) in the alternative form

 EI u 1x2 5 #
x

0

 M 1x2 dx 1 C1 (9.59)

 Integrating both members of Eq. (9.5) in x, we have

 EI y 5 #
x

0

 c #
x

0

 M 1x2 dx 1 C1 d
 

dx 1 C2

  EI y 5 #
x

0

 dx #
x

0

 M 1x2 dx 1 C1x 1 C2 (9.6)

where C2 is a second constant, and where the first term in the right-
hand member represents the function of x obtained by integrating 
twice in x the bending moment M(x). If it were not for the fact that 
the constants C1 and C2 are as yet undetermined, Eq. (9.6) would 
define the deflection of the beam at any given point Q, and Eq. (9.5) 
or (9.59) would similarly define the slope of the beam at Q.
 The constants C1 and C2 are determined from the boundary 
conditions or, more precisely, from the conditions imposed on the 
beam by its supports. Limiting our analysis in this section to statically 
determinate beams, i.e., to beams supported in such a way that the 
reactions at the supports can be obtained by the methods of statics, 
we note that only three types of beams need to be considered here 
(Fig. 9.8): (a) the simply supported beam, (b) the overhanging beam, 
and (c) the cantilever beam.
 In the first two cases, the supports consist of a pin and bracket 
at A and of a roller at B, and require that the deflection be zero at 
each of these points. Letting first x 5 xA, y 5 yA 5 0 in Eq. (9.6), 
and then x 5 xB, y 5 yB 5 0 in the same equation, we obtain two 
equations that can be solved for C1 and C2. In the case of the canti-
lever beam (Fig. 9.8c), we note that both the deflection and the slope 
at A must be zero. Letting x 5 xA, y 5 yA 5 0 in Eq. (9.6), and 
x 5 xA, u 5 uA 5 0 in Eq. (9.59), we obtain again two equations that 
can be solved for C1 and C2.

y

y(x) (x)

x

O

Q
�

x

Fig. 9.7 Slope u(x) of tangent to the 
elastic curve.
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Fig. 9.8 Boundary conditions for statically 
determinate beams.
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555

EXAMPLE 9.01The cantilever beam AB is of uniform cross section and carries a load P 
at its free end A (Fig. 9.9). Determine the equation of the elastic curve 
and the deflection and slope at A.

L

P

BA

Fig. 9.9

P

V

MA

x

C

Fig. 9.10

BO

y

yA

A
L

x

[x � L,    � 0]�

[x � L, y � 0]

Fig. 9.11

Using the free-body diagram of the portion AC of the beam 
(Fig. 9.10), where C is located at a distance x from end A, we find

 M 5 2Px (9.7)

Substituting for M into Eq. (9.4) and multiplying both members by the 
constant EI, we write

EI   

d 2y

dx2 5 2Px

Integrating in x, we obtain

 
EI   

dy

dx
5 21

2 Px2 1 C1 (9.8)

We now observe that at the fixed end B we have x 5 L and u 5 dyydx 5 0 
(Fig. 9.11). Substituting these values into (9.8) and solving for C1, we 
have

C1 5 1
2 PL2

which we carry back into (9.8):

 EI   

dy

dx
5 21

2 Px2 1 1
2 PL2 (9.9)

Integrating both members of Eq. (9.9), we write

 EI y 5 21
6Px3 1 1

2PL2x 1 C2 (9.10)

But, at B we have x 5 L, y 5 0. Substituting into (9.10), we have

0 5 21
6 PL3 1 1

2 PL3 1 C2

C2 5 21
3 PL3

Carrying the value of C2 back into Eq. (9.10), we obtain the equation of 
the elastic curve:

EI y 5 21
6 Px3 1 1

2 PL2x 2 1
3 PL3

or

 y 5
P

6EI
 12x3 1 3L2x 2 2L32 (9.11)

The deflection and slope at A are obtained by letting x 5 0 in Eqs. 
(9.11) and (9.9). We find

yA 5 2
PL3

3EI
    and    uA 5 ady

dx
b

A
5

PL2

2EI
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EXAMPLE 9.02 The simply supported prismatic beam AB carries a uniformly distributed 
load w per unit length (Fig. 9.12). Determine the equation of the elastic 
curve and the maximum deflection of the beam.
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x

D
M

V

wx

RA � wL

x

2
1

Fig. 9.13

B

w

A

L

Fig. 9.12

BA

L

y

x

 x �0, y � 0 x �  L, y �  0[[ [[

Fig. 9.14

B

C

L/2

A

y

x

Fig. 9.15

Drawing the free-body diagram of the portion AD of the beam 
(Fig. 9.13) and taking moments about D, we find that

 M 5 1
2 wL  x 2 1

2 wx2 (9.12)

Substituting for M into Eq. (9.4) and multiplying both members of this 
equation by the constant EI, we write

 EI  

d 2y

dx2 5 2 
1
2

  wx2 1
1
2

  wL x (9.13)

Integrating twice in x, we have

 EI  

dy

dx
5 2 

1
6

  wx3 1
1
4

  wL x2 1 C1
 (9.14)

 EI y 5 2 
1
24

  wx4 1
1
12

  wL x3 1 C1x 1 C2 (9.15)

Observing that y 5 0 at both ends of the beam (Fig. 9.14), we first let 
x 5 0 and y 5 0 in Eq. (9.15) and obtain C2 5 0. We then make x 5 L 
and y 5 0 in the same equation and write

0 5 2 1
24  wL4 1 1

12  wL4 1 C1L
C1 5 2 1

24 wL3

Carrying the values of C1 and C2 back into Eq. (9.15), we obtain the 
equation of the elastic curve:

EI y 5 2 1
24 wx4 1 1

12 wL x3 2 1
24 wL3x

or

 y 5
w

24EI
  12x4 1 2Lx3 2 L3x2 (9.16)

Substituting into Eq. (9.14) the value obtained for C1, we check 
that the slope of the beam is zero for x 5 Ly2 and that the elastic curve 
has a minimum at the midpoint C of the beam (Fig. 9.15). Letting x 5 
Ly2 in Eq. (9.16), we have

yC 5
w

24EI
  a2 

L4

16
1 2L 

L3

8
2 L3

 

L
2
b 5 2 

5wL4

384EI

The maximum deflection or, more precisely, the maximum absolute value 
of the deflection, is thus

0y 0max 5
5wL4

384EI
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557 In each of the two examples considered so far, only one free-
body diagram was required to determine the bending moment in 
the beam. As a result, a single function of x was used to represent 
M throughout the beam. This, however, is not generally the case. 
Concentrated loads, reactions at supports, or discontinuities in a 
distributed load will make it necessary to divide the beam into 
several portions, and to represent the bending moment by a dif-
ferent function M(x) in each of these portions of beam (Photo 9.1). 
Each of the functions M(x) will then lead to a different expression 
for the slope u(x) and for the deflection y(x). Since each of the 
expressions obtained for the deflection must contain two constants 
of integration, a large number of constants will have to be deter-
mined. As you will see in the next example, the required additional 
boundary conditions can be obtained by observing that, while the 
shear and bending moment can be discontinuous at several points 
in a beam, the deflection and the slope of the beam cannot be 
discontinuous at any point.

Photo 9.1 A different function M(x) is required 
in each portion of the cantilever arms.

9.3 Equation of the Elastic Curve

EXAMPLE 9.03For the prismatic beam and the loading shown (Fig. 9.16), determine the 
slope and deflection at point D.

We must divide the beam into two portions, AD and DB, and deter-
mine the function y(x) which defines the elastic curve for each of these 
portions.

 1. From A to D (x , L/4). We draw the free-body diagram of 
a portion of beam AE of length x , Ly4 (Fig. 9.17). Taking moments 
about E, we have

 M1 5
3P
4

 x (9.17)

or, recalling Eq. (9.4),

 EI  

d 2 y1

dx2 5
3
4

 Px (9.18)

where y1(x) is the function which defines the elastic curve for portion AD 
of the beam. Integrating in x, we write

 EI  u1 5 EI  

dy1

dx
5

3
8

 Px2 1 C1 (9.19)

 EI y1 5
1
8

 Px3 1 C1x 1 C2 (9.20)

 2. From D to B (x . L/4). We now draw the free-body diagram 
of a portion of beam AE of length x . Ly4 (Fig. 9.18) and write

 M2 5
3P
4

 x 2 P ax 2
L
4
b (9.21)

P

B
D

A

3L/4
L/4

Fig. 9.16

A
E

M1

V1

x

3
4 P

Fig. 9.17

x �     L1
4

V2

M2A
D

x

E

P

3
4 P

Fig. 9.18
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or, recalling Eq. (9.4) and rearranging terms,

 EI  

d 2y2

dx2 5 2 
1
4

 Px 1
1
4

 PL (9.22)

where y2(x) is the function which defines the elastic curve for portion DB 
of the beam. Integrating in x, we write

 EI u2 5 EI  

dy2

dx
5 2 

1
8

 Px2 1
1
4

 PL x 1 C3 (9.23)

 EI y2 5 2 
1
24

 Px3 1
1
8

 PL x2 1 C3x 1 C4 (9.24)

 Determination of the Constants of Integration. The conditions 
that must be satisfied by the constants of integration have been summarized 
in Fig. 9.19. At the support A, where the deflection is defined by Eq. (9.20), 
we must have x 5 0 and y1 5 0. At the support B, where the deflection is 
defined by Eq. (9.24), we must have x 5 L and y2 5 0. Also, the fact that 
there can be no sudden change in deflection or in slope at point D requires 
that y1 5 y2 and u1 5 u2 when x 5 Ly4. We have therefore:

3x 5 0, y1 5 0 4 , Eq. 19.202:     0 5 C2 (9.25)

3x 5 L, y2 5 0 4 , Eq. 19.242:    0 5
1
12

 PL3 1 C3 L 1 C4 (9.26)

3x 5 Ly4, u1 5 u2 4 , Eqs. 19.192 and 19.232:
 

3
128

 PL2 1 C1 5
7

128
 PL2 1 C3 (9.27)

3x 5 Ly4, y1 5 y2 4 , Eqs. 19.202 and 19.242:
 

PL3

512
1 C1 

L
4

5
11PL3

1536
1 C3 

L
4

1 C4 (9.28)

Solving these equations simultaneously, we find

C1 5 2 
7PL2

128
, C2 5 0, C3 5 2 

11PL2

128
, C4 5

PL3

384

Substituting for C1 and C2 into Eqs. (9.19) and (9.20), we write that for 
x # Ly4,

 EI u1 5
3
8

 Px2 2
7PL2

128
 (9.29)

 EI y1 5
1
8

 Px3 2
7PL2

128
 x (9.30)

Letting x 5 Ly4 in each of these equations, we find that the slope and 
deflection at point D are, respectively,

uD 5 2 
PL2

32EI
    and    yD 5 2 

3PL3

256EI

We note that, since uD fi 0, the deflection at D is not the maximum 
deflection of the beam.
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559*9.4  DIRECT DETERMINATION OF THE ELASTIC CURVE 
FROM THE LOAD DISTRIBUTION

We saw in Sec. 9.3 that the equation of the elastic curve can be 
obtained by integrating twice the differential equation

 
d2y

dx2 5
M 1x2
EI

 (9.4)   

where M(x) is the bending moment in the beam. We now recall from 
Sec. 5.3 that, when a beam supports a distributed load w(x), we have 
dMydx 5 V and dVydx 5 2w at any point of the beam. Differentiat-
ing both members of Eq. (9.4) with respect to x and assuming EI to 
be constant, we have therefore

 
d3y

dx3 5
1

EI
 

dM
dx

5
V 1x2
EI

 (9.31)

and, differentiating again,

d4y

dx4 5
1

EI
 

dV
dx

5 2
w1x2
EI

We conclude that, when a prismatic beam supports a distributed load 
w(x), its elastic curve is governed by the fourth-order linear differ-
ential equation

 
d4y

dx4 5 2
w1x2
EI

 (9.32)

 Multiplying both members of Eq. (9.32) by the constant EI and 
integrating four times, we write

 EI 

d 4y

dx4 5 2w 1x2

 EI 

d 
3y

dx 
3 5 V 1x2 5 2#w 1x2 dx 1 C1

 EI  

d2y

dx2 5 M1x2 5 2#  dx #  w1x2 dx 1 C1x 1 C2 (9.33)

 EI  

dy

dx
5 EI u 1x2 5 2# dx #dx #w 1x2 dx 1

1
2

  C
1
x2

1 C
2
x 1 C

3

 EI y 1x2 5 2# dx #dx # dx # w 1x2 dx 1
1
6

 C1x
3 1

1
2

 C2x
2 1 C3x 1 C4

The four constants of integration can be determined from the 
boundary conditions. These conditions include (a) the conditions 
imposed on the deflection or slope of the beam by its supports 
(cf. Sec. 9.3), and (b) the condition that V and M be zero at the 
free end of a cantilever beam, or that M be zero at both ends of 
a simply supported beam (cf. Sec. 5.3). This has been illustrated 
in Fig. 9.20.

9.4 Direct Determination of the Elastic Curve 
from the Load Distribution

B

B

xA

A

y

y

(a) Cantilever beam

(b) Simply supported beam

[ yA� 0]

x

[ yA� 0]
[  A�  0]�

[VB � 0]
[MB � 0]

[ yB� 0]

[MB� 0][MA� 0]

�

Fig. 9.20 Boundary conditions.
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560 Defl ection of Beams  The method presented here can be used effectively with can-
tilever or simply supported beams carrying a distributed load. In the 
case of overhanging beams, however, the reactions at the supports 
will cause discontinuities in the shear, i.e., in the third derivative of 
y, and different functions would be required to define the elastic 
curve over the entire beam.

EXAMPLE 9.04 The simply supported prismatic beam AB carries a uniformly distributed 
load w per unit length (Fig. 9.21). Determine the equation of the elastic 
curve and the maximum deflection of the beam. (This is the same beam 
and loading as in Example 9.02.)

Since w 5 constant, the first three of Eqs. (9.33) yield

 EI  

d 4y

dx4 5 2w

 EI  

d 3y

dx3 5 V 1x2 5 2wx 1 C1

  EI  

d 2y

dx2 5 M 1x2 5 2
1
2

  wx2 1 C1x 1 C2 (9.34)

Noting that the boundary conditions require that M 5 0 at both ends of 
the beam (Fig. 9.22), we first let x 5 0 and M 5 0 in Eq. (9.34) and 
obtain C2 5 0. We then make x 5 L and M 5 0 in the same equation 
and obtain C1 5 1

2 
wL.

Carrying the values of C1 and C2 back into Eq. (9.34), and integrat-
ing twice, we write

 
 EI  

d 2y

dx2 5 2 
1
2

  wx2 1
1
2

  wL x

 
 EI  

dy

dx
5 2 

1
6

 wx3 1
1
4

 wL x2 1 C3

 EI y 5 2 
1
24

 wx4 1
1
12

 wL x3 1 C3 
x 1 C4 (9.35)

But the boundary conditions also require that y 5 0 at both ends of the 
beam. Letting x 5 0 and y 5 0 in Eq. (9.35), we obtain C4 5 0; letting 
x 5 L and y 5 0 in the same equation, we write

0 5 2 1
24 wL4 1 1

12 wL4 1 C3L
C3 5 2 1

24  wL3

Carrying the values of C3 and C4 back into Eq. (9.35) and dividing both 
members by EI, we obtain the equation of the elastic curve:

 y 5
w

24EI
 12x4 1 2L  x3 2 L3x2 (9.36)

The value of the maximum deflection is obtained by making x 5 Ly2 
in Eq. (9.36). We have

0y 0max 5
5wL4

384EI

BA

L

w

Fig. 9.21

w
L

BA

y

x � 0, M � 0

x

[ ] x � L, M � 0[ ]
x � L, y � 0[ ]x � 0, y � 0[ ]

Fig. 9.22
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5619.5 STATICALLY INDETERMINATE BEAMS
In the preceding sections, our analysis was limited to statically deter-
minate beams. Consider now the prismatic beam AB (Fig. 9.23a), 
which has a fixed end at A and is supported by a roller at B. Drawing 
the free-body diagram of the beam (Fig. 9.23b), we note that the 
reactions involve four unknowns, while only three equilibrium equa-
tions are available, namely

 oFx 5 0   oFy 5 0   oMA 5 0 (9.37)

Since only Ax can be determined from these equations, we conclude 
that the beam is statically indeterminate.

9.5 Statically Indeterminate Beams

BA
A

L

(a)

B

wL

Ax

Ay
L

L/2

(b)

MA

B

w

Fig. 9.23 Statically indeterminate beam.

w

B
x

x � 0,    � 0[ ]
x � L, y � 0[ ]

x � 0, y � 0[ ]

A

�

y

Fig. 9.24 Boundary conditions for 
beam of Fig. 9.23.

 However, we recall from Chaps. 2 and 3 that, in a statically 
indeterminate problem, the reactions can be obtained by considering 
the deformations of the structure involved. We should, therefore, 
proceed with the computation of the slope and deformation along 
the beam. Following the method used in Sec. 9.3, we first express 
the bending moment M(x) at any given point of AB in terms of the 
distance x from A, the given load, and the unknown reactions. Inte-
grating in x, we obtain expressions for u and y which contain two 
additional unknowns, namely the constants of integration C1 and C2. 
But altogether six equations are available to determine the reactions 
and the constants C1 and C2; they are the three equilibrium equa-
tions (9.37) and the three equations expressing that the boundary 
conditions are satisfied, i.e., that the slope and deflection at A are 
zero, and that the deflection at B is zero (Fig. 9.24). Thus, the reac-
tions at the supports can be determined, and the equation of the 
elastic curve can be obtained.

EXAMPLE 9.05Determine the reactions at the supports for the prismatic beam of 
Fig. 9.23a.

 Equilibrium Equations.  From the free-body diagram of Fig. 
9.23b we write

 1y gFx 5 0:    Ax 5 0
 1xgFy 5 0:    Ay 1 B 2 wL 5 0  (9.38)

 1lgMA 5 0:    MA 1 BL 2 1
2  

wL2 5 0

bee80288_ch09_548-629.indd Page 561  10/30/10  11:17:57 PM user-f499bee80288_ch09_548-629.indd Page 561  10/30/10  11:17:57 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch09/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch09



 Equation of Elastic Curve. Drawing the free-body diagram of a 
portion of beam AC (Fig. 9.25), we write

1lgMC 5 0:    M 1 1
2  

wx2 1 MA 2 Ay  
x 5 0 (9.39)

Solving Eq. (9.39) for M and carrying into Eq. (9.4), we write

EI 
d 

2y

dx2 5 2 
1
2

 wx2 1 Ay 
x 2 MA

Integrating in x, we have

 EI u 5 EI 
dy

dx
5 2 

1
6

  wx3 1
1
2

 Ay 
x2 2 MAx 1 C1 (9.40)

 EI y 5 2 
1
24

  wx4 1
1
6

 Ay 
x3 2

1
2

 MAx2 1 C1x 1 C2 (9.41)

Referring to the boundary conditions indicated in Fig. 9.24, we make 
x 5 0, u 5 0 in Eq. (9.40), x 5 0, y 5 0 in Eq. (9.41), and conclude that 
C1 5 C2 5 0. Thus, we rewrite Eq. (9.41) as follows:

 EI  y 5 2 1
24 

 
wx4 1 1

6 Ay  x3 2 1
2MA x2 (9.42)

But the third boundary condition requires that y 5 0 for x 5 L. Carrying 
these values into (9.42), we write

0 5 2 1
24 

 
wL4 1 1

6 Ay 
L3 2 1

2 MAL2

or
 3MA 2 Ay  

L 1 1
4 wL2 5 0 (9.43)

Solving this equation simultaneously with the three equilibrium equations 
(9.38), we obtain the reactions at the supports:

Ax 5 0    Ay 5 5
8 wL    MA 5 1

8 wL2    B 5 3
8 wL

562

 In the example we have just considered, there was one redun-
dant reaction, i.e., there was one more reaction than could be deter-
mined from the equilibrium equations alone. The corresponding beam 
is said to be statically indeterminate to the first degree. Another exam-
ple of a beam indeterminate to the first degree is provided in Sample 
Prob. 9.3. If the beam supports are such that two reactions are redun-
dant (Fig. 9.26a), the beam is said to be indeterminate to the second 
degree. While there are now five unknown reactions (Fig. 9.26b), we 
find that four equations may be obtained from the boundary condi-
tions (Fig. 9.26c). Thus, altogether seven equations are available to 
determine the five reactions and the two constants of integration.

A
MA

x/2

C
M

V

wx

Ay

Ax

x

Fig. 9.25

L

w

A B

(a)

Fixed end
Frictionless

surface

Fig. 9.26 Beam statically indeterminate to the second degree.
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SAMPLE PROBLEM 9.1

The overhanging steel beam ABC carries a concentrated load P at end C. For 
portion AB of the beam, (a) derive the equation of the elastic curve, (b) deter-
mine the maximum deflection, (c) evaluate ymax for the following data:

W14 3 68      I 5 722 in4      E 5 29 3 106 psi
P 5 50 kips     L 5 15 ft 5 180 in.     a 5 4 ft 5 48 in.

SOLUTION

 Free-Body Diagrams.  Reactions: RA 5 PayLw RB 5 P 11 1 ayL 2x
Using the free-body diagram of the portion of beam AD of length x, we find

M 5 2P  

a
L

  x     10 , x , L 2
 Differential Equation of the Elastic Curve.  We use Eq. (9.4) and write

EI  

d 2y

dx2 5 2P 

a
L

  x

Noting that the flexural rigidity EI is constant, we integrate twice and find

  EI  

dy

dx
5 2 

1
2

 P 

a
L

  x2 1 C1 (1)

  EI y 5 2 
1
6

 P 

a
L

  x3 1 C1x 1 C2 (2)

 Determination of Constants.  For the boundary conditions shown, we 
have
[x 5 0, y 5 0]:    From Eq. (2), we find    C2 5 0
[x 5 L, y 5 0]:    Again using Eq. (2), we write

EI102 5 2 
1
6

 P 

a
L

 L3 1 C1L    C1 5 1
1
6

 PaL

 a. Equation of the Elastic Curve.  Substituting for C1 and C2 into Eqs. 
(1) and (2), we have

 EI 

dy

dx
5 2 

1
2

 P 

a
L

  x2 1
1
6

 PaL   
dy

dx
5

PaL
6EI

 c 1 2 3a x
L
b2 d  (3)

EI y 5 2 
1
6

 P  

a
L

 x3 1
1
6

 PaL x   y 5
PaL2

6EI
 c x

L
2 a x

L
b3 d  14 2  b

 b. Maximum Deflection in Portion AB.  The maximum deflection 
ymax occurs at point E where the slope of the elastic curve is zero. Setting 
dyydx 5 0 in Eq. (3), we determine the abscissa xm of point E:

0 5
PaL
6EI
c 1 2 3axm

L
b2 d     xm 5

L

23
5 0.577L

We substitute xmyL 5 0.577 into Eq. (4) and have

 
ymax 5

PaL2

6EI
 3 10.577 2 2 10.577 23 4

 
ymax 5 0.0642 

PaL2

EI
  b

 c. Evaluation of ymax. For the data given, the value of ymax is

 ymax 5 0.0642 

150 kips2 148 in.2 1180 in.22
129 3 106 psi2 1722 in42  ymax 5 0.238 in.  b

B
C

x

L a

A

y

[x � 0, y � 0] [x � L, y � 0]

C

x

xm

ymax

A
B

E

y

RA � P
V

B

D

y

P

M

RA RB

C

x

L a

A

A

L
a

B

P

C
A

L a
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564

SAMPLE PROBLEM 9.2

For the beam and loading shown, determine (a) the equation of the elastic 
curve, (b) the slope at end A, (c) the maximum deflection.

SOLUTION

 Differential Equation of the Elastic Curve.   From Eq. (9.32),

 EI  

d 
4y

dx4 5 2w 1x2 5 2w0 sin 
px
L

 (1)

Integrate Eq. (1) twice:

 EI  

d 3y

dx3 5 V 5 1w0
L
p

 cos 
px
L

1 C1 (2)

 EI  

d 
2y

dx2 5 M 5 1w0
L2

p2 sin 
px
L

1 C1x 1 C2 (3)

 Boundary Conditions:

[x 5 0, M 5 0]:    From Eq. (3), we find    C2 5 0
[x 5 L, M 5 0]:    Again using Eq. (3), we write

0 5 w0
L2

p2 sin p 1 C1L  C1 5 0

Thus:

 
EI  

d 2y

dx2 5 1w0
L2

p2 sin 
px
L

 (4)

Integrate Eq. (4) twice:

  EI  

dy

dx
5 EI u 5 2w0

L3

p3 cos 
px
L

1 C3 (5)

  EI y 5 2w0 
L4

p4  sin 
px
L

1 C3 x 1 C4 (6)

 Boundary Conditions:

[x 5 0, y 5 0]:    Using Eq. (6), we find    C4 5 0
[x 5 L, y 5 0]:    Again using Eq. (6), we find C3 5 0

 a. Equation of Elastic Curve EIy 5 2w0 

L4

p4 sin 
px
L
  b

 b. Slope at End A.  For x 5 0, we have

 
EI uA 5 2w0

L3

p3 cos 0
 

uA 5
w0L

3

p3EI
 c b

 c. Maximum Deflection.  For x 5 1
2 L

 
ELymax 5 2w0 

L4

p4 sin 
p

2  
ymax 5

w0L
4

p4EI
 w b

B
x

L

A

y

[x � 0, M � 0]
[x � 0, y � 0]

[x � L, M � 0]
[x � L, y � 0]

L/2 L/2

A B

y

x

ymaxA�

B

w � w0 sin

A

x
L

x

y
�

L
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565

SAMPLE PROBLEM 9.3

For the uniform beam AB, (a) determine the reaction at A, (b) derive the 
equation of the elastic curve, (c) determine the slope at A. (Note that the 
beam is statically indeterminate to the first degree.)

SOLUTION

 Bending Moment.  Using the free body shown, we write

1igMD 5 0:    RAx 2
1
2

 aw0 
x2

L
b 

x
3

2 M 5 0    M 5 RAx 2
w0 

x3

6L

 Differential Equation of the Elastic Curve.  We use Eq. (9.4) and write

EI  
d 

2y

dx2 5 RAx 2
w0 

x3

6L

Noting that the flexural rigidity EI is constant, we integrate twice and find

  EI 
dy

dx
5 EI u 5

1
2

 RAx2 2
w0 

x4

24L
1 C1 (1)

  EI y 5
1
6

 RAx 
3 2

w0x5

120L
1 C1x 1 C2 (2)

 Boundary Conditions.  The three boundary conditions that must be 
satisfied are shown on the sketch

3x 5 0, y 5 0 4 : C2 5 0 (3)

3x 5 L, u 5 0 4 : 1
2

 RAL2 2
w0 L3

24
1 C1 5 0 (4)

3x 5 L, y 5 0 4 : 1
6

 RAL3 2
w0 L4

120
1 C1L 1 C2 5 0 (5)

 a. Reaction at A.  Multiplying Eq. (4) by L, subtracting Eq. (5) member 
by member from the equation obtained, and noting that C2 5 0, we have

 1
3 RAL3 2 1

30 
 
w0L

4 5 0 RA 5 1
10 

 
w0Lx  b

We note that the reaction is independent of E and I. Substituting RA 5 1
10 w0L 

into Eq. (4), we have
1
2 1 1

10 w0L2L2 2 1
24 

 
w0L

3 1 C1 5 0    C1 5 2 1
120 w0 L3

 b. Equation of the Elastic Curve.  Substituting for RA, C1, and C2 
into Eq. (2), we have

EI y 5
1
6

 a 1
10

  w0Lb x3 2
w0x5

120L
2 a 1

120
  w0L

3b x

y 5
w0

120EIL
 12x5 1 2L2x3 2 L4x2  b

 c. Slope at A.  We differentiate the above equation with respect to x:

u 5
dy

dx
5

w0

120EIL
 125x4 1 6L2x2 2 L42

Making x 5 0, we have uA 5 2 
w0L

3

120EI 
uA 5

w0L
3

120EI
 c b

x

y

[x � 0, y � 0]
[x � L, y � 0]

[x � L,    � 0]�

A B

A

L

B
x

�A

A B

L

w0

A

w � w0

x
L(w0    ) x1

2
x1

3 x
L

D
x

M

V
RA
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PROBLEMS

566

In the following problems assume that the flexural rigid-
ity EI of each beam is constant.

 9.1 through 9.4 For the loading shown, determine (a) the equa-
tion of the elastic curve for the cantilever beam AB, (b) the deflec-
tion at the free end, (c) the slope at the free end.

9.5 and 9.6 For the cantilever beam and loading shown, determine 
(a) the equation of the elastic curve for portion AB of the beam, 
(b) the deflection at B, (c) the slope at B.

Fig. P9.1

w0

xB

A

y

L

B
A

y

w

L

x

Fig. P9.2

Fig. P9.4

BA

y

L

x

M0

B

A

y

L

P

x

Fig. P9.3

C

A B

y

w

w
L/2 L/2

x

Fig. P9.5

y

A

w

B

C
x

P � 2
3

wa

a2a

Fig. P9.6

9.7 For the beam and loading shown, determine (a) the equation of 
the elastic curve for portion AB of the beam, (b) the slope at A, 
(c) the slope at B.

B C

w

A

L L/2

x

y

Fig. P9.7
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567Problems 9.8 For the beam and loading shown, determine (a) the equation of 
the elastic curve for portion AB of the beam, (b) the deflection at 
midspan, (c) the slope at B.

 9.11 (a) Determine the location and magnitude of the maximum deflec-
tion of beam AB. (b) Assuming that beam AB is a W360 3 64, L 5 
3.5 m, and E 5 200 GPa, calculate the maximum allowable value of 
the applied moment M0 if the maximum deflection is not to exceed 
1 mm.

B C
A

L L/2

x

y w0

Fig. P9.8

 9.9 Knowing that beam AB is an S200 3 34 rolled shape and that P 5 
60 kN, L 5 2 m, and E 5 200 GPa, determine (a) the slope at A, 
(b) the deflection at C.

 9.10 Knowing that beam AB is a W10 3 33 rolled shape and that w0 5 
3 kips/ft, L 5 12 ft, and E 5 29 3 106 psi, determine (a) the slope 
at A, (b) the deflection at C.

y

A

L/2L/2

x
BC

P

S

Fig. P9.9

A
C

xB

y
w0

W

L/2 L/2

Fig. P9.10

 9.12 For the beam and loading shown, (a) express the magnitude and 
location of the maximum deflection in terms of w0, L, E, and I. 
(b) Calculate the value of the maximum deflection, assuming that 
beam AB is a W18 3 50 rolled shape and that w0 5 4.5 kips/ft, 
L 5 18 ft, and E 5 29 3 106 psi.

x

y

A

L

B

M0

Fig. P9.11

x

y

A

L

B

w0

Fig. P9.12
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568 Defl ection of Beams  9.13 For the beam and loading shown, determine the deflection at point 
C. Use E 5 29 3 106 psi.

x

y

A

L � 15 ft

W14 � 30

a � 5 ft

BC

P � 35 kips

Fig. P9.13

 9.14 For the beam and loading shown, knowing that a 5 2 m, w 5 
50 kN/m, and E 5 200 GPa, determine (a) the slope at support A, 
(b) the deflection at point C.

Fig. P9.14

y

w

C B xA

a

L � 6 m

W310 � 38.7

 9.15 For the beam and loading shown, determine the deflection at point 
C. Use E 5 200 GPa.

Fig. P9.15

x

y

A

L � 4.8 m

W200 � 35.9

a � 1.2 m

B

C

M0 � 60 kN · m

 9.16 Knowing that beam AE is an S200 3 27.4 rolled shape and that 
P 5 17.5 kN, L 5 2.5 m, a 5 0.8 m and E 5 200 GPa, determine 
(a) the equation of the elastic curve for portion BD, (b) the deflec-
tion at the center C of the beam.

Fig. P9.16

y

E xA

a a

B C D

L/2L/2

PP
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569Problems 9.17 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at end A, (c) the deflection at the 
midpoint of the span.

Fig. P9.17

x

y

A

L

B

w � w0 [ ]�1 x2

L2

 9.18 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at end A, (c) the deflection at the 
midpoint of the span.

 9.19 through 9.22 For the beam and loading shown, determine the 
reaction at the roller support. Fig. P9.18

x

y

A

L

B

w � 4w0[ ]�
x
L

x2

L2

L

A
B

M0

Fig. P9.19

B
A

w

L

Fig. P9.20

B
A

w0

L

Fig. P9.22

B
A

w0

L

Fig. P9.21

 9.23 For the beam shown, determine the reaction at the roller support 
when w0 5 15 kN/m.

Fig. P9.23

L � 3 m

w0

A
B

 w � w0(x/L)2
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570 Defl ection of Beams  9.24 For the beam shown, determine the reaction at the roller support 
when w0 5 6 kips/ft.

 9.25 through 9.28 Determine the reaction at the roller support 
and draw the bending moment diagram for the beam and loading 
shown.

B

L � 12 ft

w � w0 (x/L)2

A

w0

Fig. P9.24

Fig. P9.25

B
A

L/2

C

L

M0

Fig. P9.26

P

A C
B

L/2 L/2

Fig. P9.27

B

C

w

A

L/2 L/2

Fig. P9.28

B

C

w0

1
2

A

L

L

 9.29 and 9.30 Determine the reaction at the roller support and the 
deflection at point C.

B
C

w

w

A

L/2 L/2

Fig. P9.29

A

L/2 L/2

C B

w

Fig. P9.30

 9.31 and 9.32 Determine the reaction at the roller support and the 
deflection at point D if a is equal to Ly3.

B
A

a

L

D

M0

Fig. P9.31 Fig. P9.32

B
A

D

a

L

P
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 9.33 and 9.34 Determine the reaction at A and draw the bending 
moment diagram for the beam and loading shown.

571

Fig. P9.33

BA C

L/2 L/2

w0

BA C

P

L/2 L/2

Fig. P9.34

Photo 9.2 In this roof structure, each of the joists applies a concentrated load to the 
beam that supports it.

9.6 Using Singularity Functions to Determine 
the Slope and Defl ection of a Beam

*9.6  USING SINGULARITY FUNCTIONS TO DETERMINE 
THE SLOPE AND DEFLECTION OF A BEAM

Reviewing the work done so far in this chapter, we note that the inte-
gration method provides a convenient and effective way of determining 
the slope and deflection at any point of a prismatic beam, as long as 
the bending moment can be represented by a single analytical function 
M(x). However, when the loading of the beam is such that two different 
functions are needed to represent the bending moment over the entire 
length of the beam, as in Example 9.03 (Fig. 9.16), four constants of 
integration are required, and an equal number of equations, expressing 
continuity conditions at point D, as well as boundary conditions at the 
supports A and B, must be used to determine these constants. If three 
or more functions were needed to represent the bending moment, 
additional constants and a corresponding number of additional equa-
tions would be required, resulting in rather lengthy computations. Such 
would be the case for the beam shown in Photo 9.2. In this section 
these computations will be simplified through the use of the singularity 
functions discussed in Sec. 5.5.

bee80288_ch09_548-629.indd Page 571  10/30/10  11:20:00 PM user-f499bee80288_ch09_548-629.indd Page 571  10/30/10  11:20:00 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch09/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch09



572 Defl ection of Beams  Let us consider again the beam and loading of Example 9.03 
(Fig. 9.16) and draw the free-body diagram of that beam (Fig. 9.27). 
Using the appropriate singularity function, as explained in Sec. 5.5, 
to represent the contribution to the shear of the concentrated load 
P, we write

V1x2 5
3P
4

2 PHx 2 1
4 LI0

Integrating in x and recalling from Sec. 5.5 that in the absence of 
any concentrated couple, the expression obtained for the bending 
moment will not contain any constant term, we have

 
M1x2 5

3P
4

 x 2 PHx 2 1
4 LI

 
(9.44)

Substituting for M(x) from (9.44) into Eq. (9.4), we write

 
EI 

d 

2y

dx2 5
3P
4

 x 2 PHx 2 1
4 LI

 
(9.45)

and, integrating in x,

 
 EI u 5 EI 

dy

dx
5

3
8

 Px2 2
1
2

 PHx 2 1
4 LI2 1 C1 (9.46)

 
 EI y 5

1
8

 Px3 2
1
6

 PHx 2 1
4 LI3 1 C1x 1 C2  (9.47)†

 The constants C1 and C2 can be determined from the boundary 
con ditions shown in Fig. 9.28. Letting x 5 0, y 5 0 in Eq. (9.47), 
we have

0 5 0 2
1
6

 PH0 2 1
4 LI3 1 0 1 C2

which reduces to C2 5 0, since any bracket containing a negative 
quantity is equal to zero. Letting now x 5 L, y 5 0, and C2 5 0 in 
Eq. (9.47), we write

0 5
1
8

 PL3 2
1
6

 PH34 LI3 1 C1L

Since the quantity between brackets is positive, the brackets can be 
replaced by ordinary parentheses. Solving for C1, we have

C1 5 2
7PL2

128

 We check that the expressions obtained for the constants C1 
and C2 are the same that were found earlier in Sec. 9.3. But the 
need for additional constants C3 and C4 has now been eliminated, 
and we do not have to write equations expressing that the slope and 
the deflection are continuous at point D.

P

B
D

A

3L/4
L/4

Fig. 9.16 (repeated)

†The continuity conditions for the slope and deflection at D are “built-in” in Eqs. (9.46) 
and (9.47). Indeed, the difference between the expressions for the slope u1 in AD and the 
slope u2 in DB is represented by the term 21

2 PHx 2 1
4 LI2 in Eq. (9.46), and this term is 

equal to zero at D. Similarly, the difference between the expressions for the deflection y1 
in AD and the deflection y2 in DB is represented by the term 21

6 PHx 2 1
4 LI3 in Eq. (9.47), 

and this term is also equal to zero at D.

B
A

y

x

x � 0, y � 0[ ] x � L, y � 0[ ]

Fig. 9.28 Boundary conditions for 
beam of Fig. 9.16.

A
D

B x

y P

L/4
3L/4

3
4 P 1

4 P

Fig. 9.27 Free-body diagram for 
beam of Fig. 9.16.
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573

EXAMPLE 9.06For the beam and loading shown (Fig. 9.29a) and using singularity func-
tions, (a) express the slope and deflection as functions of the distance x 
from the support at A, (b) determine the deflection at the midpoint D. Use 
E 5 200 GPa and I 5 6.87 3 1026 m4.

(a) We note that the beam is loaded and supported in the same 
manner as the beam of Example 5.05. Referring to that example, we recall 
that the given distributed loading was replaced by the two equivalent 
open-ended loadings shown in Fig. 9.29b and that the following expres-
sions were obtained for the shear and bending moment:

 V1x2 5 21.5Hx 2 0.6I1 1 1.5Hx 2 1.8I1 1 2.6 2 1.2Hx 2 0.6I0
 M1x2 5 20.75Hx 2 0.6I2 1 0.75Hx 2 1.8I2

1 2.6x 2 1.2Hx 2 0.6I1 2 1.44Hx 2 2.6I0
Integrating the last expression twice, we obtain

EIu 5 20.25Hx 2 0.6I3 1 0.25Hx 2 1.8I3
1 1.3x2 2 0.6Hx 2 0.6I2 2 1.44 Hx 2 2.6I1 1 C1  (9.48)

EIy 5 20.0625Hx 2 0.6I4 1 0.0625Hx 2 1.8I4 1 0.4333x3

2 0.2Hx 2 0.6I3 2 0.72Hx 2 2.6I2 1 C1x 1 C2  (9.49)

The constants C1 and C2 can be determined from the boundary 
conditions shown in Fig. 9.30. Letting x 5 0, y 5 0 in Eq. (9.49) and 
noting that all the brackets contain negative quantities and, therefore, are 
equal to zero, we conclude that C2 5 0. Letting now x 5 3.6, y 5 0, and 
C2 5 0 in Eq. (9.49), we write

0 5 20.0625H3.0I4 1 0.0625H1.8I4
1 0.433313.623 2 0.2H3.0I3 2 0.72H1.0I2 1 C113.62 1 0

Since all the quantities between brackets are positive, the brackets can be 
replaced by ordinary parentheses. Solving for C1, we find C1 5 22.692.

B

B

w0 � 1.5 kN/m

w

w0 � 1.5 kN/m

P � 1.2 kN

P � 1.2 kN

B

Ay � 2.6 kN � w0 � � 1.5 kN/m

M0 � 1.44 kN · m

M0 � 1.44 kN · m

A
C D

E

xA E
C

D

(a)

(b)

0.6 m
1.2 m

3.6 m

0.8 m 1.0 m

0.6 m

2.6 m

1.8 m

E

E

Fig. 9.29

B
A

y

x
[x � 0,  y � 0] [x � 3.6,  y � 0]

Fig. 9.30

(b) Substituting for C1 and C2 into Eq. (9.49) and making x 5 xD 5 
1.8 m, we find that the deflection at point D is defined by the relation

EIyD 5 20.0625H1.2I4 1 0.0625H0I4
1 0.433311.823 2 0.2H1.2I3 2 0.72H20.8I2 2 2.69211.82

The last bracket contains a negative quantity and, therefore, is equal to 
zero. All the other brackets contain positive quantities and can be replaced 
by ordinary parentheses. We have

EIyD 5 20.062511.224 1 0.06251024
1 0.433311.823 2 0.211.223 2 0 2 2.69211.82 5 22.794

Recalling the given numerical values of E and I, we write

 1200 GPa2 16.87 3 1026 m42yD 5 22.794 kN ? m3

 yD 5 213.64 3 1023 m 5 22.03 mm
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574

SAMPLE PROBLEM 9.4

For the prismatic beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the slope at A, (c) the maximum deflection.

SOLUTION

 Bending Moment. The equation defining the bending moment of the 
beam was obtained in Sample Prob. 5.9. Using the modified loading diagram 
shown, we had [Eq. (3)]:

M1x2 5 2 
w0

3L
 x3 1

2w0

3L
 Hx 2 1

2 LI3 1 1
4 w0 Lx

 a. Equation of the Elastic Curve. Using Eq. (9.4), we write

 
EI 

d2y

dx2 5 2 
w0

3L
 x3 1

2w0

3L
 Hx 2 1

2 LI3 1 1
4 w0 Lx

 
(1)

and, integrating twice in x,

 
 EI u 5 2 

w0

12L
 x4 1

w0

6L
 Hx 2 1

2 LI4 1
w0 L

8
 x2 1 C1 

(2)

 
 EI y 5 2 

w0

60L
 x5 1

w0

30L
 Hx 2 1

2 LI5 1
w0 

L
24

 x3 1 C1x 1 C2 
(3)

 Boundary Conditions.
 [x 5 0, y 5 0]: Using Eq. (3) and noting that each bracket H I con-
tains a negative quantity and, thus, is equal to zero, we find C2 5 0.

 [x 5 L, y 5 0]: Again using Eq. (3), we write

0 5 2 
w0 L4

60
1

w0

30L
 aL

2
b5

1
w0 

L4

24
1 C1L  

C1 5 2 
5

192
 w0 

L3

Substituting C1 and C2 into Eqs. (2) and (3), we have

 
 EI  u 5 2 

w0

12L
 x4 1

w0

6L
 Hx 2 1

2 LI4 1
w0 

L
8

 x2 2
5

192
 w0 

L3

 
(4)

 
 EI y 5 2 

w0

60L
 x5 1

w0

30L
 Hx 2 1

2 LI5 1
w0 

L
24

 x3 2
5

192
 w0 

L3x  
 
(5) b

 b. Slope at A. Substituting x 5 0 into Eq. (4), we find

 
EI uA 5 2 

5
192

 w0 
L3

 
uA 5

5w0 
L3

192EI 
c b

 c. Maximum Deflection. Because of the symmetry of the supports and 
loading, the maximum deflection occurs at point C, where x 5 1

2 L. Substitut-
ing into Eq. (5), we obtain

EI ymax 5 w0 
L4 c2 

1
601322 1 0 1

1
24182 2

5
192122 d 5 2 

w0 
L4

120

ymax 5
w0 

L4

120EI
w b

w0

A B

L/2 L/2

C

w 2w0

L
k1 � �

A
C

RA � RB

x
B

L/2 L/2

4w0

L
k2 � �

1 w0L4

L

A
BC

y

x
[ x � 0, y � 0 ] [ x � L, y � 0 ]

L/2

A
B

C

y

xymax

�A
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575

SAMPLE PROBLEM 9.5

The rigid bar DEF is welded at point D to the uniform steel 
beam AB. For the loading shown, determine (a) the equation 
of the elastic curve of the beam, (b) the deflection at the mid-
point C of the beam. Use E 5 29 3 106 psi.

SOLUTION

 Bending Moment.  The equation defining the bending moment of the 
beam was obtained in Sample Prob. 5.10. Using the modified loading dia-
gram shown and expressing x in feet, we had [Eq. (3)]:

M(x) 5 225x2 1 480x 2 160 Hx 2 11I1 2 480 Hx 2 11I0 lb ? ft

 a. Equation of the Elastic Curve. Using Eq. (8.4), we write

EI(d2yydx2) 5 225x2 1 480x 2 160 Hx 2 11I1 2 480 Hx 2 11I0 lb ? ft (1)

and, integrating twice in x,

EI u 5 28.333x3 1 240x2 2 80 Hx 2 11I2 2 480 Hx 2 11I1 1 C1 lb ? ft2 (2)
EI y 5 22.083x4 1 80x3 2 26.67Hx 2 11I3 2 240 Hx 2 11I2
 1 C1x 1 C2 lb ? ft3  (3)
 Boundary Conditions.
 [x 5 0, y 5 0]: Using Eq. (3) and noting that each bracket H I con-
tains a negative quantity and, thus, is equal to zero, we find C2 5 0.
 [x 5 16 ft, y 5 0]: Again using Eq. (3) and noting that each bracket con-
tains a positive quantity and, thus, can be replaced by a parenthesis, we write

 0 5 22.08311624 1 8011623 2 26.671523 2 2401522 1 C11162
 C1 5 211.36 3 103

Substituting the values found for C1 and C2 into Eq. (3), we have

EI y 5 22.083x4 1 80x3 2 26.67Hx 2 11I3 2 240Hx 2 11I2
2 11.36 3 103x  lb ? ft3 (39) b

To determine EI, we recall that E 5 29 3 106 psi and compute

 I 5 1
12 bh3 5 1

12 11 in.2 13 in.23 5 2.25 in4

 EI 5 129 3 106 psi2 12.25 in42 5 65.25 3 106 lb ? in2

However, since all previous computations have been carried out with feet 
as the unit of length, we write

EI 5 165.25 3 106 lb ? in22 11 ft/12 in.22 5 453.1 3 103 lb ? ft2

 b. Deflection at Midpoint C. Making x 5 8 ft in Eq. (39), we write

EI yC 5 22.0831824 1 801823 2 26.67H23I3 2 240H23I2 2 11.36 3 103182
Noting that each bracket is equal to zero and substituting for EI its numeri-
cal value, we have

(453.1 3 103 lb ? ft2)yC 5 258.45 3 103 lb ? ft3

and, solving for yC: yC 5 20.1290 ft yC 5 21.548 in. b

Note that the deflection obtained is not the maximum deflection.

B
C

F E

D
A

50 lb/ft

160 lb

8 ft
3 ft

3 in.

1 in.

5 ft

B
x

D
A

w0 � 50 lb/ftw

MD  � 480 lb · ft

RA  � 480 lb RBP  � 160 lb

5 ft11 ft

16 ft

y

A x
B

[ x � 0, y � 0 ] [ x � 16 ft, y � 0 ]

8 ft 8 ft

y

A

C

x
ByC
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SAMPLE PROBLEM 9.6

For the uniform beam ABC, (a) express the reaction at A in terms of P, L, 
a, E, and I, (b) determine the reaction at A and the deflection under the 
load when a 5 Ly2.

SOLUTION

 Reactions.  For the given vertical load P the reactions are as shown. 
We note that they are statically indeterminate.

 Shear and Bending Moment.  Using a step function to represent the 
contribution of P to the shear, we write

V1x2 5 RA 2 PHx 2 aI0
Integrating in x, we obtain the bending moment:

M1x2 5 RAx 2 PHx 2 aI1
 Equation of the Elastic Curve.  Using Eq. (9.4), we write

EI 
d 

2y

dx2 5 RAx 2 PHx 2 aI1
Integrating twice in x,

 EI 
dy

dx
5 EI u 5

1
2

 RAx2 2
1
2

PHx 2 aI2 1 C1

 EI y 5
1
6

RAx3 2
1
6

PHx 2 aI3 1 C1x 1 C2

 Boundary Conditions.  Noting that the bracket Hx 2 aI is equal to 
zero for x 5 0, and to (L 2 a) for x 5 L, we write

3x 5 0, y 5 0 4 : C2 5 0 (1)
3x 5 L, u 5 0 4 : 1

2RAL2 2 1
2P1L 2 a22 1 C1 5 0 (2)

3x 5 L, y 5 0 4 : 1
6RAL3 2 1

6P1L 2 a23 1 C1L 1 C2 5 0 (3)
 a. Reaction at A. Multiplying Eq. (2) by L, subtracting Eq. (3) member 
by member from the equation obtained, and noting that C2 5 0, we have

1
3

RAL3 2
1
6

P1L 2 a22 33L 2 1L 2 a2 4 5 0

RA 5 P a1 2
a
L
b2a1 1

a
2L
bx b

We note that the reaction is independent of E and I.

 b. Reaction at A and Deflection at B when a 5 1
2L. Making a 5 1

2 L 
in the expression obtained for RA, we have

 RA 5 P11 2 1
2 2211 1 1

4 2 5 5Py16 RA 5 5
16 Px b

Substituting a 5 Ly2 and RA 5 5Py16 into Eq. (2) and solving for C1, we 
find C1 5 2PL2y32. Making x 5 Ly2, C1 5 2PL2y32, and C2 5 0 in the 
expression obtained for y, we have

 
yB 5 2

7PL3

768EI 
yB 5

7PL3

768EI
w b

Note that the deflection obtained is not the maximum deflection.

B C

L
a

A

P

P

L

A

y

B C
x

a

MC

RCRA

L

C
A

y [ x � 0, y � 0 ]

[ x � 0, y � 0 ]
[ x � L,    � 0 ]�

x

A

B

C

RA

yB

L/2L/2

P
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PROBLEMS

577

Use singularity functions to solve the following problems 
and assume that the flexural rigidity EI of each beam is 
constant.

 9.35 and 9.36 For the beam and loading shown, determine (a) the 
equation of the elastic curve, (b) the slope at end A, (c) the deflec-
tion of point C.

M0

x

y

B

C
A

a b

L

Fig. P9.35

x

y

BC
A

L

a b

P

Fig. P9.36

 9.37 and 9.38 For the beam and loading shown, determine (a) the 
equation of the elastic curve, (b) the slope at the free end, (c) the 
deflection of the free end.

A B C

a

y

a

x

P P

Fig. P9.37

a

A

y

B C

a

x

PP

Fig. P9.38

9.39 and 9.40 For the beam and loading shown, determine (a) the 
deflection at end A, (b) the deflection at point C, (c) the slope at 
end D.

x

y

D

C

B

A

a

M0
M0

a a

Fig. P9.39

x

y

DCB
A

a a a

P P

Fig. P9.40
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578 Defl ection of Beams  9.41 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the deflection at the midpoint C.

C

y

xA
B

aaaa

w w

Fig. P9.41

L/2 L/2

B
A

y

C D x

L/2

w w

Fig. P9.42

 9.42 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the deflection at point B, (c) the deflection 
at point D.

 9.43 and 9.44 For the beam and loading shown, determine (a) the 
equation of the elastic curve, (b) the deflection at the midpoint C.

xBC
A

w0

L/2 L/2

y

Fig. P9.43

xBC
A

w0
w0

L/2 L/2

y

Fig. P9.44

 9.45 For the beam and loading shown, determine (a) the slope at end 
A, (b) the deflection at point C. Use E 5 200 GPa.

A D

12 kN/m

CB

0.4 m 0.4 m
0.8 m

W150 � 13.5

20 kN

Fig. P9.45

 9.46 For the beam and loading shown, determine (a) the slope at end A, 
(b) the deflection at point C. Use E 5 29 3 106 psi.

 9.47 For the beam and loading shown, determine (a) the slope at end 
A, (b) the deflection at the midpoint C. Use E 5 200 GPa.

W16 � 57

5 ft 5 ft 6 ft

3 kips/ft

20 kips

A D
C

B

Fig. P9.46

A

S130 � 15

1 m 1 m

BC

8 kN48 kN/m

Fig. P9.47
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579Problems 9.48 For the timber beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at the midpoint C. Use E 5 
1.6 3 106 psi.

 9.49 and 9.50 For the beam and loading shown, determine (a) the 
reaction at the roller support, (b) the deflection at point C.

A D

350 lb/ft

2 kips

CB

1.75 ft 1.75 ft
3.5 ft

3.5 in.

5.5 in.

Fig. P9.48

L/2 L/2

C
A

B

M0

Fig. P9.49

P

A C
B

L/2 L/2

Fig. P9.50

 9.51 and 9.52 For the beam and loading shown, determine (a) the 
reaction at the roller support, (b) the deflection at point B.

A

B

M0M0

L/4 L/2 L/4

D
C

Fig. P9.51

L/3

A B C
D

L/3 L/3

P P

Fig. P9.52

 9.53 For the beam and loading shown, determine (a) the reaction at 
point C, (b) the deflection at point B. Use E 5 200 GPa.

C
B

A

14 kN/m

W410 � 60

5 m 3 m

Fig. P9.53

 9.54 For the beam and loading shown, determine (a) the reaction at 
point A, (b) the deflection at point C. Use E 5 29 3 106 psi.

 9.55 For the beam and loading shown, determine (a) the reaction at 
point C, (b) the deflection at point B. Use E 5 29 3 106 psi.

 9.56 For the beam shown and knowing that P 5 40 kN, determine 
(a) the reaction at point E, (b) the deflection at point C. Use E 5 
200 GPa.

BC

2.5 kips/ft

6 ft 6 ft

A

W10 � 22

Fig. P9.54

W12 � 40

8 ft 4 ft

A
C

B

w0 � 9 kips/ft

Fig. P9.55

E

0.5 m 0.5 m 0.5 m 0.5 m

B C D

P

W200 � 46.1

P P

A

Fig. P9.56
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9.7 METHOD OF SUPERPOSITION
When a beam is subjected to several concentrated or distributed 
loads, it is often found convenient to compute separately the slope 
and deflection caused by each of the given loads. The slope and 
deflection due to the combined loads are then obtained by applying 
the principle of superposition (Sec. 2.12) and adding the values of 
the slope or deflection corresponding to the various loads.

 9.57 and 9.58 For the beam and loading shown, determine (a) the 
reaction at point A, (b) the deflection at midpoint C.

L/2 L/2

A B C D

L/3

P

Fig. P9.57

B

A C

L/2 L/2

w

Fig. P9.58

 9.59 through 9.62 For the beam and loading indicated, determine 
the magnitude and location of the largest downward deflection.

   9.59 Beam and loading of Prob. 9.45.
   9.60 Beam and loading of Prob. 9.46.
   9.61 Beam and loading of Prob. 9.47.
   9.62 Beam and loading of Prob. 9.48.

 9.63 The rigid bars BF and DH are welded to the rolled-steel beam AE 
as shown. Determine for the loading shown (a) the deflection at 
point B, (b) the deflection at midpoint C of the beam. Use E 5 
200 GPa.

D
0.4 m

H

G

E

CB

F

A

W100 � 19.3

0.15 m

0.5 m 0.3 m 0.3 m 0.5 m

100 kN

Fig. P9.63

 9.64 The rigid bar DEF is welded at point D to the rolled-steel beam 
AB. For the loading shown, determine (a) the slope at point A, 
(b) the deflection at midpoint C of the beam. Use E 5 200 GPa.

1.2 m

50 kN

30 kN/m

1.2 m
2.4 m

A B
C

F
D
E W460 � 52

Fig. P9.64
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EXAMPLE 9.07Determine the slope and deflection at D for the beam and loading 
shown (Fig. 9.31), knowing that the flexural rigidity of the beam is 
EI 5 100 MN ? m2.

The slope and deflection at any point of the beam can be obtained 
by superposing the slopes and deflections caused respectively by the con-
centrated load and by the distributed load (Fig. 9.32).

Since the concentrated load in Fig. 9.32b is applied at quarter span, 
we can use the results obtained for the beam and loading of Example 9.03 
and write

 1uD2P 5 2 
PL2

32EI
5 2 

1150 3 1032 1822
321100 3 1062 5 23 3 1023 rad

 1yD2P 5 2 
3PL3

256EI
5 2 

31150 3 1032 1823
2561100 3 1062 5 29 3 1023 m

 5 29 mm

On the other hand, recalling the equation of the elastic curve obtained 
for a uniformly distributed load in Example 9.02, we express the deflec-
tion in Fig. 9.32c as

 y 5
w

24EI
12x4 1 2L  x3 2 L3x2 (9.50)

A
D

B

150 kN

20 kN/m
2 m

8 m

Fig. 9.31

D

x � 2 m
L � 8 m

(c)

BA

w � 20 kN/m

Fig. 9.32

D

20 kN/m
150 kN

BA

(a)

2 m

D

BA

L � 8 m

P � 150 kN

(b)

and, differentiating with respect to x,

 u 5
dy

dx
5

w
24EI

 124x3 1 6L  x2 2 L32 (9.51)

Making w 5 20 kN/m, x 5 2 m, and L 5 8 m in Eqs. (9.51) and (9.50), 
we obtain

 1uD2w 5
20 3 103

241100 3 1062  123522 5 22.93 3 1023 rad

 1yD2w 5
20 3 103

241100 3 1062  129122 5 27.60 3 1023 m

   5 27.60 mm

Combining the slopes and deflections produced by the concentrated and 
the distributed loads, we have

  uD 5 1uD 2P 1 1uD 2w 5 23 3 1023 2 2.93 3 1023

  5 25.93 3 1023 rad
 yD 5 1yD 2P 1 1yD 2w 5 29 mm 2 7.60 mm 5 216.60 mm
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582 Defl ection of Beams  To facilitate the task of practicing engineers, most structural 
and mechanical engineering handbooks include tables giving the 
deflections and slopes of beams for various loadings and types of 
support. Such a table will be found in Appendix D. We note that the 
slope and deflection of the beam of Fig. 9.31 could have been deter-
mined from that table. Indeed, using the information given under 
cases 5 and 6, we could have expressed the deflection of the beam 
for any value x # Ly4. Taking the derivative of the expression 
obtained in this way would have yielded the slope of the beam over 
the same interval. We also note that the slope at both ends of the 
beam can be obtained by simply adding the corresponding values 
given in the table. However, the maximum deflection of the beam 
of Fig. 9.31 cannot be obtained by adding the maximum deflections 
of cases 5 and 6, since these deflections occur at different points of 
the beam.†

9.8  APPLICATION OF SUPERPOSITION TO STATICALLY 
INDETERMINATE BEAMS

We often find it convenient to use the method of superposition to 
determine the reactions at the supports of a statically indeterminate 
beam. Considering first the case of a beam indeterminate to the first 
degree (cf. Sec. 9.5), such as the beam shown in Photo 9.3, we follow 
the approach described in Sec. 2.9. We designate one of the reac-
tions as redundant and eliminate or modify accordingly the corre-
sponding support. The redundant reaction is then treated as an 
unknown load that, together with the other loads, must produce 
deformations that are compatible with the original supports. The 
slope or deflection at the point where the support has been modified 
or eliminated is obtained by computing separately the deformations 
caused by the given loads and by the redundant reaction, and by 
superposing the results obtained. Once the reactions at the supports 
have been found, the slope and deflection can be determined in the 
usual way at any other point of the beam.

†An approximate value of the maximum deflection of the beam can be obtained by plot-
ting the values of y corresponding to various values of x. The determination of the exact 
location and magnitude of the maximum deflection would require setting equal to zero 
the expression obtained for the slope of the beam and solving this equation for x.

Photo 9.3 The continuous beams supporting 
this highway overpass have three supports and 
are thus statically indeterminate.
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EXAMPLE 9.08Determine the reactions at the supports for the prismatic beam and loading 
shown in Fig. 9.33. (This is the same beam and loading as in Example 9.05 
of Sec. 9.5.)

We consider the reaction at B as redundant and release the beam 
from the support. The reaction RB is now considered as an unknown load 
(Fig. 9.34a) and will be determined from the condition that the deflection 
of the beam at B must be zero. The solution is carried out by considering 
separately the deflection (yB)w caused at B by the uniformly distributed 
load w (Fig. 9.34b) and the deflection (yB)R produced at the same point 
by the redundant reaction RB (Fig. 9.34c).
 From the table of Appendix D (cases 2 and 1), we find that

1yB2w 5 2 
wL4

8EI
    1yB2R 5 1

RBL3

3EI

Writing that the deflection at B is the sum of these two quantities and 
that it must be zero, we have

 yB 5 1yB2w  1 1yB2R 5 0

 yB 5 2 
wL4

8EI
 1

RBL3

3EI
5 0

and, solving for RB,  RB 5 3
8 wL   RB 5 3

8 wLx

Drawing the free-body diagram of the beam (Fig. 9.35) and writing 
the corresponding equilibrium equations, we have

1xgFy 5 0:   RA 1 RB 2 wL 5 0  (9.52)
  RA 5 wL 2 RB 5 wL 2 3

8 wL 5 5
8 wL

  RA 5 5
8 wLx

1lgMA 5 0:  MA 1 RBL 2 1wL 2 112L 2 5 0 (9.53)
  MA 5 1

2 wL2 2 RBL 5 1
2 wL2 2 3

8 wL2 5 1
8 wL2

 MA 5 1
8 wL2 

l

BA

L

w

Fig. 9.33

B

(yB)R

RB

w w

B

A A
B

yB � 0

(yB)wRB

A

(a) (b) (c)

Fig. 9.34

B

wL

MA

RA RB

A

L

L/2

Fig. 9.35
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 The beam considered in the preceding example was indetermi-
nate to the first degree. In the case of a beam indeterminate to the 
second degree (cf. Sec. 9.5), two reactions must be designated as 
redundant, and the corresponding supports must be eliminated or 
modified accordingly. The redundant reactions are then treated as 
unknown loads which, simultaneously and together with the other 
loads, must produce deformations which are compatible with the 
original supports. (See Sample Prob. 9.9.)

 Alternative Solution.  We may consider the couple exerted at the 
fixed end A as redundant and replace the fixed end by a pin-and-bracket 
support. The couple MA is now considered as an unknown load (Fig. 9.36a) 
and will be determined from the condition that the slope of the beam at 
A must be zero. The solution is carried out by considering separately the 
slope (uA)w caused at A by the uniformly distributed load w (Fig. 9.36b) 
and the slope (uA)M produced at the same point by the unknown couple 
MA (Fig 9.36c).

BA

wMA

MA

w

BA

(a) (b)
(c)

A � 0� ( A)w�

( A)M�

BA

Fig. 9.36

Using the table of Appendix D (cases 6 and 7), and noting that in 
case 7, A and B must be interchanged, we find that

1uA2w 5 2 
wL3

24EI
    1uA2M 5

MAL
3EI

Writing that the slope at A is the sum of these two quantities and that it 
must be zero, we have

uA 5 1uA 2w 1 1uA 2M 5 0

uA 5 2 
wL3

25EI
1

MAL
3EI

5 0

and, solving for MA,

MA 5 1
8 wL2    MA 5 1

8 wL2 
l

The values of RA and RB may then be found from the equilibrium equa-
tions (9.52) and (9.53).
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SAMPLE PROBLEM 9.7

For the beam and loading shown, determine the slope and deflection at 
point B.

SOLUTION

 Principle of Superposition.  The given loading can be obtained by 
superposing the loadings shown in the following “picture equation.” The 
beam AB is, of course, the same in each part of the figure.

B
C

w

A

L/2 L/2

B
C

w

A

y

L/2 L/2

B

x

yBA

B

w

Loading I Loading II

A

L

B
C

w

A

L/2 L/2

�B

y

B

A

B

x
x(yB)I

(  B)I

A

y

�

(  B)II�

(yB)II

w

B

w

Loading I

Loading II

A

L
y

B

x

(yB)I

(  B)I

A

�

�

BC

w

A

L/2 L/2

A C

B

x

y (  B)II�(  C)II

(yB)II

(yC)II

For each of the loadings I and II, we now determine the slope and deflection 
at B by using the table of Beam Deflections and Slopes in Appendix D.

 Loading I

1uB2I 5 2 
wL3

6EI  
1yB2I 5 2 

wL4

8EI

 Loading II

1uC2II 5 1
w1Ly223

6EI
5 1

wL3

48EI  
1yC2II 5 1

w1Ly224
8EI

5 1
wL4

128EI

In portion CB, the bending moment for loading II is zero and thus the 
elastic curve is a straight line.

1uB2II 5 1uC2II 5 1
wL3

48EI 
1yB 2II 5 1yC 2II 1 1uC 2II aL

2
b

 
5

wL4

128EI
1

wL3

48EI
 aL

2
b 5 1

7wL4

384EI

 Slope at Point B

uB 5 1uB2I 1 1uB2II 5 2 
wL3

6EI
1

wL3

48EI
5 2 

7wL3

48EI  
uB 5

7wL3

48EI
 c  b

 Deflection at B

yB 5 1yB2I 1 1yB2II 5 2  
wL4

8EI
1

7wL4

384EI
5 2 

41wL4

384EI  
yB 5

41wL4

384EI
 w >
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586

SAMPLE PROBLEM 9.8

For the uniform beam and loading shown, determine (a) the reaction at 
each support, (b) the slope at end A.

SOLUTION

 Principle of Superposition.  The reaction RB is designated as redundant 
and considered as an unknown load. The deflections due to the distributed 
load and to the reaction RB are considered separately as shown below.

B

B

w

A

A

y

C

xC

2L/3 L/3
RB RB

B

w

A C

2L/3 L/3

BA C

2L/3 L/3

[yB � 0]
B

A

y

xC

(yB)w(  A)w�

B

A

y

xC

(yB)R(  A)R�

= +

+=

B

w

A C

RA � 0.271 wL RB � 0.688 wL

RC � 0.0413 wL

For each loading the deflection at point B is found by using the table of 
Beam Deflections and Slopes in Appendix D.
 Distributed Loading.  We use case 6, Appendix D

y 5 2  

w
24EI

 1x4 2 2L  x3 1 L3x2
At point B, x 5 2

3 L:

1yB2w 5 2 
w

24EI
 c a2

3
 Lb4

2 2L a2
3

 Lb3

1 L3a2
3

 Lb d 5 20.01132 

wL4

EI
 Redundant Reaction Loading.  From case 5, Appendix D, with 
a 5 2

3 L and b 5 1
3 L, we have

1yB2R 5 2 
Pa2b2

3EIL
5 1

RB

3EIL
 a2

3
 Lb2aL

3
b2

5 0.01646 

RBL3

EI
 a. Reactions at Supports.  Recalling that yB 5 0, we write
 yB 5 1yB 2w 1 1yB 2R
 

0 5 20.01132 

wL4

EI
1 0.01646 

RBL3

EI  
RB 5 0.688wLx b

Since the reaction RB is now known, we may use the methods of statics to 
determine the other reactions: RA 5 0.271wLx  RC 5 0.0413wLx >
 b. Slope at End A.  Referring again to Appendix D, we have

 Distributed Loading.
  
1uA 2w 5 2  

wL3

24EI
5 20.04167 

wL3

EI
 Redundant Reaction Loading.  For P 5 2RB 5 20.688wL and b 5 1

3 L

1uA2R 5 2 
Pb1L2 2 b22

6EIL
5 1

0.688wL
6EIL

 aL
3
b cL2 2 aL

3
b2 d

 
1uA 2R 5 0.03398 

wL3

EI

Finally, uA 5 1uA 2w 1 1uA 2R
uA 5 20.04167 

wL3

EI
1 0.03398 

wL3

EI
5 20.00769 

wL3

EI  
uA 5 0.00769 

wL3

EI
 c  b

B

w

A C

2L/3

L

L/3
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587

SAMPLE PROBLEM 9.9

For the beam and loading shown, determine the reaction at the fixed support C.

SOLUTION

 Principle of Superposition.  Assuming the axial force in the beam to 
be zero, the beam ABC is indeterminate to the second degree and we 
choose two reaction components as redundant, namely, the vertical force 
RC and the couple MC. The deformations caused by the given load P, the 
force RC, and the couple MC will be considered separately as shown.

For each load, the slope and deflection at point C will be found by using 
the table of Beam Deflections and Slopes in Appendix D.
 Load P.  We note that, for this loading, portion BC of the beam is 
straight.

 1uC2P 5 1uB2P 5 2 
Pa2

2EI
    1yC2P 5 1yB2P 1 1uB2p b

 5 2 
Pa3

3EI
2

Pa2

2EI
 b 5 2 

Pa2

6EI
 12a 1 3b2

 Force RC

 
1uC2R 5 1

RC L2

2EI    
1yC2R 5 1

RC L3

3EI

 Couple MC 
1uC2M 5 1

MC 
L

EI    
1yC2M 5 1

MC L2

2EI
 Boundary Conditions.  At end C the slope and deflection must be zero:
3x 5 L, uC 5 0 4 :  uC 5 1uC2P 1 1uC2R 1 1uC2M
 

0 5 2 
Pa2

2EI
1

RC L2

2EI
1

MC L
EI  

(1)

3x 5 L, yC 5 0 4 :  yC 5 1yC 2P 1 1yC 2R 1 1yC 2M
                

0 5 2 
Pa2

6EI
 12a 1 3b2 1

RC L3

3EI
1

MC L2

2EI  
(2)

 Reaction Components at C.  Solving simultaneously Eqs. (1) and (2), 
we find after reductions

 
RC 5 1

Pa2

L3  1a 1 3b2
 

RC 5
Pa2

L3  1a 1 3b 2 x >

 
MC 5 2 

Pa2b

L2  
MC 5

Pa2b

L2  i b

Using the methods of statics, we can now determine the reaction at A.

B

P

C

C

a b

ABA

PMC MC

RC RC
a b

C

C

L

A

C

C

A

A

L

BB
C

C

A

A A
(  C)M�

(yC)M

�
�

(  C)P

�(  C)R

�(  B)P

(yC)P

(yC)R

(yB)P

[  B� 0]

[yB� 0]

L

a bRA RC     

Pa2b
L2MC �

PPab2

L2MA �

Pb2

L3RA � (3a � b)
Pa2

L3RC � (a � 3b)

B

P

C

L

a b

A
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PROBLEMS

588

Use the method of superposition to solve the following 
problems and assume that the flexural rigidity EI of each 
beam is constant.

 9.65 through 9.68 For the cantilever beam and loading shown, 
determine the slope and deflection at the free end.

B
A

C

L/2 L/2

M � PL
P

Fig. P9.65 Fig. P9.66

C
A B

L/2 L/2

P P

B
C

w �

L/2 L/2

A

P

P
L

Fig. P9.67

CBA

w wL2

24M �

L/2 L/2

Fig. P9.68

9.69 through 9.72 For the beam and loading shown, determine 
(a) the deflection at C, (b) the slope at end A.

D

C

B

P

P

A

L/3 L/3 L/3

Fig. P9.69

CB
A D

L/3 L/3 L/3

P P

Fig. P9.70

B
C

P

A

L/3 2L/3

MB � P L
3

Fig. P9.71

B

w

A

wL2

12MA �
wL2

12MB �

C

L

Fig. P9.72
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589Problems 9.73 For the cantilever beam and loading shown, determine the slope 
and deflection at end C. Use E 5 200 GPa.

3 kN

C

B

A

0.75 m 0.5 m
S100 � 11.5

3 kN

Fig. P9.73 and P9.74

 9.74 For the cantilever beam and loading shown, determine the slope 
and deflection at point B. Use E 5 200 GPa.

 9.75 For the cantilever beam and loading shown, determine the slope 
and deflection at end A. Use E 5 29 3 106 psi.

C

B

1 kip/ft

2 ft 3 ft

A

1 kip
2.0 in.

4.0 in.

Fig. P9.75 and P9.76

 9.76 For the cantilever beam and loading shown, determine the slope 
and deflection at point B. Use E 5 29 3 106 psi.

 9.77 and 9.78 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at point C. Use E 5 200 GPa.

BC

140 kN
80 kN · m80 kN · m

2.5 m 2.5 m

A

W410 � 46.1

Fig. P9.77

1.3 m 2.6 m

B
C

8 kN/m

35 kN

A

W360 � 39

Fig. P9.78

 9.79 and 9.80 For the uniform beam shown, determine the reaction 
at each of the three supports.

A B
C

L/2L/2

M0

Fig. P9.79

A EDCB

L/2 L/2 L/2 L/2

P 2P

Fig. P9.80
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590 Defl ection of Beams  9.81 and 9.82 For the uniform beam shown, determine (a) the 
reaction at A, (b) the reaction at B.

 9.83 and 9.84 For the beam shown, determine the reaction at B.

B
A

C

w

L/2 L/2

Fig. P9.81

a

A

M0

C

L

B

Fig. P9.82

BA

L

w

Fig. P9.83

BA

C

L/2 L/2

M0

Fig. P9.84

 9.85 A central beam BD is joined at hinges to two cantilever beams AB 
and DE. All beams have the cross section shown. For the loading 
shown, determine the largest w so that the deflection at C does 
not exceed 3 mm. Use E 5 200 GPa.

A CB

0.4 m 0.4 m 0.4 m 0.4 m

HingeHinge
D E

24 mm

12 mm

w

Fig. P9.85

 9.86 The two beams shown have the same cross section and are joined 
by a hinge at C. For the loading shown, determine (a) the slope 
at point A, (b) the deflection at point B. Use E 5 29 3 106 psi.

A BCB

12 in.12 in.
6 in.

Hinge

D

800 lb

1.25 in.

1.25 in.

Fig. P9.86

 9.87 Beam CE rests on beam AB as shown. Knowing that a W10 3 30 
rolled-steel shape is used for each beam, determine for the loading 
shown the deflection at point D. Use E 5 29 3 106 psi.

W10 � 30

30 kips

D
C

A

E

B

2 ft 4 ft

12 ft

4 ft 2 ft

Fig. P9.87
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591Problems 9.88 Beam AC rests on the cantilever beam DE as shown. Knowing that 
a W410 3 38.8 rolled-steel shape is used for each beam, determine 
for the loading shown (a) the deflection at point B, (b) the deflec-
tion at point D. Use E 5 200 GPa.

 9.89 Before the 2-kip/ft load is applied, a gap, d0 5 0.8 in., exists 
between the W16 3 40 beam and the support at C. Knowing that 
E 5 29 3 106 psi, determine the reaction at each support after 
the uniformly distributed load is applied.

E

2.2 m 2.2 m 2.2 m

B
A C

D

30 kN/m

Fig. P9.88
2 kips/ft

BA

W16 � 40

12 ft 12 ft

C �0

Fig. P9.89

 9.90 The cantilever beam BC is attached to the steel cable AB as shown. 
Knowing that the cable is initially taut, determine the tension in the 
cable caused by the distributed load shown. Use E 5 200 GPa.

 9.91 Before the load P was applied, a gap, d0 5 0.5 mm, existed between 
the cantilever beam AC and the support at B. Knowing that E 5 
200 GPa, determine the magnitude of P for which the deflection 
at C is 1 mm.

W410 � 46.1
6 m

A � 255 mm2

3 m 20 kN/m

C
B

A

Fig. P9.90

C

P

A B

�0

60 mm

60 mm

0.5 m 0.2 m

Fig. P9.91

 9.92 For the loading shown, knowing that beams AC and BD have the 
same flexural rigidity, determine the reaction at B.

50 lb/in.
D

C

B

20 in.

20 in.
25 in.

A

Fig. P9.92
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 9.93 A 7
8-in.-diameter rod BC is attached to the lever AB and to the 

fixed support at C. Lever AB has a uniform cross section 3
8 in. thick 

and 1 in. deep. For the loading shown, determine the deflection 
of point A. Use E 5 29 3 106 psi and G 5 11.2 3 106 psi.

20 in.

C

B

80 lb

10 in.

A

Fig. P9.93

 9.94 A 16-mm-diameter rod has been bent into the shape shown. 
Determine the deflection of end C after the 200-N force is applied. 
Use E 5 200 GPa and G 5 80 GPa.

L � 250 mm L � 250 mm

200 N

B

C

A

Fig. P9.94

*9.9 MOMENT-AREA THEOREMS
In Sec. 9.2 through Sec. 9.6 we used a mathematical method based 
on the integration of a differential equation to determine the deflec-
tion and slope of a beam at any given point. The bending moment 
was expressed as a function M(x) of the distance x measured along 
the beam, and two successive integrations led to the functions u(x) 
and y(x) representing, respectively, the slope and deflection at any 
point of the beam. In this section you will see how geometric proper-
ties of the elastic curve can be used to determine the deflection and 
slope of a beam at a specific point (Photo 9.4).

Photo 9.4 The deflections of the beams 
supporting the floors of a building should be 
taken into account in the design process.

592 Defl ection of Beams
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593 Consider a beam AB subjected to some arbitrary loading 
(Fig. 9.37a). We draw the diagram representing the variation along 
the beam of the quantity MyEI obtained by dividing the bending 
moment M by the flexural rigidity EI (Fig. 9.37b). We note that, 
except for a difference in the scales of ordinates, this diagram will 
be the same as the bending-moment diagram if the flexural rigidity 
of the beam is constant.
 Recalling Eq. (9.4) of Sec. 9.3, and the fact that dyydx 5 u, we 
write

du
dx

5
d 

2y

dx2 5
M
EI

or

 
du 5

M
EI

  dx (9.54)†

 Considering two arbitrary points C and D on the beam and 
integrating both members of Eq. (9.54) from C to D, we write

#
uD

uC

 du 5 #
xD

xC

 
M
EI

  dx

or

 
uD 2 uC 5 #

xD

xC

 
M
EI

  dx (9.55)

where uC and uD denote the slope at C and D, respectively (Fig. 9.37c). 
But the right-hand member of Eq. (9.55) represents the area under 
the (MyEI) diagram between C and D, and the left-hand member the 
angle between the tangents to the elastic curve at C and D (Fig. 9.37d). 
Denoting this angle by uDyC, we have

 uDyC 5  area under (MyEI) diagram
 between C and D 

(9.56)

This is the first moment-area theorem.
 We note that the angle uDyC and the area under the (M/EI) 
diagram have the same sign. In other words, a positive area (i.e., an 
area located above the x axis) corresponds to a counterclockwise 
rotation of the tangent to the elastic curve as we move from C to D, 
and a negative area corresponds to a clockwise rotation.

†This relation can also be derived without referring to the results obtained in Sec. 9.3, by 
noting that the angle du formed by the tangents to the elastic curve at P and P9 is also 
the angle formed by the corresponding normals to that curve (Fig. 9.38). We thus have 
du 5 dsyr where ds is the length of the arc PP9 and r the radius of curvature at P. Sub-
stituting for 1yr from Eq. (4.21), and noting that, since the slope at P is very small, ds is 
equal in first approximation to the horizontal distance dx between P and P9, we write

 
du 5

M
EI

  dx (9.54)

9.9 Moment-Area Theorems

B

B

B

C

C

C

D

D

D

A

A

A

M
EI

x

(a)

(b)

(c)

(d)

�D

�C

B

C
D

A
�D/C

Fig. 9.37 First moment-area theorem.

�d

�

�d

C

ds
P'

P

Fig. 9.38
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594 Defl ection of Beams  Let us now consider two points P and P9 located between C 
and D, and at a distance dx from each other (Fig. 9.39). The tangents 
to the elastic curve drawn at P and P9 intercept a segment of length 
dt on the vertical through point C. Since the slope u at P and the 
angle du formed by the tangents at P and P9 are both small quanti-
ties, we can assume that dt is equal to the arc of circle of radius x1 
subtending the angle du. We have, therefore,

dt 5 x1 du

or, substituting for du from Eq. (9.54),

 
dt 5 x1 

M
EI

  dx (9.57)

 We now integrate Eq. (9.57) from C to D. We note that, as 
point P describes the elastic curve from C to D, the tangent at P 
sweeps the vertical through C from C to E. The integral of the left-
hand  member is thus equal to the vertical distance from C to the 
tangent at D. This distance is denoted by tCyD and is called the tan-
gential deviation of C with respect to D. We have, therefore,

 
tCyD 5 #

xD

xC

 x1 
M
EI

 dx (9.58)

 We now observe that (MyEI) dx represents an element of area 
under the (MyEI) diagram, and x1 (MyEI) dx the first moment of that 
element with respect to a vertical axis through C (Fig. 9.40). The 
right-hand member in Eq. (9.58), thus, represents the first moment 
with respect to that axis of the area located under the (MyEI) diagram 
between C and D.
 We can, therefore, state the second moment-area theorem as 
follows: The tangential deviation tCyD of C with respect to D is equal 
to the first moment with respect to a vertical axis through C of the 
area under the (MyEI) diagram between C and D.
 Recalling that the first moment of an area with respect to an 
axis is equal to the product of the area and of the distance from its 
centroid to that axis, we may also express the second moment-area 
theorem as follows:

 tCyD 5 1area between C and D2 x1 (9.59)

where the area refers to the area under the (MyEI) diagram, and 
where x1 is the distance from the centroid of the area to the vertical 
axis through C (Fig. 9.41a).
 Care should be taken to distinguish between the tangential 
deviation of C with respect to D, denoted by tCyD, and the tangential 
deviation of D with respect to C, which is denoted by tDyC. The tan-
gential deviation tDyC represents the vertical distance from D to the 
tangent to the elastic curve at C, and is obtained by multiplying the 
area under the (MyEI) diagram by the distance x2 from its centroid 
to the vertical axis through D (Fig. 9.41b):

 tDyC 5 1area between C and D2 x2 (9.60)

BC DA

M
EI

x
P'P

dxx1

Fig. 9.40

Fig. 9.41 Second moment-area theorem.

BA

B

C
tC/D

tD/C

D

D

A

C'

D'

C

BC DA

M
EI

x

BC DA

M
EI

x

x2

(a)

(b)

x1

B
C D

dxx1

dt

d

A

�

P'
P

E

Fig. 9.39
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595 We note that, if an area under the (MyEI) diagram is located 
above the x axis, its first moment with respect to a vertical axis will 
be positive; if it is located below the x axis, its first moment will be 
negative. We check from Fig. 9.41, that a point with a positive tan-
gential deviation is located above the corresponding tangent, while 
a point with a negative tangential deviation would be located below 
that tangent.

*9.10  APPLICATION TO CANTILEVER BEAMS AND 
BEAMS WITH SYMMETRIC LOADINGS

We recall that the first moment-area theorem derived in the preceding 
section defines the angle uDyC between the tangents at two points C 
and D of the elastic curve. Thus, the angle uD that the tangent at D 
forms with the horizontal, i.e., the slope at D, can be obtained only 
if the slope at C is known. Similarly, the second moment-area theo-
rem defines the vertical distance of one point of the elastic curve from 
the tangent at another point. The tangential deviation tDyC, therefore, 
will help us locate point D only if the tangent at C is known. We 
conclude that the two moment-area theorems can be applied effec-
tively to the determination of slopes and deflections only if a certain 
reference tangent to the elastic curve has first been determined.
 In the case of a cantilever beam (Fig. 9.42), the tangent to the 
elastic curve at the fixed end A is known and can be used as the ref-
erence tangent. Since uA 5 0, the slope of the beam at any point D 
is uD 5 uDyA and can be obtained by the first moment-area theorem. 
On the other hand, the deflection yD of point D is equal to the tan-
gential deviation tDyA measured from the horizontal reference tangent 
at A and can be obtained by the second moment-area theorem.

� �D =   D/A

yD =  tD/A

Reference tangent

Tangent at DD

A

P

Fig. 9.42 Application of moment-area 
method to cantilever beams.

9.10 Application to Cantilever Beams and 
Beams with Symmetric Loadings

C

C

B

y  max � tB/C

A

BA

P

Horizontal

Reference tangent

(a)

(b)

B/CB �� �

C

B
D

tD/C

tB/C

yD

A

Reference tangent

(c)

D/CD �� �

P

Fig. 9.43 Application of moment-area 
method to simply supported beams with 
symmetric loadings.

 In the case of a simply supported beam AB with a symmetric 
loading (Fig. 9.43a) or in the case of an overhanging symmetric beam 
with a symmetric loading (see Sample Prob. 9.11), the tangent at the 
center C of the beam must be horizontal by reason of symmetry and 
can be used as the reference tangent (Fig. 9.43b). Since uC 5 0, the 
slope at the support B is uB 5 uByC and can be obtained by the first 
moment-area theorem. We also note that |y|max is equal to the tan-
gential deviation tByC and can, therefore, be obtained by the second 
moment-area theorem. The slope at any other point D of the beam 
(Fig. 9.43c) is found in a similar fashion, and the deflection at D can 
be expressed as yD 5 tDyC 2 tByC.
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EXAMPLE 9.09 Determine the slope and deflection at end B of the prismatic cantilever 
beam AB when it is loaded as shown (Fig. 9.44), knowing that the flexural 
rigidity of the beam is EI 5 10 MN ? m2.

We first draw the free-body diagram of the beam (Fig. 9.45a). 
 Summing vertical components and moments about A, we find that the 
reaction at the fixed end A consists of a 50 kN upward vertical force RA 
and a 60 kN ? m counterclockwise couple MA. Next, we draw the 
 bending-moment diagram (Fig. 9.45b) and determine from similar tri-
angles the distance xD from the end A to the point D of the beam where 
M 5 0:

xD

60
5

3 2 xD

90
5

3
150

  xD 5 1.2 m

Dividing by the flexural rigidity EI the values obtained for M, we 
draw the (MyEI) diagram (Fig. 9.46) and compute the areas correspond-
ing respectively to the segments AD and DB, assigning a positive sign to 
the area located above the x axis, and a negative sign to the area located 
below that axis. Using the first moment-area theorem, we write

 uByA 5 uB 2 uA 5 area from A to B 5 A1 1 A2

 5 21
2 11.2 m2 16 3 1023 m212 1 1

2 11.8 m2 19 3 1023 m212
 5 23.6 3 1023 1 8.1 3 1023

 5 14.5 3 1023 rad

and, since uA 5 0,

uB 5 14.5 3 1023 rad

Using now the second moment-area theorem, we write that the 
tangential deviation tByA is equal to the first moment about a vertical axis 
through B of the total area between A and B. Expressing the moment of 
each partial area as the product of that area and of the distance from its 
centroid to the axis through B, we have

 tByA 5 A112.6 m2 1 A210.6 m2
 5 123.6 3 10232 12.6 m2 1 18.1 3 10232 10.6 m2
 5 29.36 mm 1 4.86 mm 5 24.50 mm

Since the reference tangent at A is horizontal, the deflection at B is equal 
to tByA and we have

yB 5 tByA 5 24.50 mm

The deflected beam has been sketched in Fig. 9.47.

3 m

A B

50 kN

90 kN · m

Fig. 9.44

�60 kN · m

A
B

(a)

(b)

3 m � xD

xD

MA � 60 kN · m

RA � 50 kN

�90 kN · m

90 kN · m

M

A
BD

x

50 kN

Fig. 9.45

0.8 m
1.8 m

2.6 m

0.6 m

�9 � 10�3 m�1

�6 � 10�3 m�1

A
A1

A2

B
D x

M
EI

1.2 m

Fig. 9.46

B

A

Reference tangent

� �B �   B/A � �4.5 � 10–3 rad 

yB � tB/A � �4.5 mm 

Fig. 9.47
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597*9.11 BENDING-MOMENT DIAGRAMS BY PARTS
In many applications the determination of the angle uDyC and of the 
tangential deviation tDyC is simplified if the effect of each load is 
evaluated independently. A separate (MyEI) diagram is drawn for 
each load, and the angle uDyC is obtained by adding algebraically the 
areas under the various diagrams. Similarly, the tangential deviation 
tDyC is obtained by adding the first moments of these areas about a 
vertical axis through D. A bending-moment or (MyEI) diagram plot-
ted in this fashion is said to be drawn by parts.
 When a bending-moment or (MyEI) diagram is drawn by parts, 
the various areas defined by the diagram consist of simple geometric 
shapes, such as rectangles, triangles, and parabolic spandrels. For 
convenience, the areas and centroids of these various shapes have 
been indicated in Fig. 9.48.

9.11 Bending-Moment Diagrams by Parts

Shape Area c

b

b
3

Rectangle

Triangle

Parabolic 
spandrel

Cubic
spandrel

General
 spandrel

b
2

bh

bh

2

c

h

b

C

C

c

h

b
4

bh
3

b

C

c

h

b
5

bh
4

bh
  n� 1

b
  n� 2

y � kx2

b

C

c

h
y � kx3

b

C

c

h
y � kxn

Fig. 9.48 Areas and centroids of common 
shapes.
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EXAMPLE 9.10 Determine the slope and deflection at end B of the prismatic beam of 
Example 9.09, drawing the bending-moment diagram by parts.

We replace the given loading by the two equivalent loadings shown 
in Fig. 9.49, and draw the corresponding bending-moment and (MyEI) 
diagrams from right to left, starting at the free end B.

Applying the first moment-area theorem, and recalling that uA 5 0, 
we write

 uB 5 uByA 5 A1 1 A2

 5 19 3 1023 m212 13 m2 2 1
2 115 3 1023 m212 13 m2

 5 27 3 1023 2 22.5 3 1023 5 4.5 3 1023 rad

Applying the second moment-area theorem, we compute the first moment 
of each area about a vertical axis through B and write

 yB 5 tByA 5 A111.5 m2 1 A212 m2
 5 127 3 10232 11.5 m2 2 122.5 3 10232 12 m2
 5 40.5 mm 2 45 mm 5 24.5 mm

It is convenient, in practice, to group into a single drawing the two por-
tions of the (MyEI) diagram (Fig. 9.50).

3 m

A B

50 kN

90 kN · m

90 kN · m

3 m

3 m

3 m

1.5 m

2 m

�150 kN · m

�15 � 10�3 m�1

9 � 10�3 m�1

M

A

M

A

BA

BB
xx

A1

A2

A
B

A
B

x x

A

B

90 kN · m

M
EI

M
EI

50 kN

Fig. 9.49

3 m

1.5 m

2 m
�15 � 10�3 m�1

9 � 10�3 m�1

A

A1

A2

B
x

M
EI

Fig. 9.50

bee80288_ch09_548-629.indd Page 598  11/18/10  8:57:52 PM user-f499bee80288_ch09_548-629.indd Page 598  11/18/10  8:57:52 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch09/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch09



599

EXAMPLE 9.11For the prismatic beam AB and the loading shown (Fig. 9.51), determine 
the slope at a support and the maximum deflection.

We first sketch the deflected beam (Fig. 9.52). Since the tangent at the 
center C of the beam is horizontal, it will be used as the reference tangent, 
and we have |y|max 5 tAyC. On the other hand, since uC 5 0, we write

uCyA 5 uC 2 uA 5 2uA  or  uA 5 2uCyA

From the free-body diagram of the beam (Fig. 9.53), we find that

RA 5 RB 5 wa

Next, we draw the shear and bending-moment diagrams for the portion 
AC of the beam. We draw these diagrams by parts, considering separately 
the effects of the reaction RA and of the distributed load. However, for 
convenience, the two parts of each diagram have been plotted together 
(Fig. 9.54). We recall from Sec. 5.3 that, the distributed load being uni-
form, the corresponding parts of the shear and bending-moment diagrams 
will be, respectively, linear and parabolic. The area and centroid of the 
triangle and of the parabolic spandrel can be obtained by referring to 
Fig. 9.48. The areas of the triangle and spandrel are found to be, 
respectively,

A1 5
1
2

 12a2 a2wa2

EI
b 5

2wa3

EI
and

A2 5 2 
1
3

 1a2 awa2

2EI
b 5 2 

wa3

6EI

Applying the first moment-area theorem, we write

uCyA 5 A1 1 A2 5
2wa3

EI
2

wa3

6EI
5

11wa3

6EI

Recalling from Figs. 9.51 and 9.52 that a 5 1
4 L and uA 5 2uCyA, we 

have

uA 5 2 
11wa3

6EI
5 2 

11wL3

384EI

Applying now the second moment-area theorem, we write

tAyC 5 A1
4a
3

1 A2
7a
4

5 a2wa3

EI
b 4a

3
1 a2 

wa3

6EI
b 7a

4
5

19wa4

8EI
and

0y 0max 5 tAyC 5
19wa4

8EI
5

19wL4

2048EI

Fig. 9.51

a a a a

w

A
D E

B
C

L � 4a

B

A � � 

A
C

B

Reference tangent

� C/A�

y max � tA/C

Fig. 9.52

a

2wa

A

RA RB

D E
B

C
B

a

2a

Fig. 9.53

a

(2wa2)

w

A

V

RA � wa

RA � wa

�wa
(�   wa2)

D C

x
D

A
C

a

a

a a

a

2a

1
2

�

A
A1

A2wa2
D

C x

M
EI

2 wa2

2 EI

EI
4a
3

7a
4

1
4

Fig. 9.54
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SAMPLE PROBLEM 9.10

The prismatic rods AD and DB are welded together to form the cantilever 
beam ADB. Knowing that the flexural rigidity is EI in portion AD of the 
beam and 2EI in portion DB, determine, for the loading shown, the slope 
and deflection at end A.

SOLUTION

 (MyEI ) Diagram.  We first draw the bending-moment diagram for the 
beam and then obtain the (MyEI) diagram by dividing the value of M at 
each point of the beam by the corresponding value of the flexural rigidity.

 Reference Tangent.  We choose the horizontal tangent at the fixed end 
B as the reference tangent. Since uB 5 0 and yB 5 0, we note that

uA 5 2uByA  yA 5 tAyB

A

a

D

EI 2EI
a

P P

B

A

V

� P

� Pa

� 2P

� 3Pa

Pa

B

M

x

x

x

x

D

EI

EI
2EI

2EI

RB

MB

M
EI �

Pa
EI�

3Pa
2EI�

P P

Reference tangent
�   B/A�

A

A

B

�

yA� tA/B

aa

B
A

a

D A2

A3
A1

Pa

x

2EI

M
EI

�
Pa
EI� 3Pa

2EI�

5
3

a4
3

a2
3

 Slope at A.  Dividing the (MyEI) diagram into the three triangular 
portions shown, we write

 A1 5 2 
1
2

 
Pa
EI

 a 5 2 
Pa2

2EI

 A2 5 2 
1
2

 
Pa

2EI
 a 5 2 

Pa2

4EI

 A3 5 2 
1
2

 
3Pa
2EI

 a 5 2 
3Pa2

4EI

Using the first moment-area theorem, we have

 
 uByA 5 A1 1 A2 1 A3 5 2 

Pa2

2EI
2

Pa2

4EI
2

3Pa2

4EI
5 2

3Pa2

2EI

 
uA 5 2uByA 5 1 

3Pa2

2EI  
uA 5

3Pa2

2EI  
a b

 Deflection at A.  Using the second moment-area theorem, we have

 yA 5 tAyB 5 A1 a2
3

 ab 1 A2 a4
3

 ab 1 A3 a5
3

 ab
 5 a2 

Pa2

2EI
b  2a

3
1 a2 

Pa2

4EI
b  4a

3
1 a2 

3Pa2

4EI
b  5a

3

 
yA 5 2 

23Pa3

12EI  
yA 5

23Pa3

12EI
w b
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SAMPLE PROBLEM 9.11

For the prismatic beam and loading shown, determine the slope and deflec-
tion at end E.

SOLUTION

 (MyEI ) Diagram.  From a free-body diagram of the beam, we deter-
mine the reactions and then draw the shear and bending-moment diagrams. 
Since the flexural rigidity of the beam is constant, we divide each value of 
M by EI and obtain the (MyEI) diagram shown.

 Reference Tangent.  Since the beam and its loading are symmetric 
with respect to the midpoint C, the tangent at C is horizontal and is used 
as the reference tangent. Referring to the sketch, we observe that, since 
uC 5 0,

  uE 5 uC 1 uEyC 5 uEyC (1)

  yE 5 tEyC 2 tDyC  (2)

 Slope at E.  Referring to the (MyEI) diagram and using the first 
moment-area theorem, we write

 A1 5 2 
wa2

2EI
 aL

2
b 5 2 

wa2L
4EI

 A2 5 2 
1
3

 awa2

2EI
b 1a2 5 2 

wa3

6EI

Using Eq. (1), we have

 
uE 5 uEyC 5 A1 1 A2 5 2 

wa2L
4EI

2
wa3

6EI

 
uE 5 2 

wa2

12EI
 13L 1 2a2

 
uE 5

wa2

12EI
 13L 1 2a2

 
c b

 Deflection at E.  Using the second moment-area theorem, we write

 tDyC 5 A1 
L
4

5 a2 
wa2L
4EI
b  L

4
5 2 

wa2L2

16EI

 tEyC 5 A1 aa 1
L
4
b 1 A2 a3a

4
b

 5 a2 
wa2L
4EI
b aa 1

L
4
b 1 a2 

wa3

6EI
b a3a

4
b

 5 2 
wa3L
4EI

2
wa2L2

16EI
2

wa4

8EI

Using Eq. (2), we have

yE 5 tEyC 2 tDyC 5 2 
wa3L
4EI

2
wa4

8EI

 
yE 5 2 

wa3

8EI
 12L 1 a2

 
yE 5

wa3

8EI
 12L 1 a2w b

B
A

L

C D
E

2
a

L

a

ww

B
A

C D E

A1
A2

La

V

x

x

x

M

a

a

wa

� wa

�
 wa2

2

 L
2

�
 wa2

2EI
�

 wa2

2EI

 3a
4

 a
4

�
 wa2

2

 L
4

M
EI

RB � wa RD � wa

w w

BA

C

yE

  E�ED

Reference tangent
tD/C tE/C
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PROBLEMS

602

Use the moment-area method to solve the following 
problems.

 9.95 through 9.98 For the uniform cantilever beam and loading 
shown, determine (a) the slope at the free end, (b) the deflection 
at the free end.

L

A
B

P

Fig. P9.95

M0

L

A
B

Fig. P9.96

B

w

L

A

Fig. P9.98

B
A

w0

L

Fig. P9.97

9.99 and 9.100 For the uniform cantilever beam and loading shown, 
determine the slope and deflection at (a) point B, (b) point C.

L/2 L/2

A
B

C

w

Fig. P9.99

2M0 M0

BA C

L/2 L/2

Fig. P9.100

 9.101 Two C6 3 8.2 channels are welded back to back and loaded as 
shown. Knowing that E 5 29 3 106 psi, determine (a) the slope 
at point D, (b) the deflection at point D.

 9.102 For the cantilever beam and loading shown, determine (a) the slope 
at point A, (b) the deflection at point A. Use E 5 200 GPa.

D
A

CB

2 ft 2 ft 2 ft

C6 � 8.2

1.1 kips 1.1 kips 1.1 kips

Fig. P9.101

A

4 kN/m

CB

1 m 2.5 m

W250 � 22.3

5 kN

Fig. P9.102

 9.103 For the cantilever beam and loading shown, determine (a) the slope 
at point B, (b) the deflection at point B. Use E 5 29 3 106 psi.

1.8 in.

30 in.

B
A

40 lb/in.
100 lb/in.

Fig. P9.103

3 m

2.1 m

A
B C

20 kN

120 kN/m

W360 � 64

Fig. P9.104
 9.104 For the cantilever beam and loading shown, determine (a) the slope 

at point A, (b) the deflection at point A. Use E 5 200 GPa.
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603Problems 9.105 For the cantilever beam and loading shown, determine (a) the 
slope at point C, (b) the deflection at point C.

BA

C

L/2

1.5EI EI

L/2

P P

Fig. P9.105

A
B C

3EIEI

L/2L/2

w

Fig. P9.106

 9.106 For the cantilever beam and loading shown, determine (a) the 
slope at point A, (b) the deflection at point A.

 9.107 Two cover plates are welded to the rolled-steel beam as shown. 
Using E 5 29 3 106 psi, determine (a) the slope at end C, (b) the 
deflection at end C.

 9.108 Two cover plates are welded to the rolled-steel beam as shown. 
Using E 5 200 GPa, determine (a) the slope at end A, (b) the 
deflection at end A.

W10 � 454.5 ft

6 ft

15 kips

A

B C

 � 9 in.1
2

Fig. P9.107

A

90 kN/m

CB

2.1 m
2.7 m

W410 � 60

12 � 200 mm

40 kN

Fig. P9.108

 9.109 through 9.114 For the prismatic beam and loading shown, 
determine (a) the slope at end A, (b) the deflection at the center 
C of the beam.

Fig. P9.111

A

aa

E
C DB

L/2L/2

w w

A
B

E
C D

L
4

L
4

L
4

L
4

P

P

P

Fig. P9.114

A

aa

E
C DB

M0 M0

L/2L/2

Fig. P9.113

A B
C

w0

L/2L/2

Fig. P9.112

A

L

C
E

B

P

D

4
L
4

L
4

L
4

P P

Fig. P9.110

A

L/2L/2

C
B

P

Fig. P9.109
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604 Defl ection of Beams  9.115 and 9.116 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at the center C of the beam.

A
DCB

E

2EI

a

EIEI

P

a a a

Fig. P9.115

A
DCB

E

3EI

a

EIEI

a a a

P P2P

Fig. P9.116

 9.117 For the beam and loading shown and knowing that w 5 8 kN/m, 
determine (a) the slope at end A, (b) the deflection at midpoint C. 
Use E 5 200 GPa.

A

5 m 5 m

B
C

40 kN · m 40 kN · m

W310 � 60

w

Fig. P9.117

 9.118 and 9.119 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at the midpoint of the beam. Use 
E 5 200 GPa.

0.6 m

A E
B D

10 kN · m 10 kN · m
40 kN/m

0.6 m

3.6 m

S250 � 37.8

Fig. P9.118

60 kN · m
150 kN

60 kN · m
150 kN

2 m 2 m

5 m

W460 � 74

A E
B D

Fig. P9.119

 9.120 Knowing that P 5 4 kips, determine (a) the slope at end A, (b) the 
deflection at the midpoint C of the beam. Use E 5 29 3 106 psi.

 9.121 For the beam and loading of Prob. 9.117, determine the value of 
w for which the deflection is zero at the midpoint C of the beam. 
Use E 5 200 GPa.

 9.122 For the beam and loading of Prob. 9.120, determine the magnitude 
of the forces P for which the deflection is zero at end A of the 
beam. Use E 5 29 3 106 psi.

 *9.123 A uniform rod AE is to be supported at two points B and D. Deter-
mine the distance a for which the slope at ends A and E is zero.

 *9.124 A uniform rod AE is to be supported at two points B and D. Deter-
mine the distance a from the ends of the rod to the points of support, 
if the downward deflections of points A, C, and E are to be equal.

W8 � 13

5 kipsP P

3 ft3 ft
5 ft5 ft

A
B D

E
C

Fig. P9.120

A

a a

L

E

L/2

CB D

Fig. P9.123 and P9.124
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*9.12  APPLICATION OF MOMENT-AREA THEOREMS 
TO BEAMS WITH UNSYMMETRIC LOADINGS

We saw in Sec. 9.10 that, when a simply supported or overhanging 
beam carries a symmetric load, the tangent at the center C of the 
beam is horizontal and can be used as the reference tangent. When 
a simply supported or overhanging beam carries an unsymmetric load, 
it is generally not possible to determine by inspection the point of 
the beam where the tangent is horizontal. Other means must then be 
found for locating a reference tangent, i.e., a tangent of known slope 
to be used in applying either of the two moment-area theorems.
 It is usually most convenient to select the reference tangent at 
one of the beam supports. Considering, for example, the tangent at 
the support A of the simply supported beam AB (Fig. 9.55), we 
determine its slope by computing the tangential deviation tByA of the 
support B with respect to A, and dividing tByA by the distance L 
between the supports. Recalling that the tangential deviation of a 
point located above the tangent is positive, we write

 
uA 5 2 

tByA

L
 (9.61)

 Once the slope of the reference tangent has been found, the 
slope uD of the beam at any point D (Fig. 9.56) can be determined 
by using the first moment-area theorem to obtain uDyA, and then 
writing

 uD 5 uA 1 uDyA (9.62)

 The tangential deviation tDyA of D with respect to the support 
A can be obtained from the second moment-area theorem. We note 
that tDyA is equal to the segment ED (Fig. 9.57) and represents the 
vertical distance of D from the reference tangent. On the other 
hand, the deflection yD of point D represents the vertical distance 
of D from the horizontal line AB (Fig. 9.58). Since yD is equal in 

6059.12 Application of Moment-Area Theorems
to Beams with Unsymmetric Loadings

P

Reference
tangent

A

w

B

A B

L

(a)

(b)

A�

tB/A

Fig. 9.55

DA�

D/A�

D �

Reference
tangent

BA

Fig. 9.56

tD/A

D

E

BA

Reference
tangent

Fig. 9.57

D

F

yD

BA

Fig. 9.58

magnitude to the segment FD, it can be expressed as the difference 
between EF and ED (Fig. 9.59). Observing from the similar trian-
gles AFE and ABH that

EF
x

5
HB
L   

or  EF 5
x
L

 tByA

and recalling the sign conventions used for deflections and tangential 
deviations, we write

 
yD 5 ED 2 EF 5 tDyA 2

x
L

 tByA (9.63)

tB/A

D

E

H

x

L

F
BA

Fig. 9.59
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EXAMPLE 9.12 For the prismatic beam and loading shown (Fig. 9.60), determine the 
slope and deflection at point D.

B
D

L

L P

A

1
4

Fig. 9.60

Reference Tangent at Support A.  We compute the reactions at 
the supports and draw the (MyEI) diagram (Fig. 9.61). We determine the 
tangential deviation tByA of the support B with respect to the support A 
by applying the second moment-area theorem and computing the moments 
about a vertical axis through B of the areas A1 and A2. We have

A1 5
1
2

 
L
4

  
3PL
16EI

5
3PL2

128EI  
A2 5

1
2

 
3L
4

  
3PL
16EI

5
9PL2

128EI

 tByA 5 A1 a L
12

1
3L
4
b 1 A2 aL

2
b

 5
3PL2

128EI
 
10L
12

1
9PL2

128EI
 
L
2

5
7PL3

128EI

The slope of the reference tangent at A (Fig. 9.62) is

uA 5 2 
tByA

L
5 2 

7PL2

128EI

Slope at D.  Applying the first moment-area theorem from A to 
D, we write

uDyA 5 A1 5
3PL2

128EI
Thus, the slope at D is

uD 5 uA 1 uDyA 5 2 
7PL2

128EI
1

3PL2

128EI
5 2 

PL2

32EI

Deflection at D.  We first determine the tangential deviation DE 5 
tDyA by computing the moment of the area A1 about a vertical axis 
through D:

DE 5 tDyA 5 A1 a L
12
b 5

3PL2

128EI
 
L
12

5
PL3

512EI

The deflection at D is equal to the difference between the segments DE 
and EF (Fig. 9.62). We have

 yD 5 DE 2 EF 5 tDyA 2 1
4 tByA

 5
PL3

512EI
2

1
4

 
7PL3

128EI

 yD 5 2 
3PL3

256EI
5 20.01172PL3/EI

12

B
D

L

A1 A2

A D B
x

L

2
L

4
L

4
3L

EI
M

16EI
3PL

L P

A

1
4

RB � P
4RA � P3

4

Fig. 9.61

L

Reference
tangent

F

E

tB/A

D
A�

A B

L1
4

Fig. 9.62
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607*9.13 MAXIMUM DEFLECTION
When a simply supported or overhanging beam carries an unsym-
metric load, the maximum deflection generally does not occur at 
the center of the beam. This will be the case for the beams used 
in the bridge shown in Photo 9.5, which is being crossed by the 
truck.

9.13 Maximum Defl ection

Photo 9.5 The deflections of the beams used for the bridge must be reviewed for different possible positions of the truck.

 To determine the maximum deflection of such a beam, we 
should locate the point K of the beam where the tangent is horizon-
tal, and compute the deflection at that point.
 Our analysis must begin with the determination of a reference 
tangent at one of the supports. If support A is selected, the slope uA 
of the tangent at A is obtained by the method indicated in the pre-
ceding section, i.e., by computing the tangential deviation tByA of 
support B with respect to A and dividing that quantity by the dis-
tance L between the two supports.
 Since the slope uK at point K is zero (Fig. 9.63a), we must 
have

uKyA 5 uK 2 uA 5 0 2 uA 5 2uA

Recalling the first moment-area theorem, we conclude that point K 
may be determined by measuring under the (MyEI) diagram an area 
equal to uKyA 5 2uA (Fig. 9.63b).
 Observing that the maximum deflection |y|max is equal to the 
tangential deviation tAyK of support A with respect to K (Fig. 9.63a), 
we can obtain |y|max by computing the first moment with respect 
to the vertical axis through A of the area between A and K 
(Fig. 9.63b).

P

A

A

w

B

B

K

L


 0

� 0

(a)

A K B
x

(b)

A�

K�

�� � K/A� A�

K/A tB/A
�

Reference 
target

AreaM
EI

y  max � t A/K

Fig. 9.63 Determination of maximum 
deflection using moment-area method.
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EXAMPLE 9.13 Determine the maximum deflection of the beam of Example 9.12.

 Determination of Point K Where Slope Is Zero.  We recall from 
Example 9.12 that the slope at point D, where the load is applied, is  negative. 
It follows that point K, where the slope is zero, is located between D and 
the support B (Fig. 9.64). Our computations, therefore, will be simplified if 
we relate the slope at K to the slope at B, rather than to the slope at A.

Since the slope at A has already been determined in Example 9.12, 
the slope at B is obtained by writing

 uB 5 uA 1 uByA 5 uA 1 A1 1 A2

 uB 5 2 
7PL2

128EI
1

3PL2

128EI
1

9PL2

128EI
5

5PL2

128EI

Observing that the bending moment at a distance u from end B is M 5 1
4Pu 

(Fig. 9.65a), we express the area A9 located between K and B under the 
(MyEI) diagram (Fig. 9.65b) as

A¿ 5
1
2

 
Pu
4EI

 u 5
Pu2

8EI

By the first moment-area theorem, we have

uByK 5 uB 2 uK 5 A¿

and, since uK 5 0, uB 5 A9

Substituting the values obtained for uB and A9, we write

5PL2

128EI
5

Pu2

8EI

and, solving for u,

u 5
15
4

 L 5 0.559L

Thus, the distance from the support A to point K is

AK 5 L 2 0.559L 5 0.441L

 Maximum Deflection.  The maximum deflection |y|max is equal to 
the tangential deviation tByK and, thus, to the first moment of the area A9 
about a vertical axis through B (Fig. 9.65b). We write

0y 0max 5 tByK 5 A¿ a2u
3
b 5

Pu2

8EI
 a2u

3
b 5

Pu3

12EI

Substituting the value obtained for u, we have

0y 0max 5
P

12EI
 a15

4
 Lb3

5 0.01456PL3/EI

B
D

L

A1 A2
A D B

x

EI
M

P

A

RA � 3P
4

1
4

3L
4

RB � P
4

E

D K
A�

K � 0� B�

A
B

y  max � t B/K

Fig. 9.64

RB �

M

V P
4

K
B

u

(a)

Fig. 9.65

A'

A D K B
x

EI
M

4EI
Pu

u

(b)
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609*9.14  USE OF MOMENT-AREA THEOREMS WITH 
STATICALLY INDETERMINATE BEAMS

The reactions at the supports of a statically indeterminate beam can 
be determined by the moment-area method in much the same way 
that was described in Sec. 9.8. In the case of a beam indeterminate 
to the first degree, for example, we designate one of the reactions 
as redundant and eliminate or modify accordingly the corresponding 
support. The redundant reaction is then treated as an unknown load, 
which, together with the other loads, must produce deformations 
that are compatible with the original supports. The compatibility 
condition is usually expressed by writing that the tangential deviation 
of one support with respect to another either is zero or has a pre-
determined value.
 Two separate free-body diagrams of the beam are drawn. One 
shows the given loads and the corresponding reactions at the sup-
ports that have not been eliminated; the other shows the redundant 
reaction and the corresponding reactions at the same supports (see 
Example 9.14). An MyEI diagram is then drawn for each of the two 
loadings, and the desired tangential deviations are obtained by the 
second moment-area theorem. Superposing the results obtained, we 
express the required compatibility condition and determine the 
redundant reaction. The other reactions are obtained from the free-
body diagram of beam.
 Once the reactions at the supports have been determined, the 
slope and deflection may be obtained by the moment-area method 
at any other point of the beam.

9.14 Use of Moment-Area Theorems with 
Statically Indeterminate Beams

EXAMPLE 9.14Determine the reaction at the supports for the prismatic beam and load-
ing shown (Fig. 9.66).

We consider the couple exerted at the fixed end A as redundant 
and replace the fixed end by a pin-and-bracket support. The couple MA 
is now considered as an unknown load (Fig. 9.67a) and will be deter-
mined from the condition that the tangent to the beam at A must be 
horizontal. It follows that this tangent must pass through the support 
B and, thus, that the tangential deviation tByA of B with respect to A 
must be zero. The solution is carried out by computing separately the 
tangential deviation (tByA)w caused by the uniformly distributed load w 
(Fig. 9.67b) and the tangential deviation (tByA)M produced by the 
unknown couple MA (Fig. 9.67c).

B

w

A

L

Fig. 9.66

A
A

w w

B BA B

MA MA

tB/A � 0 B''

B'

(tB/A)w

(tB/A)M

(a) (b) (c)

Fig. 9.67
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Considering first the free-body diagram of the beam under the 
known distributed load w (Fig. 9.68a), we determine the corresponding 
reactions at the supports A and B. We have

 1RA21 5 1RB21 5 1
2  
wLx (9.64)

We can now draw the corresponding shear and (MyEI) diagrams (Figs. 
9.68b and c). Observing that MyEI is represented by an arc of parabola, 
and recalling the formula, A 5 2

3 bh, for the area under a parabola, we 
compute the first moment of this area about a vertical axis through B and 
write

 
1tByA2w 5 A1 aL

2
b 5 a2

3
 L

wL2

8EI
b aL

2
b 5

wL4

24EI
 (9.65)

Considering next the free-body diagram of the beam when it is 
subjected to the unknown couple MA (Fig. 9.69a), we determine the cor-
responding reactions at A and B:

 
1RA22 5

MA

L
 x

  
1RB22 5

MA

L
 w

 
(9.66)

Drawing the corresponding (MyEI) diagram (Fig. 9.69b), we apply again 
the second moment-area theorem and write

 
1tByA2M 5 A2 a2L

3
b 5 a2 

1
2

 L
MA

EI
b a2L

3
b 5 2 

MAL2

3EI  
(9.67)

Combining the results obtained in (9.65) and (9.67), and expressing 
that the resulting tangential deviation tByA must be zero (Fig. 9.67), we 
have

tByA 5 1tByA2w 1 1tByA2M 5 0
wL4

24EI
2

MAL2

3EI
5 0

and, solving for MA,

MA 5 11
8 
wL2  MA 5 1

8 
wL2 
l

Substituting for MA into (9.66), and recalling (9.64), we obtain the values 
of RA and RB:

 RA 5 1RA21 1 1RA22 5 1
2 wL 1 1

8 wL 5 5
8 wL

 RB 5 1RB21 1 1RB22 5 1
2 wL 2 1

8 wL 5 3
8 wL
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(a)

(b)

(c)

B

B
x

x

w

A

A

B

L

A
A1

L

V

(RB)1(RA)1

wL1
2

wL1
2

L
2

L
2

wL2

M
EI

8EI

wL1
8

�

(         2)

Fig. 9.68

MA

(a)

(b)

BA

L

x

(RB)2(RA)2

A2

MA
EI�

2L
3

BA

M
EI

Fig. 9.69

 In the example we have just considered, there was a single 
redundant reaction, i.e., the beam was statically indeterminate to the 
first degree. The moment-area theorems can also be used when there 
are additional redundant reactions. As discussed in Sec. 9.5, it is then 
necessary to write additional equations. Thus for a beam that is stati-
cally indeterminate to the second degree, it would be necessary to 
select two redundants and write two equations considering the defor-
mations of the structure involved.
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611

SAMPLE PROBLEM 9.12

For the beam and loading shown, (a) determine the deflection at end A, 
(b) evaluate yA for the following data:

 W10 3 33: I 5 171 in4 E 5 29 3 106 psi
 a 5 3 ft 5 36 in. L 5 5.5 ft 5 66 in.
 w 5 13.5 kips/ft 5 1125 lb/in.

SOLUTION

 (MyEI ) Diagram.  We first draw the bending-moment diagram. 
Since the flexural rigidity EI is constant, we obtain the (MyEI) diagram 
shown, which consists of a parabolic spandrel of area A1 and a triangle 
of area A2.

 A1 5
1
3

 a2 
wa2

2EI
b a 5 2 

wa3

6EI

 A2 5
1
2

 a2 
wa2

2EI
b L 5 2 

wa2L
4EI

 Reference Tangent at B.  The reference tangent is drawn at point B 
as shown. Using the second moment-area theorem, we determine the tan-
gential deviation of C with respect to B:

tCyB 5 A2 
2L
3

5 a2 
wa2L
4EI
b 2L

3
5 2 

wa2L2

6EI

From the similar triangles A0A9B and CC9B, we find

A–A¿ 5 tCyB a a
L
b 5 2 

wa2L2

6EI
 a a

L
b 5 2 

wa3L
6EI

Again using the second moment-area theorem, we write

tAyB 5 A1 
3a
4

5 a2 
wa3

6EI
b 3a

4
5 2 

wa4

8EI

 a. Deflection at End A

yA 5 A–A¿ 1 tA/B 5 2 
wa3L
6EI

2
wa4

8EI
5 2 

wa4

8EI
 a4

3
 
L
a

1 1b
yA 5

wa4

8EI
 a1 1

4
3

 
L
a
bw b

 b. Evaluation of yA. Substituting the data given, we write

yA 5
11125 lb/in.2 136 in.24

8129 3 106 lb/in22 1171 in42   a1 1
4
3

 
66 in.
36 in.

b

 yA 5 0.1641 in.w b

B

w

A

L

C

a

B
C

�
 wa2

2EI

�
 wa2

2

 wa2

2L

 a3
4

A x

M
EI

B

w

C

A1

A2

x

M

 L2
3

RB RC �

A��

A�

A

yA

C�

CB

La

Reference tangent
tC/B

tA/B

A
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612

SAMPLE PROBLEM 9.13

For the beam and loading shown, determine the magnitude and location of 
the largest deflection. Use E 5 200 GPa.

BA

L � 3.6 m

b � 2.2 ma � 1.4 m
W250 � 22.3

w � 25 kN/m

w

b

L

L
3

a

RA � RB

�
 wb2

2EI

 RAL

EI

��

 wb2

2L

b
4

A

A

x

M
EI

B

B

B

A

A1

A2

A3

RAxm
EI

K

A4

a

L

Reference tangent

tB/A

A x

xm

(xm � a)

M
EI

�A

w
2EI (xm     a)2

�(xm     a)1
4

tA/K

A ym

K

B

Reference tangent

�A

�K/A
�[   K � 0 ]

SOLUTION

 Reactions.  Using the free-body diagram of the entire beam, we find

RA 5 16.81 kNx  RB 5 38.2 kNx

 (MyEI) Diagram.  We draw the (MyEI) diagram by parts, considering 
separately the effects of the reaction RA and of the distributed load. The 
areas of the triangle and of the spandrel are

A1 5
1
2

 
RAL
EI

 L 5
RAL2

2EI   
A2 5

1
3

 a2 
wb2

2EI
b b 5 2 

wb3

6EI

 Reference Tangent.  The tangent to the beam at support A is chosen 
as the reference tangent. Using the second moment-area theorem, we deter-
mine the tangential deviation tByA of support B with respect to support A:

tByA 5 A1 
L
3

1 A2 
b
4

5 aRAL2

2EI
b L

3
1 a2 

wb3

6EI
b b

4
5

RAL3

6EI
2

wb4

24EI

 Slope at A

 
uA 5 2 

tByA

L
5 2 aRAL2

6EI
2

wb4

24EIL
b (1)

 Largest Deflection.  The largest deflection occurs at point K, where 
the slope of the beam is zero. We write therefore

 uK 5 uA 1 uKyA 5 0 (2)

But uKyA 5 A3 1 A4 5
RAx 

2
m

2EI
2

w
6EI

 1xm 2 a23 (3)

We substitute for uA and uKyA from Eqs. (1) and (3) into Eq. (2):

2 aRAL2

6EI
2

wb4

24EIL
b 1 c RAx 

2
m

2EI
2

w
6EI

 1xm 2 a23 d 5 0

Substituting the numerical data, we have

229.53 
103

EI
1 8.405x 

2
m 

103

EI
2 4.1671xm 2 1.423 103

EI
5 0

Solving by trial and error for xm, we find xm 5 1.890 m b 

Computing the moments of A3 and A4 about a vertical axis through A, we 
have

 0y 0m 5 tAyK 5 A3 
2xm

3
1 A4 c a 1

3
4

 1xm 2 a2 d
 5

RAx m
3

3EI
2

wa
6EI

 1xm 2 a23 2
w

8EI
 1xm 2 a24

Using the given data, RA 5 16.81 kN, and I 5 28.7 3 1026 m4, we find

 ym 5 6.44 mmw b
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613

SAMPLE PROBLEM 9.14

For the uniform beam and loading shown, determine the reaction at B.

SOLUTION

The beam is indeterminate to the first degree. we choose the reaction RB 
as redundant and consider separately the distributed loading and the redun-

B

w

A C

L/32L/3

B
C

w

A
B

B

C

C

w

A

A

B

B
B CA

C

C

A

A

2L
3

L
3

RB RB

B'
C'

Reference tangent

tC/A

tB/A (tB/A)w

�A

(tC/A)w

(tC/A)R

(tB/A)R

dant reaction loading. We next select the tangent at A as the reference tan-
gent. From the similar triangles ABB9 and ACC9, we find that

 

tCyA

L
5

tByA

2
3 L   

tCyA 5
3
2

 tByA (1)

For each loading, we draw the (MyEI) diagram and then determine the 
tangential deviations of B and C with respect to A.

 Distributed Loading.  Considering the (MyEI) diagram from end A to 
an arbitrary point X, we write

1tXyA2w 5 A1 
x
3

1 A2 
x
4

5 a1
2

 
wLx
2EI

 xb x
3

1 a2 
1
3

 
wx2

2EI
 xb x

4
5

wx3

24EI
 12L 2 x2

Letting successively x 5 L and x 5 2
3 L, we have

1tCyA2w 5
wL4

24EI  
1tByA2w 5

4
243

 
wL4

EI

 Redundant Reaction Loading

 1tCyA2R 5 A3 
L
9

1 A4 
L
3

5 a1
2

 
RBL
3EI

 
L
3
b L

9
1 a2 

1
2

 
RBL
3EI

 Lb L
3

5 2 
4
81

 
RBL3

EI

 1tByA2R 5 A5 
2L
9

5 c2 
1
2

 
2RBL
9EI

 a2L
3
b d  2L

9
5 2 

4
243

 
RBL3

EI

 Combined Loading.  Adding the results obtained, we write

tCyA 5
wL4

24EI
2

4
81

 
RBL3

EI   
tByA 5

4
243

 
1wL4 2 RBL32

EI

 Reaction at B.  Substituting for tCyA and tByA into Eq. (1), we have

a wL4

24EI
2

4
81

 
RBL3

EI
b 5

3
2
c 4
243

 
1wL4 2 RBL32

EI
d

 RB 5 0.6875wL RB 5 0.688wLx b

(RA)1 (RC)1

(RC)2(RA)2 RB RB

B

C

C

X

X
x

x

x

x

x

L

w

A

A

A

A

A
A5

A4

A3

C

C

B

B

�
 wL

2

�
 1
3 

 wLx
2EI

3

x
4

M
EI

M
EI

M
EI

A1

A2

2L
3

L
3

L
3

�
 wx2

2EI

RBL
EI� 2

9

RBL
EI� 1

3

RBL
EI

1
3

L
3

1
3

2L
3

1
3 (    )

( )
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PROBLEMS

614

Use the moment-area method to solve the following 
problems.

 9.125 through 9.128 For the prismatic beam and loading shown, 
determine (a) the deflection at point D, (b) the slope at end A.

D E
BA

P P

L/2 L/4 L/4

Fig. P9.125

B
D

A

M0

L
3

2L
3

Fig. P9.126

A B
D

w0

L/2

L

Fig. P9.127

L/2

w

D
B

L

A

Fig. P9.128

 9.129 and 9.130 For the beam and loading shown, determine (a) the 
slope at end A, (b) the deflection at point D. Use E 5 200 GPa.

A BDC

1.5 m 1.5 m
3.0 m

W250 � 44.8

40 kN 20 kN

Fig. P9.129

A
D

1.6 m
0.8 m

B

30 kN

20 kN/m

W150 � 24

Fig. P9.130

 9.131 For the beam and loading shown, determine (a) the slope at point A, 
(b) the deflection at point E. Use E 5 29 3 106 psi.

A B
D

E
W12 � 26

2 ft 4 ft 4 ft

5 kips/ft
8 kips/ft

Fig. P9.131

2 ft 2 ft

800 lb 200 lb/ft

4 ft

6 in.

2 in.

DA
B C

Fig. P9.132

9.132 For the timber beam and loading shown, determine (a) the slope 
at point A, (b) the deflection at point C. Use E 5 1.7 3 106 psi.
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615Problems 9.133 For the beam and loading shown, determine (a) the slope at point A, 
(b) the deflection at point D.

D
CB

P

A

L/2 L/2 L/2

P

Fig. P9.133

M0

A C
B

a L

Fig. P9.134

 9.134 For the beam and loading shown, determine (a) the slope at point A, 
(b) the deflection at point A.

 9.135 For the beam and loading shown, determine (a) the slope at point C, 
(b) the deflection at point D. Use E 5 29 3 106 psi.

8 kips/ft

B
D

C
A

4 ft
6 ft6 ft

W12 � 30

16 kips

Fig. P9.135

W410 � 114

4.8 m

A D
B

40 kN/m 160 kN

1.8 m

Fig. P9.136

 9.136 For the beam and loading shown, determine (a) the slope at point B, 
(b) the deflection at point D. Use E 5 200 GPa.

 9.137 Knowing that the beam AB is made of a solid steel rod of diameter 
d 5 0.75 in., determine for the loading shown (a) the slope at point D, 
(b) the deflection at point A. Use E 5 29 3 106 psi.

150 lb 300 lb

D E
BA

d

24 in.
4 in. 6 in.

Fig. P9.137

D
B C

1.2 kN 3 kN/m

0.25 m
0.20 m

0.25 m

A

30 mm

30 mm

Fig. P9.138

 9.138 Knowing that the beam AD is made of a solid steel bar, determine 
(a) the slope at point B, (b) the deflection at point A. Use E 5 
200 GPa.
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616 Defl ection of Beams  9.139 For the beam and loading shown, determine the deflection (a) at 
point D, (b) at point E.

A
C

L

B

P

L/2

Fig. P9.148

B
A

w0

L

Fig. P9.147

L/2 L/2

C
A

B

w

Fig. P9.149

L/2

A

M0

C

L

B

Fig. P9.150

L/2 L/2

A
C

w

B
EI 2EI

Fig. P9.140

B
D E

A

L/3 L/3

2EI2EI EI

L/3

P P

Fig. P9.139

 9.141 through 9.144 For the beam and loading shown, determine 
the magnitude and location of the largest downward deflection.

   9.141 Beam and loading of Prob. 9.125
   9.142 Beam and loading of Prob. 9.127
   9.143 Beam and loading of Prob. 9.129
   9.144 Beam and loading of Prob. 9.131

 9.145 For the beam and loading of Prob. 9.136, determine the largest 
upward deflection in span AB.

 9.146 For the beam and loading of Prob. 9.137, determine the largest 
upward deflection in span DE.

 9.147 through 9.150 For the beam and loading shown, determine 
the reaction at the roller support.

 9.140 For the beam and loading shown, determine (a) the slope at end A, 
(b) the slope at end B, (c) the deflection at the midpoint C.
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617Problems

 9.154 Determine the reaction at the roller support and draw the  bending-
moment diagram for the beam and loading shown.

 9.151 and 9.152 For the beam and loading shown, determine the 
reaction at each support.

A

P

C
B

L L/2 L/2

Fig. P9.151

M0

A C
B

L L/2

Fig. P9.152

 9.153 Determine the reaction at the roller support and draw the bending-
moment diagram for the beam and loading shown.

75 kN 40 kN/m

A
D E B

2.4 m

0.3 m
0.9 m

3.6 m

W310 � 44.5

Fig. P9.153

4.5 ft 4.5 ft
3 ft

12 ft

W14 � 38

A D E
B

30 kips 10 kips

Fig. P9.154

k
C

w

A
B

L L

Fig. P9.155 and P9.156

 9.155 For the beam and loading shown, determine the spring constant k 
for which the force in the spring is equal to one-third of the total 
load on the beam.

 9.156 For the beam and loading shown, determine the spring constant k 
for which the bending moment at B is MB 5 2wL2/10.
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618

REVIEW AND SUMMARY

This chapter was devoted to the determination of slopes and deflec-
tions of beams under transverse loadings. Two approaches were used. 
First we used a mathematical method based on the method of inte-
gration of a differential equation to get the slopes and deflections at 
any point along the beam. We then used the moment-area method
to find the slopes and deflections at a given point along the beam. 
Particular emphasis was placed on the computation of the maximum 
deflection of a beam under a given loading. We also applied these 
methods for determining deflections to the analysis of indeterminate 
beams, those in which the number of reactions at the supports 
exceeds the number of equilibrium equations available to determine 
these unknowns.

We noted in Sec. 9.2 that Eq. (4.21) of Sec. 4.4, which relates the 
curvature 1yr of the neutral surface and the bending moment M in 
a prismatic beam in pure bending, can be applied to a beam under 
a transverse loading, but that both M and 1yr will vary from section 
to section. Denoting by x the distance from the left end of the beam, 
we wrote

1
r

5
M 1x2
EI  

(9.1)

This equation enabled us to determine the radius of curvature of the 
neutral surface for any value of x and to draw some general conclu-
sions regarding the shape of the deformed beam.
 In Sec. 9.3, we discussed how to obtain a relation between the 
deflection y of a beam, measured at a given point Q, and the distance 
x of that point from some fixed origin (Fig. 9.70). Such a relation 
defines the elastic curve of a beam. Expressing the curvature 1yr in 
terms of the derivatives of the function y(x) and substituting into 
(9.1), we obtained the following second-order linear differential 
equation:

 

d  

2y

dx2 5
M 1x2
EI  

(9.4)

Integrating this equation twice, we obtained the following expres-
sions defining the slope u(x) 5 dyydx and the deflection y(x), 
respectively:

EI 

dy

dx
5 #

x

0

M 1x2 dx 1 C1  
(9.5)

 
 EI y 5 #

x

0

dx #
x

0

M 1x2 dx 1 C1x 1 C2 
(9.6)

Deformation of a beam under 
transverse loading

C
y

x

y

A
D

Q

x

Elastic 
curve

P2P1

Fig. 9.70
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619The product EI is known as the flexural rigidity of the beam; C1 and 
C2 are two constants of integration that can be determined from the 
boundary conditions imposed on the beam by its supports (Fig. 9.71) 
[Example 9.01]. The maximum deflection can then be obtained by 
determining the value of x for which the slope is zero and the cor-
responding value of y [Example 9.02, Sample Prob. 9.1].

Boundary conditions

D

BA

y

x x �0, y1 � 0 

x �  L, y2�  0[
[

[
[

� �x �     L,  1 �1
4[ [  

x �     L, y1 � y2

2
1
4[ [

P

Fig. 9.72

B

xA

y

(a) Cantilever beam

[ yA� 0]
[  A�  0]�

[VB � 0]
[MB � 0]�

BA

y

(b) Simply supported beam

[ yA� 0]

x

[ yB� 0]

[MB� 0][MA� 0]

Fig. 9.73 Boundary conditions for beams carrying a distributed load.

Review and Summary

Fig. 9.71 Boundary conditions for statically determinate beams.

P
y

yA� 0

B
A x

(b) Overhanging beam

yB� 0

BA

y

(a) Simply supported beam

yA� 0 yB� 0

x

P

y

B

xA

(c) Cantilever beam

yA� 0

A� 0�

When the loading is such that different analytical functions are 
required to represent the bending moment in various portions of the 
beam, then different differential equations are also required, leading 
to different functions representing the slope u(x) and the deflection 
y(x) in the various portions of the beam. In the case of the beam 
and loading considered in Example 9.03 (Fig. 9.72), two differential 
equations were required, one for the portion of beam AD and the 
other for the portion DB. The first equation yielded the functions u1 
and y1, and the second the functions u2 and y2. Altogether, four 
constants of integration had to be determined; two were obtained by 
writing that the deflections at A and B were zero, and the other two 
by expressing that the portions of beam AD and DB had the same 
slope and the same deflection at D.
 We observed in Sec. 9.4 that in the case of a beam supporting 
a distributed load w(x), the elastic curve can be determined directly 
from w(x) through four successive integrations yielding V, M, u, and 
y in that order. For the cantilever beam of Fig. 9.73a and the simply 
supported beam of Fig. 9.73b, the resulting four constants of integra-
tion can be determined from the four boundary conditions indicated 
in each part of the figure [Example 9.04, Sample Prob. 9.2].

Elastic curve defined by 
different functions
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620 Defl ection of Beams

Fig. 9.74

BA
A

L

(a)

B

wL

Ax

Ay
L

L/2

(b)

MA

B

w

In Sec. 9.5, we discussed statically indeterminate beams, i.e., beams 
supported in such a way that the reactions at the supports involved 
four or more unknowns. Since only three equilibrium equations are 
available to determine these unknowns, the equilibrium equations 
had to be supplemented by equations obtained from the boundary 
conditions imposed by the supports. In the case of the beam of 
Fig 9.74, we noted that the reactions at the supports involved four 

Statically indeterminate beams 

w

B
x

x � 0,    � 0[ ]
x � L, y � 0[ ]

x � 0, y � 0[ ]

A

�

y

Fig. 9.75

P

B
D

A

3L/4
L/4

Fig. 9.76

A
D

B x

y P

L/4
3L/4

3
4 P 1

4 P

Fig. 9.77

Use of singularity functions

unknowns, namely, MA, Ax, Ay, and B. Such a beam is said to be 
indeterminate to the first degree. (If five unknowns were involved, 
the beam would be indeterminate to the second degree.) Expressing 
the bending moment M(x) in terms of the four unknowns and inte-
grating twice [Example 9.05], we determined the slope u(x) and the 
deflection y(x) in terms of the same unknowns and the constants of 
integration C1 and C2. The six unknowns involved in this computa-
tion were obtained by solving simultaneously the three equilibrium 
equations for the free body of Fig. 9.74b and the three equations 
expressing that u 5 0, y 5 0 for x 5 0, and that y 5 0 for x 5 L 
(Fig. 9.75) [see also Sample Prob. 9.3].

The integration method provides an effective way for determining the 
slope and deflection at any point of a prismatic beam, as long as the 
bending moment M can be represented by a single analytical function. 
However, when several functions are required to represent M over the 
entire length of the beam, this method can become quite laborious, 
since it requires matching slopes and deflections at every transition 
point. We saw in Sec. 9.6 that the use of singularity functions (previ-
ously introduced in Sec. 5.5) considerably simplifies the determination 
of u and y at any point of the beam. Considering again the beam of 
Example 9.03 (Fig. 9.76) and drawing its free-body diagram (Fig. 9.77), 
we expressed the shear at any point of the beam as

V1x2 5
3P
4

2 P Hx 2 1
4 LI0
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621where the step function Hx 2 1
4 LI0 is equal to zero when the quantity 

inside the brackets H I is negative, and equal to one otherwise. Inte-
grating three times, we obtained successively

 
 M1x2 5

3P
4

 x 2 PHx 2 1
4 LI  (9.44)

 
 EI u 5 EI 

dy

dx
5 3

8 Px2 2 1
2 PHx 2 1

4 LI2 1 C1 (9.46)

  EI y 5 1
8 Px3 2 1

6 PHx 2 1
4 LI3 1 C1x 1 C2  (9.47)

where the brackets H I should be replaced by zero when the quantity 
inside is negative, and by ordinary parentheses otherwise. The con-
stants C1 and C2 were determined from the boundary conditions 
shown in Fig. 9.78 [Example 9.06; Sample Probs. 9.4, 9.5, and 9.6].

The next section was devoted to the method of superposition, which 
consists of determining separately, and then adding, the slope and 
deflection caused by the various loads applied to a beam [Sec. 9.7]. 
This procedure was facilitated by the use of the table of Appendix D, 
which gives the slopes and deflections of beams for various loadings 
and types of support [Example 9.07, Sample Prob. 9.7].

The method of superposition can be used effectively with statically 
indeterminate beams [Sec. 9.8]. In the case of the beam of Exam-
ple 9.08 (Fig. 9.79), which involves four unknown reactions and is 
thus indeterminate to the first degree, the reaction at B was con-
sidered as redundant and the beam was released from that sup-
port. Treating the reaction RB as an unknown load and considering 
separately the deflections caused at B by the given distributed load 
and by RB, we wrote that the sum of these deflections was zero 
(Fig. 9.80). The equation obtained was solved for RB [see also 
Sample Prob. 9.8]. In the case of a beam indeterminate to the 
second degree, i.e., with reactions at the supports involving five 
unknowns, two reactions must be designated as redundant, and 
the corresponding supports must be eliminated or modified accord-
ingly [Sample Prob. 9.9].

Review and Summary

B
A

y

x

x � 0, y � 0[ ] x � L, y � 0[ ]

Fig. 9.78

Method of superposition

Statically indeterminate beams
by superposition

We next studied the determination of deflections and slopes of beams 
using the moment-area method. In order to derive the moment-area 
theorems [Sec. 9.9], we first drew a diagram representing the varia-
tion along the beam of the quantity MyEI obtained by dividing the 

B

(yB)R

RB

w w

B

A A
B

yB � 0

(yB)wRB

A

(a) (b) (c)

Fig. 9.80

First moment-area theorem

BA

L

w

Fig. 9.79
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622 Defl ection of Beams bending moment M by the flexural rigidity EI (Fig. 9.81). We then 
derived the first moment-area theorem, which may be stated as fol-
lows: The area under the (MyEI) diagram between two points is 
equal to the angle between the tangents to the elastic curve drawn 
at these points. Considering tangents at C and D, we wrote

 uDyC 5  area under (MyEI) diagram
 between C and D 

(9.56)

BA

B

C
tC/D

tD/C

D

D

A

C'

D'

C

BC DA

M
EI

x

BC DA

M
EI

x

x2

(a)

(b)

x1

Fig. 9.82 Second moment-area theorem.

Again using the (MyEI) diagram and a sketch of the deflected beam 
(Fig. 9.82), we drew a tangent at point D and considered the vertical 
distance tCyD, which is called the tangential deviation of C with 
respect to D. We then derived the second moment-area theorem, 
which may be stated as follows: The tangential deviation tCyD of C 
with respect to D is equal to the first moment with respect to a verti-
cal axis through C of the area under the (MyEI) diagram between C 
and D. We were careful to distinguish between the tangential devia-
tion of C with respect to D (Fig. 9.82a).

 tCyD 5 1area between C and D2 x1 (9.59)

and the tangential deviation of D with respect to C (Fig. 9.82b):

 tDyC 5 1area between C and D2 x2 (9.60)

B

C
D

A

(c)
�D

�C

Fig. 9.81 First moment-area theorem.

(d)

B

C
D

A
�D/C

BC DA

M
EI

x
(b)

B
C D

A(a)

Second moment-area theorem
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623In Sec. 9.10 we learned to determine the slope and deflection at 
points of cantilever beams and beams with symmetric loadings. 
For cantilever beams, the tangent at the fixed support is horizontal 
(Fig. 9.83); and for symmetrically loaded beams, the tangent is 
horizontal at the midpoint C of the beam (Fig. 9.84). Using the 
horizontal tangent as a reference tangent, we were able to deter-
mine slopes and deflections by using, respectively, the first and 
second moment-area theorems [Example 9.09, Sample Probs. 9.10 
and 9.11]. We noted that to find a deflection that is not a tangen-
tial deviation (Fig. 9.84c), it is necessary to first determine which 
tangential deviations can be combined to obtain the desired 
deflection.

Review and Summary

Cantilever Beams
Beams with symmetric loadings

� �D =   D/A

yD =  tD/A

Reference tangent

Tangent at DD

A

P

Fig. 9.83

C

BA

P

Horizontal
(a)

P

C

B

y  max � tB/C

A

Reference tangent

(b)

B/CB �� �

C

B
D

tD/C

tB/C

yD

A

Reference tangent

(c)

D/CD �� �

Fig. 9.84

In many cases the application of the moment-area theorems is sim-
plified if we consider the effect of each load separately [Sec. 9.11]. 
To do this we drew the (MyEI) diagram by parts by drawing a sepa-
rate (MyEI) diagram for each load. The areas and the moments of 
areas under the several diagrams could then be added to determine 
slopes and tangential deviations for the original beam and loading 
[Examples 9.10 and 9.11].

In Sec. 9.12 we expanded the use of the moment-area method to cover 
beams with unsymmetric loadings. Observing that locating a horizontal 
tangent is usually not possible, we selected a reference tangent at one 
of the beam supports, since the slope of that tangent can be readily 
determined. For example, for the beam and loading shown in Fig. 9.85, 
the slope of the tangent at A can be obtained by computing the 

Bending-moment diagram by parts

Unsymmetric loadings

P

Reference
tangent

A

w

B

A B

L

(a)

(b)

A�

tB/A

Fig. 9.85 
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624 Defl ection of Beams  tangential deviation tByA and dividing it by the distance L between the 
supports A and B. Then, using both moment-area theorems and sim-
ple geometry, we could determine the slope and deflection at any 
point of the beam [Example 9.12, Sample Prob. 9.12].

The maximum deflection of an unsymmetrically loaded beam gener-
ally does not occur at midspan. The approach indicated in the preced-
ing paragraph was used to determine point K where the maximum 
deflection occurs and the magnitude of that deflection [Sec. 9.13]. 
Observing that the slope at K is zero (Fig. 9.86), we concluded that 
uKyA 5 2uA. Recalling the first moment-area theorem, we determined 
the location of K by measuring under the (M/EI) diagram an area 
equal to uKyA. The maximum deflection was then obtained by comput-
ing the tangential deviation tAyK [Sample Probs. 9.12 and 9.13].

In the last section of the chapter [Sec. 9.14] we applied the moment-
area method to the analysis of statically indeterminate beams. Since 
the reactions for the beam and loading shown in Fig. 9.87 cannot be 

Maximum deflection

P

A

A

w

B

B

K

L


 0

� 0

(a)

A K B
x

(b)

A�

K�

�� � K/A� A�

K/A tB/A
�

Reference 
target

AreaM
EI

y  max � t A/K

Fig. 9.86

B

w

A

L

Fig. 9.87

determined by statics alone, we designated one of the reactions of 
the beam as redundant (MA in Fig. 9.88a) and considered the redun-
dant reaction as an unknown load. The tangential deviation of B with 
respect to A was considered separately for the distributed load 
(Fig. 9.88b) and for the redundant reaction (Fig. 9.88c). Expressing 
that under the combined action of the distributed load and of the 
couple MA the tangential deviation of B with respect to A must be 
zero, we wrote

tByA 5 1tByA2w 1 1tByA2M 5 0

From this expression we determined the magnitude of the redundant 
reaction MA [Example 9.14, Sample Prob. 9.14].

A
A

w w

B BA B

MA MA

tB/A � 0 B''

B'

(tB/A)w

(tB/A)M

(a) (b) (c)

Fig. 9.88

Statically indeterminate beams
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625

REVIEW PROBLEMS

 9.157 For the loading shown, determine (a) the equation of the elastic 
curve for the cantilever beam AB, (b) the deflection at the free 
end, (c) the slope at the free end.

 9.158 (a) Determine the location and magnitude of the maximum absolute 
deflection in AB between A and the center of the beam. (b) Assum-
ing that beam AB is a W18 3 76 rolled shape, M0 5 150 kip ? ft 
and E 5 29 3 106 psi, determine the maximum allowable length L
so that the maximum deflection does not exceed 0.05 in.

B
A

C

y

w0

w0

L/2 L/2

x

Fig. P9.157

y

x

M0
M0

BA

L

Fig. P9.158

9.159 For the beam and loading shown, determine (a) the equation of 
the elastic curve, (b) the deflection at the free end.

 9.160 Determine the reaction at A and draw the bending moment dia-
gram for the beam and loading shown.

w � w0 [1 � 4(   ) � 3(   )2]x
L

x
L

y

A
x

L

B

Fig. P9.159

A B

w

L

Fig. P9.160

9.161 For the beam and loading shown, determine (a) the slope at end A, 
(b) the deflection at point B. Use E 5 29 3 106 psi.

 9.162 The rigid bar BDE is welded at point B to the rolled-steel beam 
AC. For the loading shown, determine (a) the slope at point A, 
(b) the deflection at point B. Use E 5 200 GPa.

A D

1.25 in.

24 in.
16 in.

48 in.

8 in.

200 lb

10 lb/in.

B C

Fig. P9.161

C
B

E
D

A

1.5 m 1.5 m 1.5 m

W410 � 85

20 kN/m

60 kN

Fig. P9.162
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626 Defl ection of Beams  9.163 Before the uniformly distributed load w is applied, a gap, d0 5 
1.2 mm, exists between the ends of the cantilever bars AB and 
CD. Knowing that E 5 105 GPa and w 5 30 kN/m, determine 
(a) the reaction at A, (b) the reaction at D.

 9.164 For the loading shown, and knowing that beams AB and DE 
have the same flexural rigidity, determine the reaction (a) at B, 
(b) at E.

400 mm
250 mm

50 mm

50 mmw

A C
D

B 0�

Fig. P9.163 P � 6 kips
a � 4 ft

a � 4 ft

b � 5 ft
D

A C

E

B

b � 5 ft

Fig. P9.164

 9.165 For the cantilever beam and loading shown, determine (a) the slope 
at point A, (b) the deflection at point A. Use E 5 200 GPa.

 9.166 Knowing that the magnitude of the load P is 7 kips, determine (a) 
the slope at end A, (b) the deflection at end A, (c) the deflection 
at midpoint C of the beam. Use E 5 29 3 106 psi.

A

26 kN/m

CB

0.5 m
2.2 m

W250 � 28.4
18 kN

Fig. P9.165

S6 � 12.5

1.5 kips 1.5 kipsP

A E
B C D

2 ft 2 ft
4.5 ft 4.5 ft

Fig. P9.166

 9.167 For the beam and loading shown, determine (a) the slope at point 
C, (b) the deflection at point C.

 9.168 A hydraulic jack can be used to raise point B of the cantilever 
beam ABC. The beam was originally straight, horizontal, and 
unloaded. A 20-kN load was then applied at point C, causing this 
point to move down. Determine (a) how much point B should be 
raised to return point C to its original position, (b) the final value 
of the reaction at B. Use E 5 200 GPa.

A C

P

L a

B

Fig. P9.167

B
C

A

W130 � 23.8

20 kN

1.8 m 1.2 m

Fig. P9.168
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627

COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

 9.C1 Several concentrated loads can be applied to the cantilever beam AB. 
Write a computer program to calculate the slope and deflection of beam 
AB from x 5 0 to x 5 L, using given increments Dx. Apply this program 
with increments Dx 5 50 mm to the beam and loading of Prob. 9.73 and 
Prob. 9.74.

B

Pi

A

ci

L

Fig. P9.C1

 9.C2 The 22-ft beam AB consists of a W21 3 62 rolled-steel shape and 
supports a 3.5-kip/ft distributed load as shown. Write a computer program 
and use it to calculate for values of a from 0 to 22 ft, using 1-ft increments, 
(a) the slope and deflection at D, (b) the location and magnitude of the 
maximum deflection. Use E 5 29 3 106 psi.

BA
D

3.5 kips/ft

a
22 ft

Fig. P9.C2

 9.C3 The cantilever beam AB carries the distributed loads shown. Write a 
computer program to calculate the slope and deflection of beam AB from 
x 5 0 to x 5 L using given increments D x. Apply this program with increments 
D x 5 100 mm, assuming that L 5 2.4 m, w 5 36 kN/m, and (a) a 5 0.6 m, 
(b) a 5 1.2 m, (c) a 5 1.8 m. Use E 5 200 GPa.

B
A

a

L

w

w
W250 � 32.7

Fig. P9.C3
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628 Defl ection of Beams  9.C4 The simple beam AB is of constant flexural rigidity EI and carries 
several concentrated loads as shown. Using the Method of Integration, write 
a computer program that can be used to calculate the slope and deflection 
at points along the beam from x 5 0 to x 5 L using given increments D x. 
Apply this program to the beam and loading of (a) Prob. 9.13 with D x 5 1 ft, 
(b) Prob. 9.16 with D x 5 0.05 m, (c) Prob. 9.129 with D x 5 0.25 m.

B

P1 P2 Pn

x

y

an

a2

a1

A

L

Fig. P9.C4

 9.C5 The supports of beam AB consist of a fixed support at end A and 
a roller support located at point D. Write a computer program that can be 
used to calculate the slope and deflection at the free end of the beam for 
values of a from 0 to L using given increments Da. Apply this program to 
calculate the slope and deflection at point B for each of the following 
cases:
 L DL w E Shape

(a) 12 ft 0.5 ft 1.6 k/ft 29 3 106 psi W16 3 57
(b) 3 m 0.2 m 18 kN/m 200 GPa W460 3 113

B

A

a

x

y

D

L

w

Fig. P9.C5

 9.C6 For the beam and loading shown, use the Moment-Area Method to 
write a computer program to calculate the slope and deflection at points along 
the beam from x 5 0 to x 5 L using given increments D x. Apply this program 
to calculate the slope and deflection at each concentrated load for the beam 
of (a) Prob. 9.77 with D x 5 0.5 m, (b) Prob. 9.119 with D x 5 0.5 m.

B

P1 P2 Pn
MA MB

x

y
an

a2

a1

A

L

Fig. P9.C6
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629Computer Problems 9.C7 Two 52-kN loads are maintained 2.5 m apart as they are moved 
slowly across beam AB. Write a computer program to calculate the deflec-
tion at the midpoint C of the beam for values of x from 0 to 9 m, using 
0.5-m increments. Use E 5 200 GPa.

BA

x 4.5 m

2.5 m
52 kN 52 kN

9 m

C

W460 � 113

Fig. P9.C7

 9.C8 A uniformly distributed load w and several distributed loads Pi may 
be applied to beam AB. Write a computer program to determine the reac-
tion at the roller support and apply this program to the beam and loading 
of (a) Prob. 9.53a, (b) Prob. 9.154.

B

Pi

ci

a

L

w

A

Fig. P9.C8

bee80288_ch09_548-629.indd Page 629  10/30/10  11:30:02 PM user-f499bee80288_ch09_548-629.indd Page 629  10/30/10  11:30:02 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch09/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch09



The curved pedestrian bridge is 

supported by a series of columns. 

The analysis and design of members 

supporting axial compressive loads will 

be discussed in this chapter.
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Columns

C H A P T E R

631

bee80288_ch10_630-691.indd Page 631  11/1/10  2:34:06 PM user-f499bee80288_ch10_630-691.indd Page 631  11/1/10  2:34:06 PM user-f499/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch10/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch



632

Chapter 10 Columns
 10.1 Introduction
 10.2 Stability of Structures
 10.3 Euler’s Formula for Pin-Ended 

Columns
 10.4 Extension of Euler’s Formula to 

Columns with Other End 
Conditions

 *10.5 Eccentric Loading; the Secant 
Formula

 10.6 Design of Columns under a 
Centric Load

 10.7 Design of Columns under an 
Eccentric Load

10.1 INTRODUCTION
In the preceding chapters, we had two primary concerns: (1) the 
strength of the structure, i.e., its ability to support a specified load 
without experiencing excessive stress; (2) the ability of the structure 
to support a specified load without undergoing unacceptable defor-
mations. In this chapter, our concern will be with the stability of the 
structure, i.e., with its ability to support a given load without experi-
encing a sudden change in its configuration. Our discussion will 
relate chiefly to columns, i.e., to the analysis and design of vertical 
prismatic members supporting axial loads.
 In Sec. 10.2, the stability of a simplified model of a column, 
consisting of two rigid rods connected by a pin and a spring and 
supporting a load P, will first be considered. You will observe that if 
its equilibrium is disturbed, this system will return to its original 
equilibrium position as long as P does not exceed a certain value Pcr , 
called the critical load. However, if P . Pcr , the system will move 
away from its original position and settle in a new position of equi-
librium. In the first case, the system is said to be stable, and in the 
second case, it is said to be unstable.
 In Sec. 10.3, you will begin the study of the stability of elastic 
columns by considering a pin-ended column subjected to a centric 
axial load. Euler’s formula for the critical load of the column will be 
derived and from that formula the corresponding critical normal 
stress in the column will be determined. By applying a factor of 
safety to the critical load, you will be able to determine the allowable 
load that can be applied to a pin-ended column.
 In Sec. 10.4, the analysis of the stability of columns with differ-
ent end conditions will be considered. You will simplify these analyses 
by learning how to determine the effective length of a column, i.e., 
the length of a pin-ended column having the same critical load.
 In Sec. 10.5, you will consider columns supporting eccentric 
axial loads; these columns have transverse deflections for all magni-
tudes of the load. An expression for the maximum deflection under 
a given load will be derived and used to determine the maximum 
normal stress in the column. Finally, the secant formula which relates 
the average and maximum stresses in a column will be developed.
 In the first sections of the chapter, each column is initially 
assumed to be a straight homogeneous prism. In the last part of 
the chapter, you will consider real columns which are designed and 
analyzed using empirical formulas set forth by professional orga-
nizations. In Sec. 10.6, formulas will be presented for the allow-
able stress in columns made of steel, aluminum, or wood and 
subjected to a centric axial load. In the last section of the chapter 
(Sec. 10.7), the design of columns under an eccentric axial load 
will be considered.

10.2 STABILITY OF STRUCTURES
Suppose we are to design a column AB of length L to support a given 
load P (Fig. 10.1). The column will be pin-connected at both ends 
and we assume that P is a centric axial load. If the cross- sectional 

L

B

P

A

Fig. 10.1 Column.
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63310.2 Stability of Structuresarea A of the column is selected so that the value s 5 PyA of the 
stress on a transverse section is less than the allowable stress sall for 
the material used, and if the deformation d 5 PLyAE falls within the 
given specifications, we might conclude that the column has been 
properly designed. However, it may happen that, as the load is applied, 
the column will buckle; instead of remaining straight, it will suddenly 
become sharply curved (Fig. 10.2). Photo 10.1 shows a column that 
has been loaded so that it is no longer straight; the column has buck-
led. Clearly, a column that buckles under the load it is to support is 
not properly designed.

Photo 10.1 Laboratory test showing a buckled column.

 Before getting into the actual discussion of the stability of 
elastic columns, some insight will be gained on the problem by 
considering a simplified model consisting of two rigid rods AC and 
BC connected at C by a pin and a torsional spring of constant K 
(Fig. 10.3).

B

A

P

Fig. 10.2 Buckled column.

L/2

L/2

C

B

A

constant K

P

Fig. 10.3 Column model.
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634 Columns  If the two rods and the two forces P and P9 are perfectly 
aligned, the system will remain in the position of equilibrium shown 
in Fig.10.4a as long as it is not disturbed. But suppose that we move 
C slightly to the right, so that each rod now forms a small angle Du 
with the vertical (Fig. 10.4b). Will the system return to its original 
equilibrium position, or will it move further away from that position? 
In the first case, the system is said to be stable, and in the second 
case, it is said to be unstable.
 To determine whether the two-rod system is stable or unstable, 
we consider the forces acting on rod AC (Fig. 10.5). These forces 
consist of two couples, namely the couple formed by P and P9, of 
moment P(Ly2) sin Du, which tends to move the rod away from the 
vertical, and the couple M exerted by the spring, which tends to 
bring the rod back into its original vertical position. Since the angle 
of deflection of the spring is 2 Du, the moment of the couple M is 
M 5 K(2 Du). If the moment of the second couple is larger than the 
moment of the first couple, the system tends to return to its original 
equilibrium position; the system is stable. If the moment of the first 
couple is larger than the moment of the second couple, the system 
tends to move away from its original equilibrium position; the system 
is unstable. The value of the load for which the two couples balance 
each other is called the critical load and is denoted by Pcr . We 
have

 Pcr1Ly22 sin ¢u 5 K12 ¢u2 (10.1)

or, since sin ¢u < ¢u,

 Pcr 5 4KyL (10.2)

Clearly, the system is stable for P , Pcr , that is, for values of the load 
smaller than the critical value, and unstable for P . Pcr.
 Let us assume that a load P . Pcr has been applied to the 
two rods of Fig. 10.3 and that the system has been disturbed. Since 
P . Pcr , the system will move further away from the vertical and, 
after some oscillations, will settle into a new equilibrium position 
(Fig. 10.6a). Considering the equilibrium of the free body AC 
(Fig. 10.6b), we obtain an equation similar to Eq. (10.1), but involv-
ing the finite angle u, namely

P1Ly22 sin u 5 K12u2
or

 
PL
4K

5
u

sin u 
(10.3)

 The value of u corresponding to the equilibrium position rep-
resented in Fig. 10.6 is obtained by solving Eq. (10.3) by trial and 
error. But we observe that, for any positive value of u, we have 
sin u , u. Thus, Eq. (10.3) yields a value of u different from zero 
only when the left-hand member of the equation is larger than one. 
Recalling Eq. (10.2), we note that this is indeed the case here, since 
we have assumed P . Pcr . But, if we had assumed P , Pcr , the second 
equilibrium position shown in Fig. 10.6 would not exist and the only 

C C

BB

A A

2

(a) (b)

��

��

P'

��

P P

P'

Fig. 10.4

C

L/2

A

M

P'

��

P

Fig. 10.5

C

L/2A

��

C

B

A

(b)(a)

P

P

M

P'

Fig. 10.6 Column model in buckled 
position.
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635possible equilibrium position would be the position corresponding 
to u 5 0. We thus check that, for P , Pcr , the position u 5 0 must 
be stable.
 This observation applies to structures and mechanical systems 
in general, and will be used in the next section, where the stability 
of elastic columns will be discussed.

10.3 EULER’S FORMULA FOR PIN-ENDED COLUMNS
Returning to the column AB considered in the preceding section 
(Fig. 10.1), we propose to determine the critical value of the load P, 
i.e., the value Pcr of the load for which the position shown in 
Fig. 10.1 ceases to be stable. If P . Pcr , the slightest misalignment 
or disturbance will cause the column to buckle, i.e., to assume a 
curved shape as shown in Fig. 10.2.
 Our approach will be to determine the conditions under which 
the configuration of Fig. 10.2 is possible. Since a column can be 
considered as a beam placed in a vertical position and subjected to 
an axial load, we proceed as in Chap. 9 and denote by x the distance 
from end A of the column to a given point Q of its elastic curve, 
and by y the deflection of that point (Fig. 10.7a). It follows that the 
x axis will be vertical and directed downward, and the y axis hori-
zontal and directed to the right. Considering the equilibrium of the 
free body AQ (Fig. 10.7b), we find that the bending moment at Q is 
M 5 2Py. Substituting this value for M in Eq. (9.4) of Sec. 9.3, we 
write

 

d2
 y

dx2 5
M
EI

5 2 
P
EI

 y
 

(10.4)

or, transposing the last term,

 

d 2
 y

dx 2 1
P
EI

 y 5 0
 

(10.5)

This equation is a linear, homogeneous differential equation of the 
second order with constant coefficients. Setting

 
p 2 5

P
EI

 (10.6)

we write Eq. (10.5) in the form

 

d2y

dx2 1 p2y 5 0 (10.7)

which is the same as that of the differential equation for simple 
harmonic motion except, of course, that the independent variable 
is now the distance x instead of the time t. The general solution of 
Eq. (10.7) is

 y 5 A sin px 1 B cos px (10.8)

as we easily check by computing d2yydx2 and substituting for y and 
d2yydx2 into Eq. (10.7).

10.3 Euler’s Formula for Pin-Ended Columns

L

B

P

A

Fig. 10.1 Column
(repeated)

B

A

P

Fig. 10.2 Buckled 
column (repeated)

L

Q Q

B

A
A

x

y

y

x

x

y

P'

P'

M

y
[ x � 0, y � 0]  

[ x � L, y � 0]  

(a) (b)

P P

Fig. 10.7 Column in buckled position.
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636 Columns  Recalling the boundary conditions that must be satisfied at ends 
A and B of the column (Fig. 10.7a), we first make x 5 0, y 5 0 in 
Eq. (10.8) and find that B 5 0. Substituting next x 5 L, y 5 0, we 
obtain

 A sin pL 5 0 (10.9)

This equation is satisfied either if A 5 0, or if sin pL 5 0. If the 
first of these conditions is satisfied, Eq. (10.8) reduces to y 5 0 and 
the column is straight (Fig. 10.1). For the second condition to be 
satisfied, we must have pL 5 np or, substituting for p from (10.6) 
and solving for P,

 
P 5

n2
 p2EI

L2  (10.10)

The smallest of the values of P defined by Eq. (10.10) is that corre-
sponding to n 5 1. We thus have

 
Pcr 5

p2EI

L2  (10.11)

 The expression obtained is known as Euler’s formula, after the 
Swiss mathematician Leonhard Euler (1707–1783). Substituting this 
expression for P into Eq. (10.6) and the value obtained for p into 
Eq. (10.8), and recalling that B 5 0, we write

 
y 5 A sin 

px
L

 (10.12)

which is the equation of the elastic curve after the column has buck-
led (Fig. 10.2). We note that the value of the maximum deflection, 
ym 5 A, is indeterminate. This is due to the fact that the differential 
equation (10.5) is a linearized approximation of the actual governing 
differential equation for the elastic curve.†
 If P , Pcr , the condition sin pL 5 0 cannot be satisfied, and 
the solution given by Eq. (10.12) does not exist. We must then have 
A 5 0, and the only possible configuration for the column is a straight 
one. Thus, for P , Pcr the straight configuration of Fig. 10.1 is 
stable.
 In the case of a column with a circular or square cross section, 
the moment of inertia I of the cross section is the same about any 
centroidal axis, and the column is as likely to buckle in one plane as 
another, except for the restraints that can be imposed by the end 
connections. For other shapes of cross section, the critical load 
should be computed by making I 5 Imin in Eq. (10.11); if buckling 
occurs, it will take place in a plane perpendicular to the correspond-
ing principal axis of inertia.
 The value of the stress corresponding to the critical load is 
called the critical stress and is denoted by scr . Recalling Eq. (10.11) 

†We recall that the equation d 2yydx 2 5 M/EI was obtained in Sec. 9.3 by assuming that 
the slope dyydx of the beam could be neglected and that the exact expression given in 
Eq. (9.3) for the curvature of the beam could be replaced by 1yr 5 d 2yydx 2.
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637and setting I 5 Ar2, where A is the cross-sectional area and r its 
radius of gyration, we have

scr 5
Pcr

A
5
p2EAr 2

AL2

or

 
scr 5

p2E
1Lyr22 (10.13)

The quantity Lyr is called the slenderness ratio of the column. It is 
clear, in view of the remark of the preceding paragraph, that the 
minimum value of the radius of gyration r should be used in comput-
ing the slenderness ratio and the critical stress in a column.
 Equation (10.13) shows that the critical stress is proportional 
to the modulus of elasticity of the material, and inversely propor-
tional to the square of the slenderness ratio of the column. The plot 
of scr versus Lyr is shown in Fig. 10.8 for structural steel, assuming 
E 5 200 GPa and sY 5 250 MPa. We should keep in mind that no 
factor of safety has been used in plotting scr . We also note that, if 
the value obtained for scr from Eq. (10.13) or from the curve of 
Fig. 10.8 is larger than the yield strength sY, this value is of no inter-
est to us, since the column will yield in compression and cease to be 
elastic before it has a chance to buckle.

100

0 10089 200

200

250

300

(MPa)

Y � 250 MPa

E � 200 GPa

2E
(L/r)2

L/r

�

�

cr �� �

Fig. 10.8 Plot of critical stress.

 Our analysis of the behavior of a column has been based so far 
on the assumption of a perfectly aligned centric load. In practice, 
this is seldom the case, and in Sec. 10.5 the effect of the eccentricity 
of the loading is taken into account. This approach will lead to a 
smoother transition from the buckling failure of long, slender col-
umns to the compression failure of short, stubby columns. It will also 
provide us with a more realistic view of the relation between the 
slenderness ratio of a column and the load that causes it to fail.

10.3 Euler’s Formula for Pin-Ended Columns
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EXAMPLE 10.01 A 2-m-long pin-ended column of square cross section is to be made of 
wood. Assuming E 5 13 GPa, sall 5 12 MPa, and using a factor of safety 
of 2.5 in computing Euler’s critical load for buckling, determine the size 
of the cross section if the column is to safely support (a) a 100-kN load, 
(b) a 200-kN load.

(a) For the 100-kN Load. Using the given factor of safety, we 
make

Pcr 5 2.51100 kN2 5 250 kN    L 5 2 m    E 5 13 GPa

in Euler’s formula (10.11) and solve for I. We have

I 5
Pcr L2

p2E
5
1250 3 103 N 2 12 m 22
p2113 3 109 Pa2 5 7.794 3 1026 m4

Recalling that, for a square of side a, we have I 5 a4y12, we write

a4

12
5 7.794 3 1026 m4    a 5 98.3 mm < 100 mm

We check the value of the normal stress in the column:

s 5
P
A

5
100 kN
10.100 m 22 5 10 MPa

Since s is smaller than the allowable stress, a 100 3 100-mm cross section 
is acceptable.

(b) For the 200-kN Load. Solving again Eq. (10.11) for I, but 
making now Pcr 5 2.5(200) 5 500 kN, we have

I 5 15.588 3 1026 m4

a4

12
5 15.588 3 1026    a 5 116.95 mm

The value of the normal stress is

s 5
P
A

5
200 kN

10.11695 m 22 5 14.62 MPa

Since this value is larger than the allowable stress, the dimension obtained 
is not acceptable, and we must select the cross section on the basis of its 
resistance to compression. We write

 A 5  
P
sall

5
200 kN
12 MPa

5 16.67 3 1023 m2

 a2 5 16.67 3 1023 m2    a 5 129.1 mm

A 130 3 130-mm cross section is acceptable.

10.4  EXTENSION OF EULER’S FORMULA TO 
COLUMNS WITH OTHER END CONDITIONS

Euler’s formula (10.11) was derived in the preceding section for 
a column that was pin-connected at both ends. Now the critical 
load Pcr will be determined for columns with different end 
conditions.

638
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639

formula (10.11) by using a column length equal to twice the actual 
length L of the given column. We say that the effective length Le of 
the column of Fig. 10.9 is equal to 2L and substitute Le 5 2L in 
Euler’s formula:

 
Pcr 5

p2EI

L2
e  

(10.119)

The critical stress is found in a similar way from the formula

 
scr 5

p2E
1Leyr22 

(10.139)

The quantity Leyr is referred to as the effective slenderness ratio of 
the column and, in the case considered here, is equal to 2Lyr.
 Consider next a column with two fixed ends A and B supporting 
a load P (Fig. 10.10). The symmetry of the supports and of the load-
ing about a horizontal axis through the midpoint C requires that the 
shear at C and the horizontal components of the reactions at A and 
B be zero (Fig. 10.11). It follows that the restraints imposed upon 
the upper half AC of the column by the support at A and by the 

10.4 Extension of Euler’s Formula to 
Columns with Other End Conditions

L

AA

BB
Le � 2L

P'

(b)(a)

A'

P P

Fig. 10.9 Column with free end.

L C

B

A

P

Fig. 10.10 Column with 
fixed ends.

 In the case of a column with one free end A supporting a load 
P and one fixed end B (Fig. 10.9a), we observe that the column will 
behave as the upper half of a pin-connected column (Fig. 10.9b). 
The critical load for the column of Fig. 10.9a is thus the same as for 
the pin-ended column of Fig. 10.9b and can be obtained from Euler’s 

M'

P'

B

L

L/2

C

A

M

P

Fig. 10.11 Buckled shape 
of column with fixed ends.
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640 Columns

lower half CB are identical (Fig. 10.12). Portion AC must thus be 
symmetric about its midpoint D, and this point must be a point of 
inflection, where the bending moment is zero. A similar reasoning 
shows that the bending moment at the midpoint E of the lower half 
of the column must also be zero (Fig. 10.13a). Since the bending 
moment at the ends of a pin-ended column is zero, it follows that 
the portion DE of the column of Fig. 10.13a must behave as a pin-
ended column (Fig. 10.13b). We thus conclude that the effective 
length of a column with two fixed ends is Le 5 Ly2.
 In the case of a column with one fixed end B and one pin-
connected end A supporting a load P (Fig. 10.14), we must write and 
solve the differential equation of the elastic curve to determine the 
effective length of the column. From the free-body diagram of the 
entire column (Fig. 10.15), we first note that a transverse force V is 
exerted at end A, in addition to the axial load P, and that V is statically 
indeterminate. Considering now the free-body diagram of a portion AQ 
of the column (Fig. 10.16), we find that the bending moment at Q is

M 5 2Py 2 Vx

L C

D D

E E

B

A

L1
2 LLe � 1

2

(a) (b)

P

P

Fig. 10.13

B

A

L

P

Fig. 10.14 Column 
with one end pin-
connected and one 
end fixed.

B

x

A
y

L

V'

V [ x � 0, y � 0]

[ x � L, y � 0]
[ x � L, dy/dx � 0]

P

MB

P'

Fig. 10.15

V'

A

Q

y

y

x

x

V

M

P'

P

Fig. 10.16

L/4

C

A

D

L/4

M'

P'

M

P

Fig. 10.12
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641Substituting this value into Eq. (9.4) of Sec. 9.3, we write

d2y

dx2 5
M
EI

5 2 
P
EI

 y 2
V
EI

 x

Transposing the term containing y and setting

 
p2 5

P
EI

 (10.6)

as we did in Sec. 10.3, we write

 

d2y

dx2 1 p2y 5 2 
V
EI

 x (10.14)

This equation is a linear, nonhomogeneous differential equation of 
the second order with constant coefficients. Observing that the 
left-hand members of Eqs. (10.7) and (10.14) are identical, we 
conclude that the general solution of Eq. (10.14) can be obtained 
by adding a particular solution of Eq. (10.14) to the solution (10.8) 
obtained for Eq. (10.7). Such a particular solution is easily seen 
to be

y 5 2 
V

p2EI
 x

or, recalling (10.6),

 
y 5 2 

V
P

 x (10.15)

Adding the solutions (10.8) and (10.15), we write the general solution 
of Eq. (10.14) as

 
y 5 A sin px 1 B cos px 2

V
P

 x (10.16)

 The constants A and B, and the magnitude V of the unknown 
transverse force V are obtained from the boundary conditions indi-
cated in Fig. (10.15). Making first x 5 0, y 5 0 in Eq. (10.16), we 
find that B 5 0. Making next x 5 L, y 5 0, we obtain

 
A sin pL 5

V
P

 L (10.17)

Finally, computing

dy

dx
5 Ap cos px 2

V
P

and making x 5 L, dyydx 5 0, we have

 
Ap cos pL 5

V
P

 (10.18)

10.4 Extension of Euler’s Formula to 
Columns with Other End Conditions
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642 Columns Dividing (10.17) by (10.18) member by member, we conclude that 
a solution of the form (10.16) can exist only if

 tan pL 5 pL (10.19)

Solving this equation by trial and error, we find that the smallest 
value of pL which satisfies (10.19) is

 pL 5 4.4934 (10.20)

Carrying the value of p defined by Eq. (10.20) into Eq. (10.6) 
and solving for P, we obtain the critical load for the column of 
Fig. 10.14

 
Pcr 5

20.19EI

L2  (10.21)

 The effective length of the column is obtained by equating the 
right-hand members of Eqs. (10.119) and (10.21):

p2EI

L2
e

5
20.19EI

L2

Solving for Le, we find that the effective length of a column with one 
fixed end and one pin-connected end is Le 5 0.699L < 0.7L.
 The effective lengths corresponding to the various end condi-
tions considered in this section are shown in Fig. 10.17.

C

B

A A
A

Le � 0.7L 

Le � 0.5L Le � 2L Le � L 

L 

B 

B B 

A 

(c) One fixed end,
     one pinned end

(d) Both ends
      fixed

(b) Both ends
      pinned

(a) One fixed end,
     one free end

P P P
P

Fig. 10.17 Effective length of column for various end conditions.

B

A

L

P

Fig. 10.14 
(repeated)
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643

SAMPLE PROBLEM 10.1

An aluminum column of length L and rectangular cross section has a fixed 
end B and supports a centric load at A. Two smooth and rounded fixed 
plates restrain end A from moving in one of the vertical planes of symmetry 
of the column, but allow it to move in the other plane. (a) Determine the 
ratio a/b of the two sides of the cross section corresponding to the most 
efficient design against buckling. (b) Design the most efficient cross section 
for the column, knowing that L 5 20 in., E 5 10.1 3 106 psi, P 5 5 kips, 
and that a factor of safety of 2.5 is required.

SOLUTION

 Buckling in xy Plane. Referring to Fig. 10.17, we note that the effec-
tive length of the column with respect to buckling in this plane is Le 5 0.7L. 
The radius of gyration rz of the cross section is obtained by writing

Ix 5 1
12 ba3  A 5 ab

and, since Iz 5 Ar 2
z ,

  
r 2

z 5
Iz

A
5

1
12ba3

ab
5

a2

12
    rz 5 ay112

The effective slenderness ratio of the column with respect to buckling in 
the xy plane is

 
Le

rz
5

0.7L
ay112 

(1)

 Buckling in xz Plane. The effective length of the column with respect 
to buckling in this plane is Le 5 2L, and the corresponding radius of gyra-
tion is ry 5 by112. Thus,

 
Le

ry
5

2L
by112 

(2)

 a. Most Efficient Design. The most efficient design is that for which the 
critical stresses corresponding to the two possible modes of buckling are equal. 
Referring to Eq. (10.139), we note that this will be the case if the two values 
obtained above for the effective slenderness ratio are equal. We write

0.7L
ay112

5
2L

by112

and, solving for the ratio ayb,           
a
b

5
0.7
2

         
a
b

5 0.35   >

 b. Design for Given Data. Since F.S. 5 2.5 is required,
Pcr 5 1F.S.2P 5 12.52 15 kips2 5 12.5 kips

Using a 5 0.35b, we have A 5 ab 5 0.35b2 and

scr 5
Pcr

A
5

12,500 lb
0.35b2

Making L 5 20 in. in Eq. (2), we have Leyry 5 138.6/b. Substituting for E, 
Leyr, and scr into Eq. (10.139), we write

scr 5
p2E

1Le yr22 
12,500 lb

0.35b2 5
p2110.1 3 106 psi2
1138.6yb22

b 5 1.620 in.    a 5 0.35b 5 0.567 in.  >

B

x

L

y

a

A

b

z

P
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PROBLEMS

644

 10.1 Knowing that the spring at A is of constant k and that the bar AB
is rigid, determine the critical load Pcr .

P

kA

B

L

Fig. P10.1

K

A

B

L

P

Fig. P10.2

 10.2 Knowing that the torsional spring at B is of constant K and that 
the bar AB is rigid, determine the critical load Pc r .

 10.3 Two rigid bars AC and BC are connected by a pin at C as shown. 
Knowing that the torsional spring at B is of constant K, determine 
the critical load Pc r for the system.

C

A

B

L2
3

L1
3

k

P

Fig. P10.4

C

A

B

L1
2

L1
2

K

P

Fig. P10.3

 10.4 Two rigid bars AC and BC are connected as shown to a spring of 
constant k. Knowing that the spring can act in either tension or 
compression, determine the critical load Pcr for the system.

 10.5 The rigid bar AD is attached to two springs of constant k and is in 
equilibrium in the position shown. Knowing that the equal and 
opposite loads P and P9 remain vertical, determine the magnitude 
Pcr of the critical load for the system. Each spring can act in either 
tension or compression.

B

C
k

k

D

A

P'P'

la

P

Fig. P10.5
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645Problems 10.6 The rigid rod AB is attached to a hinge at A and to two springs, 
each of constant k. If h 5 450 mm, d 5 300 mm, and m 5 200 kg, 
determine the range of values of k for which the equilibrium of 
rod AB is stable in the position shown. Each spring can act in 
either tension or compression.

 10.7 The rigid rod AB is attached to a hinge at A and to two springs, 
each of constant k 5 2 kips/in., that can act in either tension or 
compression. Knowing that h 5 2 ft, determine the critical load.

d

h
k

B

A

k

m

Fig. P10.6

k C

B

D

A
h

h

2h

k

P

Fig. P10.7

 10.8 A frame consists of four L-shaped members connected by four 
torsional springs, each of constant K. Knowing that equal loads P 
are applied at points A and D as shown, determine the critical 
value Pcr of the loads applied to the frame.

 10.9 Determine the critical load of a round wooden dowel that is 
48 in. long and has a diameter of (a) 0.375 in., (b) 0.5 in. Use 
E 5 1.6 3 106 psi.

 10.10 Determine the critical load of a steel tube that is 5 m long and has 
a 100-mm outer diameter and a 16-mm wall thickness. Use E 5 
200 GPa.

C

G

H

K

K

K

K

DA

F

E

B

L1
2

L1
2

L1
2

L1
2

PP

Fig. P10.8

100 mm

16 mm

Fig. P10.10

 10.11 A compression member of 20-in. effective length consists of a solid 
1-in.-diameter aluminum rod. In order to reduce the weight of the 
member by 25%, the solid rod is replaced by a hollow rod of the 
cross section shown. Determine (a) the percent reduction in the 
critical load, (b) the value of the critical load for the hollow rod. 
Use E 5 10.6 3 106 psi.

1.0 in. 1.0 in.

0.5 in.

Fig. P10.11
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646 Columns  10.12 Two brass rods used as compression members, each of 3-m effec-
tive length, have the cross sections shown. (a) Determine the wall 
thickness of the hollow square rod for which the rods have the 
same cross-sectional area. (b) Using E 5 105 GPa, determine the 
critical load of each rod.

 10.13 A column of effective length L can be made by gluing together 
identical planks in either of the arrangements shown. Determine 
the ratio of the critical load using the arrangement a to the critical 
load using the arrangement b.

 10.14 Determine the radius of the round strut so that the round and 
square struts have the same cross-sectional area and compute the 
critical load of each strut. Use E 5 200 GPa.

 10.15 A compression member of 7-m effective length is made by welding 
together two L152 3 102 3 12.7 angles as shown. Using E 5 
200 GPa, determine the allowable centric load for the member if 
a factor of safety of 2.2 is required.

60 mm

60 mm40 mm

Fig. P10.12

d

d/3

(a) (b)

Fig. P10.13

25 mm

C

A

B

D

1 m

1 m

P

P

Fig. P10.14

102 mm

152 mm

102 mm

Fig. P10.15

 10.16 A column of 3-m effective length is to be made by welding together 
two C130 3 13 rolled-steel channels. Using E 5 200 GPa, deter-
mine for each arrangement shown the allowable centric load if a 
factor of safety of 2.4 is required.

(a) (b)

Fig. P10.16

bee80288_ch10_630-691.indd Page 646  11/1/10  2:35:40 PM user-f499bee80288_ch10_630-691.indd Page 646  11/1/10  2:35:40 PM user-f499/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch10/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch



647Problems 10.17 A single compression member of 27-ft effective length is obtained by 
connecting two C8 3 11.5 steel channels with lacing bars as shown. 
Knowing that the factor of safety is 1.85, determine the allowable 
centric load for the member. Use E 5 29 3 106 psi and d 5 4.0 in.

 10.18 A column of 22-ft effective length is made by welding two 9 3 0.5-in. 
plates to a W8 3 35 as shown. Determine the allowable centric load 
if a factor of safety of 2.3 is required. Use E 5 29 3 106 psi.

d

Fig. P10.174.5 in.

4.5 in.

y

x

Fig. P10.18

 10.19 Member AB consists of a single C130 3 10.4 steel channel of 
length 2.5 m. Knowing that the pins A and B pass through the 
centroid of the cross section of the channel, determine the factor 
of safety for the load shown with respect to buckling in the plane 
of the figure when u 5 308. Use E 5 200 GPa.

C

B

A 6.8 kN
�

2.5 m

Fig. P10.19

1.2 m

1.2 m

P

70�

22-mm diameter

18-mm
diameter

B

A
C

Fig. P10.20

4 m

(1) (2) (3) (4)

m
m m

m

Fig. P10.21

 10.20 Knowing that P 5 5.2 kN, determine the factor of safety for the 
structure shown. Use E 5 200 GPa and consider only buckling in 
the plane of the structure.

 10.21 A rigid block of mass m can be supported in each of the four ways 
shown. Each column consists of an aluminum tube that has a 44-
mm outer diameter and a 4-mm wall thickness. Using E 5 70 GPa 
and a factor of safety of 2.8, determine the allowable mass for each 
support condition.
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648 Columns  10.22 Each of the five struts shown consists of a solid steel rod. (a) Know-
ing that the strut of Fig. (1) is of a 20-mm diameter, determine 
the factor of safety with respect to buckling for the loading shown. 
(b) Determine the diameter of each of the other struts for which 
the factor of safety is the same as the factor of safety obtained in 
part a. Use E 5 200 GPa.

Fig. P10.23 and P10.24

D

C

B

A

LAB

LBC

LCD

P

900 mm

(1) (2) (3) (4) (5)

P0 � 7.5 kN

P0

P0 P0 P0

Fig. P10.22

 10.23 A 1-in.-square aluminum strut is maintained in the position shown 
by a pin support at A and by sets of rollers at B and C that prevent 
rotation of the strut in the plane of the figure. Knowing that LAB 5 
3 ft, determine (a) the largest values of LBC and LCD that can be 
used if the allowable load P is to be as large as possible, (b) the 
magnitude of the corresponding allowable load. Consider only 
buckling in the plane of the figure and use E 5 10.4 3 106 psi.

 10.24 A 1-in.-square aluminum strut is maintained in the position shown 
by a pin support at A and by sets of rollers at B and C that pre-
vent rotation of the strut in the plane of the figure. Knowing that 
LAB 5 3 ft, LBC 5 4 ft, and LCD 5 1 ft, determine the allowable 
load P using a factor of safety with respect to buckling of 3.2. 
Consider only buckling in the plane of the figure and use E 5 
10.4 3 106 psi.
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 10.25 Column AB carries a centric load P of magnitude 15 kips. Cables BC 
and BD are taut and prevent motion of point B in the xz plane. Using 
Euler’s formula and a factor of safety of 2.2, and neglecting the ten-
sion in the cables, determine the maximum allowable length L. Use 
E 5 29 3 106 psi.

C

A D

L

B

P

y

z

x

W10 � 21

Fig. P10.25

L

A

B

y

x

L

b
d

C

z

P

Fig. P10.27 and P10.28

 10.26 A W8 3 21 rolled-steel shape is used with the support and cable 
arrangement shown in Prob. 10.25. Knowing that L 5 24 ft, deter-
mine the allowable centric load P if a factor of safety of 2.2 is 
required. Use E 5 29 3 106 psi.

 10.27 Column ABC has a uniform rectangular cross section with b 5 
12 mm and d 5 22 mm. The column is braced in the xz plane at 
its midpoint C and carries a centric load P of magnitude 3.8 kN. 
Knowing that a factor of safety of 3.2 is required, determine the 
largest allowable length L. Use E 5 200 GPa.

 10.28 Column ABC has a uniform rectangular cross section and is braced 
in the xz plane at its midpoint C. (a) Determine the ratio b/d for 
which the factor of safety is the same with respect to buckling in 
the xz and yz planes. (b) Using the ratio found in part a, design 
the cross section of the column so that the factor of safety will be 
3.0 when P 5 4.4 kN, L 5 1 m, and E 5 200 GPa.

*10.5 ECCENTRIC LOADING; THE SECANT FORMULA
In this section the problem of column buckling will be approached 
in a different way, by observing that the load P applied to a column 
is never perfectly centric. Denoting by e the eccentricity of the load, 
i.e., the distance between the line of action P and the axis of the 

64910.5 Eccentric Loading; the Secant Formula
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650 Columns

column (Fig. 10.18a ), we replace the given eccentric load by a cen-
tric force P and a couple MA of moment MA 5 Pe (Fig. 10.18b). It 
is clear that, no matter how small the load P and the eccentricity e, 
the couple MA will cause some bending of the column (Fig. 10.19). 
As the eccentric load is increased, both the couple MA and the axial 
force P increase, and both cause the column to bend further. Viewed 
in this way, the problem of buckling is not a question of determining 
how long the column can remain straight and stable under an increas-
ing load, but rather how much the column can be permitted to bend 
under the increasing load, if the allowable stress is not to be exceeded 
and if the deflection ymax is not to become excessive.
 We first write and solve the differential equation of the elastic 
curve, proceeding in the same manner as we did earlier in Secs. 10.3 
and 10.4. Drawing the free-body diagram of a portion AQ of the 
column and choosing the coordinate axes as shown (Fig. 10.20), we 
find that the bending moment at Q is

 M 5 2Py 2 MA 5 2Py 2 Pe (10.22)

Substituting the value of M into Eq. (9.4) of Sec. 9.3, we write
d2y

dx2 5
M
EI

5 2 
P
EI

 y 2
Pe
EI

Transposing the term containing y and setting

 
p2 5

P
EI 

(10.6)

as done earlier, we write

 

d2y

dx2 1 p2y 5 2p2e
 

(10.23)

Since the left-hand member of this equation is the same as that of 
Eq. (10.7), which was solved in Sec. 10.3, we write the general solu-
tion of Eq. (10.23) as
 y 5 A sin px 1 B cos px 2 e (10.24)

where the last term is a particular solution of Eq. (10.23).

P P

e

B

AA

B

P'P'

L

MB � Pe

MA � Pe

(a) (b)

Fig. 10.18 Column with eccentric load.
A

B

MA � Pe

ymax

P'

MB � Pe

P

Fig. 10.19 Deflection of 
column with eccentric load.

A

Q

x

x

y

y
MA � Pe

M

P'

P

Fig. 10.20
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651 The constants A and B are obtained from the boundary  conditions 
shown in Fig. 10.21. Making first x 5 0, y 5 0 in Eq. (10.24), we 
have

B 5 e

Making next x 5 L, y 5 0, we write

 A sin pL 5 e11 2 cos pL2 (10.25)
Recalling that

sin pL 5 2 sin 
pL

2
 cos 

pL

2
and

1 2 cos pL 5 2 sin2 
pL

2

and substituting into Eq. (10.25), we obtain, after reductions,

A 5 e tan 
pL

2

Substituting for A and B into Eq. (10.24), we write the equation of 
the elastic curve:

 
y 5 e atan 

pL

2
 sin px 1 cos px 2 1b (10.26)

 The value of the maximum deflection is obtained by setting 
x 5 Ly2 in Eq. (10.26). We have

 ymax 5 e atan 
pL

2
 sin 

pL

2
1 cos 

pL

2
2 1b

 5 e ±
sin2 

pL

2
1 cos2 

pL

2

cos 
pL

2

2 1 ≤

 
 ymax 5 e asec 

pL

2
2 1b  (10.27)

Recalling Eq. (10.6), we write

 
ymax 5 e c sec aB

P
EI

 
L
2
b 2 1 d  (10.28)

We note from the expression obtained that ymax becomes infinite 
when

 B
P
EI

 
L
2

5
p

2
 (10.29)

While the deflection does not actually become infinite, it nevertheless 
becomes unacceptably large, and P should not be allowed to reach the 
critical value which satisfies Eq. (10.29). Solving (10.29) for P, we have

 
Pcr 5

p2EI
L2  

(10.30)

10.5 Eccentric Loading; the Secant Formula

A

B

x

ymax

y

C

L/2

L/2

[ x � 0, y � 0]  

[ x � L, y � 0]  

Fig. 10.21

bee80288_ch10_630-691.indd Page 651  11/1/10  2:36:16 PM user-f499bee80288_ch10_630-691.indd Page 651  11/1/10  2:36:16 PM user-f499/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch10/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch



652 Columns which is the value that we obtained in Sec. 10.3 for a column under 
a centric load. Solving (10.30) for EI and substituting into (10.28), 
we can express the maximum deflection in the alternative form

 
ymax 5 easec 

p

2
 B

P
Pcr

2 1b
 

(10.31)

 The maximum stress smax occurs in the section of the column 
where the bending moment is maximum, i.e., in the transverse sec-
tion through the midpoint C, and can be obtained by adding the 
normal stresses due, respectively, to the axial force and the bending 
couple exerted on that section (cf. Sec. 4.12). We have

 
smax 5

P
A

1
Mmaxc

I  
(10.32)

From the free-body diagram of the portion AC of the column 
(Fig. 10.22), we find that

Mmax 5 Pymax 1 MA 5 P1ymax 1 e2
Substituting this value into (10.32) and recalling that I 5 Ar2, we write

 
smax 5

P
A

 c1 1
1ymax 1 e2c

r2 d
 

(10.33)

Substituting for ymax the value obtained in (10.28), we write

 
smax 5

P
A

 c1 1
ec
r2  sec aB

P
EI

 
L
2
b d

 
(10.34)

An alternative form for smax is obtained by substituting for ymax from 
(10.31) into (10.33). We have

 
smax 5

P
A

 a1 1
ec
r2  sec 

p

2
 B

P
Pcr
b
 

(10.35)

The equation obtained can be used with any end conditions, as long 
as the appropriate value is used for the critical load (cf. Sec. 10.4).
 We note that, since smax does not vary linearly with the load P, 
the principle of superposition does not apply to the determination 
of the stress due to the simultaneous application of several loads; the 
resultant load must first be computed, and then Eq. (10.34) or 
Eq. (10.35) can be used to determine the corresponding stress. For 
the same reason, any given factor of safety should be applied to the 
load, and not to the stress.
 Making I 5 Ar2 in Eq. (10.34) and solving for the ratio PyA in 
front of the bracket, we write

 

P
A

5
smax

1 1
ec
r2  sec a1

2
 B

P
EA

 
Le

r
b 

(10.36)

P'

A

C

L/2

ymax

MA � Pe

Mmax

P

Fig. 10.22
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653where the effective length is used to make the formula applicable to 
various end conditions. This formula is referred to as the secant  formula; 
it defines the force per unit area, PyA, that causes a specified maximum 
stress smax in a column of given effective slenderness ratio, Leyr, for a 
given value of the ratio ecyr2, where e is the eccentricity of the applied 
load. We note that, since PyA appears in both members, it is necessary 
to solve a transcendental equation by trial and error to obtain the value 
of PyA corresponding to a given column and loading condition.
 Equation (10.36) was used to draw the curves shown in Fig. 10.23a 
and b for a steel column, assuming the values of E and sY shown in 
the figure. These curves make it possible to determine the load per 
unit area PyA, which causes the column to yield for given values of the 
ratios Leyr and ecyr2.
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ec
r2

Y

� 0ec
r2 �

1ec
r2 �1ec

r2 �

P/
A

 (M
Pa

)

P/
A

 (k
si

)

Le/r
0 50 100 150 200

Le/r

E
� �

29 � 106 psi

250 MPaY
E

� �
� 200 GPa

Euler’s curve
Euler’s curve

�

(a) (b)

Fig. 10.23 Load per unit area, PyA, causing yield in column. 

 We note that, for small values of Leyr, the secant is almost equal 
to 1 in Eq. (10.36), and PyA can be assumed equal to

 

P
A

5
smax

1 1
ec
r2  

(10.37)

a value that could be obtained by neglecting the effect of the lateral 
deflection of the column and using the method of Sec. 4.12. On the 
other hand, we note from Fig. 10.23 that, for large values of Leyr, 
the curves corresponding to the various values of the ratio ecyr2 get 
very close to Euler’s curve defined by Eq. (10.139), and thus that the 
effect of the eccentricity of the loading on the value of PyA becomes 
negligible. The secant formula is chiefly useful for intermediate val-
ues of Leyr. However, to use it effectively, we should know the value 
of the eccentricity e of the loading, and this quantity, unfortunately, 
is seldom known with any degree of precision.

10.5 Eccentric Loading; the Secant Formula
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654

SAMPLE PROBLEM 10.2

The uniform column AB consists of an 8-ft section of structural tubing hav-
ing the cross section shown. (a) Using Euler’s formula and a factor of safety 
of two, determine the allowable centric load for the column and the corre-
sponding normal stress. (b) Assuming that the allowable load, found in part 
a, is applied as shown at a point 0.75 in. from the geometric axis of the 
column, determine the horizontal deflection of the top of the column and 
the maximum normal stress in the column. Use E 5 29 3 106 psi.

SOLUTION

 Effective Length.  Since the column has one end fixed and one end 
free, its effective length is

Le 5 218 ft2 5 16 ft 5 192 in.

 Critical Load.  Using Euler’s formula, we write

Pcr 5
p2EI

L2
e

5
p2129 3 106 psi2 18.00 in42

1192 in.22   
Pcr 5 62.1 kips

 a. Allowable Load and Stress. For a factor of safety of 2, we find

 
Pall 5

Pcr

F.S.
5

62.1 kips

2  
Pall 5 31.1 kips >

and

 
s 5

Pall

A
5

31.1 kips

3.54 in2  
s = 8.79 ksi >

 b. Eccentric Load. We observe that column AB and its loading are 
identical to the upper half of the column of Fig. 10.19 which was used in 
the derivation of the secant formulas; we conclude that the formulas of Sec. 
10.5 apply directly to the case considered here. Recalling that PallyPcr 5 1

2 
and using Eq. (10.31), we compute the horizontal deflection of point A:

 ym 5 e c sec ap
2

 B
P

Pcr
b 2 1 d 5 10.75 in.2 c sec a p

222
b 2 1 d

  5 10.75 in.2 12.252 2 12 ym 5 0.939 in. >
The maximum normal stress is obtained from Eq. (10.35):

 sm 5
P
A

 c 1 1
ec

r2  sec ap
2

 B
P

Pcr
b d

 5
31.1 kips

3.54 in2  c 1 1
10.75 in.2 12 in.2
11.50 in.22  sec a p

222
b d

  5 18.79 ksi2 31 1 0.66712.2522 4  sm 5 22.0 ksi >

e � 0.75 in.

8 ft

A

A

B

B

P

(a)

(b)

P

A � 3.54 in2

I � 8.00 in4

r � 1.50 in.
c � 2.00 in.

4 in.

4 in.
xC

y

e � 0.75 in.

A

Pall � 31.1 kips

e � 0.75 in.

A

B

ym � 0.939 in.P
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PROBLEMS

655

 10.29 An axial load P is applied to the 32-mm-diameter steel rod AB as 
shown. For P 5 37 kN and e 5 1.2 mm, determine (a) the deflec-
tion at the midpoint C of the rod, (b) the maximum stress in the 
rod. Use E 5 200 GPa.

P'

B

C

A

e

e

1.2 m

32-mm
diameter

P

Fig. P10.29

P

B

C D

30 mm 30 mm

0.6 m

4 mm

Fig. P10.30

 10.30 An axial load P 5 15 kN is applied at point D that is 4 mm from 
the geometric axis of the square aluminum bar BC. Using E 5
70 GPa, determine (a) the horizontal deflection of end C, (b) the 
maximum stress in the column.

 10.31 The line of action of the 75-kip axial load is parallel to the geomet-
ric axis of the column AB and intersects the x axis at x 5 0.6 in. 
Using E 5 29 3 106 psi, determine (a) the horizontal deflection 
of the midpoint C of the column, (b) the maximum stress in the 
column.

C

B

A

y

z
x

20 ft

0.6 in.

75 kips

75 kips

W8 � 35

Fig. P10.31
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656 Columns  10.32 An axial load P is applied to the 32-mm-square aluminum bar BC 
as shown. When P 5 24 kN, the horizontal deflection at end C is 
4 mm. Using E 5 70 GPa, determine (a) the eccentricity e of the 
load, (b) the maximum stress in the bar.

 10.33 An axial load P is applied to the 1.375-in. diameter steel rod AB 
as shown. When P 5 21 kips, it is observed that the horizontal 
deflection at midpoint C is 0.03 in. Using E 5 29 3 106 psi, deter-
mine (a) the eccentricity e of the load, (b) the maximum stress in 
the rod.

P

B

C

D

32 mm 32 mm

0.65 m

e

Fig. P10.32

P'

B

C

A

e

e

30 in.

1.375-in.
diameter

P

Fig. P10.33

 10.34 The axial load P is applied at a point located on the x axis at a 
distance e from the geometric axis of the rolled-steel column BC. 
When P 5 350 kN, the horizontal deflection of the top of the 
column is 5 mm. Using E 5 200 GPa, determine (a) the eccentric-
ity e of the load, (b) the maximum stress in the column.

 10.35 An axial load P is applied at point D that is 0.25 in. from the geo-
metric axis of the square aluminum bar BC. Using E 5 10.1 3 106 
psi, determine (a) the load P for which the horizontal deflection 
of end C is 0.50 in., (b) the corresponding maximum stress in the 
column.

W250 � 58

3.2 m

B

C

y

z
x

P

e

Fig. P10.34

1.75 in.1.75 in.
2.5 ft

P

C

B

D

0 .25 in.

Fig. P10.35
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657Problems 10.36 An axial load P is applied at a point located on the x axis at a distance 
e 5 12 mm from the geometric axis of the W310 3 60 rolled-steel 
column BC. Assuming that L 5 3.5 m and using E 5 200 GPa, 
determine (a) the load P for which the horizontal deflection at end 
C is 15 mm, (b) the corresponding maximum stress in the column.

 10.37 Solve Prob. 10.36, assuming that L is 4.5 m.

 10.38 The line of action of an axial load P is parallel to the geometric 
axis of the column AB and intersects the x axis at x 5 0.8 in. Using 
E 5 29 3 106 psi, determine (a) the load P for which the hori-
zontal deflection of the midpoint C of the column is 0.5 in., 
(b) the corresponding maximum stress in the column. W310 � 60

L

B

C

y

z
x

P

e

Fig. P10.36

C

B

A

y

z

22 ft

0.8 in.

P'

P

W8 � 40

x

Fig. P10.38 

 10.39 A brass pipe having the cross section shown has an axial load P 
applied 5 mm from its geometric axis. Using E 5 120 GPa, deter-
mine (a) the load P for which the horizontal deflection at the mid-
point C is 5 mm, (b) the corresponding maximum stress in the 
column.

 10.40 Solve Prob. 10.39, assuming that the axial load P is applied 10 mm 
from the geometric axis of the column.

 10.41 The steel bar AB has a 3
8 3 3

8-in. square cross section and is held 
by pins that are a fixed distance apart and are located at a distance 
e 5 0.03 in. from the geometric axis of the bar. Knowing that at 
temperature T0 the pins are in contact with the bar and that the 
force in the bar is zero, determine the increase in temperature for 
which the bar will just make contact with point C if d 5 0.01 in. 
Use E 5 29 3 106 psi and a coefficient of thermal expansion 
a 5 6.5 3 1026/8F.

 10.42 For the bar of Prob. 10.41, determine the required distance d for 
which the bar will just make contact with point C when the tem-
perature increases by 120 8F.

e

P'

120 mm

t � 6 mm

2.8 m

A

B

C

e

P

Fig. P10.39

B

C

A

d

e � 0.03 in.

e � 0.03 in.

3 in.8

4 in.

4 in.

Fig. P10.41
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658 Columns  10.43 An axial load P is applied to the W10 3 30 rolled-steel column BC 
that is free at its top C and fixed at its base B. Knowing that the 
eccentricity of the load is e 5 0.5 in. and that for the grade of steel 
used sY 5 36 ksi and E 5 29 3 106 psi, determine (a) the mag-
nitude of P of the allowable load when a factor of safety of 2.4 with 
respect to permanent deformation is required, (b) the ratio of the 
load found in part a to the magnitude of the allowable centric load 
for the column. (Hint: Since the factor of safety must be applied 
to the load P, not to the stress, use Fig. 10.23 to determine PY).

 10.44 Solve Prob. 10.43, assuming that the length of the column is 
reduced to 5 ft.

 10.45 A 3.5-m-long steel tube having the cross section and properties shown 
is used as a column. For the grade of steel used sY 5 250 MPa and 
E 5 200 GPa. Knowing that a factor of safety of 2.6 with respect 
to permanent deformation is required, determine the allowable 
load P when the eccentricity e is (a) 15 mm, (b) 7.5 mm. (See hint 
of Prob. 10.43).

W10 � 30

L � 7.5 ft

B

C

y

z
x

P

e

Fig. P10.43

e
127 mm

127 mm

A � 3400 mm2

I  � 7.93 � 10–6 m4

r � 48.3 mm

3.5 m

A

B

e

P

P�

Fig. P10.45 and P10.46

 10.46 Solve Prob. 10.45, assuming that the length of the tube is increased 
to 5 m.

 10.47 A 250-kN axial load P is applied to a W200 3 35.9 rolled-steel 
column BC that is free at its top C and fixed at its base B. Knowing 
that the eccentricity of the load is e 5 6 mm, determine the largest 
permissible length L if the allowable stress in the column is 
80 MPa. Use E 5 200 GPa.

 10.48 A 100-kN axial load P is applied to the W150 3 18 rolled-steel 
column BC that is free at its top C and fixed at its base B. Knowing 
that the eccentricity of the load is e 5 6 mm, determine the largest 
permissible length L if the allowable stress in the column is 80 MPa. 
Use E 5 200 GPa.

L

B

C

y

z
x

P

e

Fig. P10.47 and P10.48
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659Problems 10.49 Axial loads of magnitude P 5 20 kips are applied parallel to the 
geometric axis of the W8 3 15 rolled-steel column AB and inter-
sect the x axis at a distance e from the geometric axis. Knowing 
that sall 5 12 ksi and E 5 29 3 106 psi, determine the largest 
permissible length L when (a) e 5 0.25 in., (b) e 5 0.5 in.

C

B

A

y

z

L

e

P�

P

x

Fig. P10.49 and P10.50

B

D

y

x

d
4.0 ft

12 kips

z

e

C

Fig. P10.51

 10.50 Axial loads of magnitude P 5 135 kips are applied parallel to the 
geometric axis of the W10 3 54 rolled-steel column AB and inter-
sect the x axis at a distance e from the geometric axis. Knowing 
that sall 5 12 ksi and E 5 29 3 106 psi, determine the largest 
permissible length L when (a) e 5 0.25 in., (b) e 5 0.5 in.

 10.51 A 12-kip axial load is applied with an eccentricity e 5 0.375 in. to 
the circular steel rod BC that is free at its top C and fixed at its base 
B. Knowing that the stock of rods available for use have diameters 
in increments of 1

8 in. from 1.5 in. to 3.0 in., determine the lightest 
rod that can be used if sall 5 15 ksi. Use E 5 29 3 106 psi.

 10.52 Solve Prob. 10.51, assuming that the 12-kip axial load will be 
applied to the rod with an eccentricity e 5 1

2d.
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 10.53 An axial load of magnitude P 5 220 kN is applied at a point located 
on the x axis at a distance e 5 6 mm from the geometric axis of 
the wide-flange column BC. Knowing that E 5 200 GPa, choose 
the lightest W200 shape that can be used if sall 5 120 MPa.

 10.54 Solve Prob. 10.53, assuming that the magnitude of the axial load 
is P 5 345 kN.

 10.55 Axial loads of magnitude P 5 175 kN are applied parallel to the 
geometric axis of a W250 3 44.8 rolled-steel column AB and inter-
sect the axis at a distance e 5 12 mm from its geometric axis. 
Knowing that sY 5 250 MPa and E 5 200 GPa, determine the 
factor of safety with respect to yield. (Hint: Since the factor of safety 
must be applied to the load P, not to the stresses, use Fig. 10.23 to 
determine PY.)1.8 m

B

C

y

z

P

e

x

Fig. P10.53

C

B

A

y

z

3.8 m

e

P�

P

x

Fig. P10.55

10.6 DESIGN OF COLUMNS UNDER A CENTRIC LOAD
In the preceding sections, we have determined the critical load of a 
column by using Euler’s formula, and we have investigated the defor-
mations and stresses in eccentrically loaded columns by using the 
secant formula. In each case we assumed that all stresses remained 
below the proportional limit and that the column was initially a 
straight homogeneous prism. Real columns fall short of such an ide-
alization, and in practice the design of columns is based on empirical 
formulas that reflect the results of numerous laboratory tests.
 Over the last century, many steel columns have been tested 
by applying to them a centric axial load and increasing the load 
until failure occurred. The results of such tests are represented in 

660 Columns

 10.56 Solve Prob. 10.55, assuming that e 5 0.16 mm and P 5 155 kN.
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Fig. 10.24 where, for each of many tests, a point has been plotted with 
its ordinate equal to the normal stress scr at failure, and its abscissa 
equal to the corresponding value of the effective slenderness ratio, 
Leyr. Although there is considerable scatter in the test results, regions 
corresponding to three types of failure can be observed. For long col-
umns, where Leyr is large, failure is closely predicted by Euler’s for-
mula, and the value of scr is observed to depend on the modulus of 
elasticity E of the steel used, but not on its yield strength sY. For very 
short columns and compression blocks, failure occurs essentially as a 
result of yield, and we have scr < sY. Columns of intermediate length 
comprise those cases where failure is dependent on both sY and E. 
In this range, column failure is an extremely complex phenomenon, 
and test data have been used extensively to guide the development of 
specifications and design formulas.
 Empirical formulas that express an allowable stress or critical 
stress in terms of the effective slenderness ratio were first introduced 
over a century ago, and since then have undergone a continuous 
process of refinement and improvement. Typical empirical formulas 
previously used to approximate test data are shown in Fig. 10.25. It 
is not always feasible to use a single formula for all values of Leyr. 
Most design specifications use different formulas, each with a defi-
nite range of applicability. In each case we must check that the for-
mula we propose to use is applicable for the value of Leyr for the 

10.6 Design of Columns under a Centric Load

Short
columns

Intermediate columns Long columns

Euler’s critical stress

2E
(Le /r)2

Le/r

cr ��
Y�

�

cr�

Fig. 10.24 Plot of test data for steel columns.

Gordon-Rankine formula:

1	

Parabola:

Straight line:

k2

Le /r

cr�

cr �� 2 
         �

�

(  )2

k3

k1 r
Le

cr ��

cr ��

1 
�

3 

r
Le

(  )2
r
Le

Fig. 10.25 Plots of empirical formulas for column critical stress.
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662 Columns column involved. Furthermore, we must determine whether the for-
mula provides the value of the critical stress for the column, in which 
case we must apply the appropriate factor of safety, or whether it 
provides directly an allowable stress.
 Specific formulas for the design of steel, aluminum and wood 
columns under centric loading will now be considered. Photo 10.2 
shows examples of columns that would be designed using these for-
mulas. The design for the three different materials using Allowable 
Stress Design is first presented. This is followed with the formulas 
needed for the design of steel columns based on Load and Resistance 
Factor Design.†

Photo 10.2 The water tank in (a) is supported by steel columns and the 
building under construction in (b) is framed with wood columns.

(a) (b)

Structural Steel—Allowable Stress Design.  The formulas 
most widely used for the allowable stress design of steel columns 
under a centric load are found in the Specification for Structural 
Steel Buildings of the American Institute of Steel Construction.‡ 
As we shall see, an exponential expression is used to predict sall 
for columns of short and intermediate lengths, and an Euler-based 
relation is used for long columns. The design relations are devel-
oped in two steps:

 1. First a curve representing the variation of scr with Lyr is 
obtained (Fig. 10.26). It is important to note that this curve does not 
incorporate any factor of safety.§ The portion AB of this curve is 
defined by the equation

 scr 5  30.6581sYyse2 4sY (10.38)

†In specific design formulas, the letter L will always refer to the effective length of the 
column.
‡Manual of Steel Construction, 13th ed., American Institute of Steel Construction, 
Chicago, 2005.
§In the Specification for Structural Steel for Buildings, the symbol F is used for 
stresses.

0

A

B

C

0.39

E4.71 L/r

cr

Y

�

�

�

Y

�Y

Fig. 10.26 Steel column design.
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663where

 
se 5

p2E

1Lyr22 
(10.39)

The portion BC is defined by the equation

 scr 5 0.877se (10.40)

We note that when Lyr 5 0, scr 5 sY in Eq. (10.38). At point B, 
Eq. (10.38) joins Eq. (10.40). The value of slenderness Lyr at the 
junction between the two equations is

 
L
r

5 4.71 A
E
sY 

(10.41)

If Lyr is smaller than the value in Eq. (10.41), scr is determined from 
Eq. (10.38), and if Lyr is greater, scr is determined from Eq. (10.40). 
At the value of the slenderness Lyr specified in Eq. (10.41), the stress 
se 5 0.44 sY. Using Eq. (10.40), scr 5 0.877 (0.44 sY) 5 0.39 sY.
 2. A factor of safety must be introduced to obtain the final AISC 
design formulas. The factor of safety specified by the specification is 
1.67. Thus

 
sall 5

scr

1.67 
(10.42)

The formulas obtained can be used with SI or U.S. customary 
units.

 We observe that, by using Eqs. (10.38), (10.40), (10.41), and 
(10.42), we can determine the allowable axial stress for a given grade 
of steel and any given value of Lyr. The procedure is to first compute 
the value of Lyr at the intersection between the two equations from 
Eq. (10.41). For given values of Lyr smaller than that in Eq. (10.41), 
we use Eqs. (10.38) and (10.42) to calculate sall, and for values 
greater than that in Eq. (10.41), we use Eqs. (10.40) and (10.42) to 
calculate sall. Figure 10.27 provides a general illustration of how se 
varies as a function of Lyr for different grades of structural steel.

0 50 100 150 200
L/r

all�

Fig. 10.27 Steel column design for 
different grades of steel.

10.6 Design of Columns under a Centric Load
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664

EXAMPLE 10.02 Determine the longest unsupported length L for which the S100 3 11.5 
rolled-steel compression member AB can safely carry the centric load 
shown (Fig. 10.28). Assume sY 5 250 MPa and E 5 200 GPa.

From Appendix C we find that, for an S100 3 11.5 shape,

A 5 1460 mm2  rx 5 41.7 mm  ry 5 14.6 mm

If the 60-kN load is to be safely supported, we must have

sall 5
P
A

5
60 3 103 N

1460 3 102 6 m2 5 41.1 3 106 Pa

We must compute the critical stress scr . Assuming Lyr is larger than the 
slenderness specified by Eq. (10.41), we use Eq. (10.40) with (10.39) and 
write

 scr 5 0.877 se 5 0.877 
p2E

1Lyr22

 5 0.877 
p21200 3 109 Pa2

1Lyr22 5
1.731 3 1012 Pa

1Lyr22
Using this expression in Eq. (10.42) for sall, we write

sall 5
scr

1.67
5

1.037 3 1012 Pa
1Lyr22

Equating this expression to the required value of sall, we write

1.037 3 1012 Pa
1Lyr22 5 1.41 3 106 Pa   Lyr 5 158.8

The slenderness ratio from Eq. (10.41) is

L
r

5 4.71 B
200 3 109

250 3 106 5 133.2

Our assumption that Lyr is greater than this slenderness ratio was correct. 
Choosing the smaller of the two radii of gyration, we have

L
ry

5
L

14.6 3 1023 m
5 158.8   L 5 2.32 m

B

L

A

P � 60 kN

Fig. 10.28

Aluminum.  Many aluminum alloys are available for use in struc-
tural and machine construction. For most columns the specifications 
of the Aluminum Association† provide two formulas for the allow-
able stress in columns under centric loading. The variation of sall 
with Lyr defined by these formulas is shown in Fig. 10.29. We note 
that for short columns a linear relation between sall with Lyr is used 
and for long columns an Euler-type formula is used. Specific formu-
las for use in the design of buildings and similar structures are given 
below in both SI and U.S. customary units for two commonly used 
alloys.

†Specifications for Aluminum Structures, Aluminum Association, Inc., Washington, D.C., 
2010.

L
r

L/r

all � C1 � C2�

all�

C3

(L/r)2all ��

Fig. 10.29 Aluminum column 
design.
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665 Alloy 6061-T6:

 Lyr , 66:    sall 5 320.3 2 0.1271Lyr2 4  ksi (10.43)
  5 3140 2 0.8741Lyr2 4  MPa (10.439)

 
Lyr $ 66:

    
sall 5

51,400 ksi
1Lyr22 5

354 3 103 MPa
1Lyr22  

(10.44)

 Alloy 2014-T6:

 Lyr , 55:    sall 5 330.9 2 0.2291Lyr2 4  ksi (10.45)
 5 3213 2 1.5771Lyr2 4  MPa (10.459)

   Lyr $ 55:    sall 5
55,400 ksi
1Lyr22 5

382 3 103 MPa
1Lyr22  

(10.46)

Wood.  For the design of wood columns the specifications of the 
American Forest & Paper Association† provides a single equation 
that can be used to obtain the allowable stress for short, intermedi-
ate, and long columns under centric loading. For a column with a 
rectangular cross section of sides b and d, where d , b, the variation 
of sall with Lyd is shown in Fig. 10.30.

10.6 Design of Columns under a Centric Load

†National Design Specification for Wood Construction, American Forest & Paper Associa-
tion, American Wood Council, Washington, D.C., 2005.
‡In the National Design Specification for Wood Construction, the symbol F is used for 
stresses.

L/d
500

all�

C�

Fig. 10.30 Wood column design.

 For solid columns made from a single piece of wood or made 
by gluing laminations together, the allowable stress sall is

 sall 5 sC CP (10.47)

where sC is the adjusted allowable stress for compression parallel to 
the grain.‡ Adjustments used to obtain sC are included in the speci-
fications to account for different variations, such as in the load dura-
tion. The column stability factor CP accounts for the column length 
and is defined by the following equation:

CP 5
1 1 1sCE ysC 2

2c
2 B c

1 1 1sCE ysC 2
2c

d 2 2
sCE ysC

c  
(10.48)
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666 Columns The parameter c accounts for the type of column, and it is equal to 
0.8 for sawn lumber columns and 0.90 for glued laminated wood 
columns. The value of sCE is defined as

 
sCE 5

0.822E

1Lyd 22  
(10.49)

Where E is an adjusted modulus of elasticity for column buckling. 
Columns in which Lyd exceeds 50 are not permitted by the National 
Design Specification for Wood Construction.

EXAMPLE 10.03 Knowing that column AB (Fig. 10.31) has an effective length of 14 ft, and 
that it must safely carry a 32-kip load, design the column using a square 
glued laminated cross section. The adjusted modulus of elasticity for the 
wood is E 5 800 3 103 psi, and the adjusted allowable stress for compres-
sion parallel to the grain is sC 5 1060 psi.

 CP 5
1 1 1sCE  ysC 2

2c
2 B c

1 1 1sCE  ysC 2
2c

d 2 2
sCE  ysC

c

 5
1 1 21.98 3 1023 d 2

2 10.90 2 2 B c 1 1 21.98 3 1023 d 
2

2 10.90 2 d 2 2
21.98 3 1023 d 

2

0.90

A

B

d
d

14 ft

P � 32 kips

Fig. 10.31

We note that c 5 0.90 for glued laminated wood columns. We must 
compute the value of sCE. Using Eq. (10.49) we write

sCE 5
0.822E

1Lyd22 5
0.8221800 3 103 psi2

1168 in./d22 5 23.299d2 psi

We then use Eq. (10.48) to express the column stability factor in terms 
of d, with (sCEysC) 5 (23.299d 2y1.060 3 103) 5 21.98 3 1023 d 2,
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*Structural Steel—Load and Resistance Factor Design.  As 
we saw in Sec. 1.13, an alternative method of design is based on the 
determination of the load at which the structure ceases to be useful. 
Design is based on the inequality given by Eq. (1.26):

 gDPD 1 gLPL # fPU (1.26)

The approach used for the design of steel columns under a centric 
load using Load and Resistance Factor Design with the AISC Speci-
fication is similar to that for Allowable Stress Design. Using the criti-
cal stress scr , the ultimate load PU is defined as

 PU 5 scr A (10.50)

The determination of the critical stress scr follows the same approach 
used for Allowable Stress Design. This requires using Eq. (10.41) to 
determine the slenderness at the junction between Eqs. (10.38) and 
Eq. (10.40). If the specified slenderness Lyr is smaller than the value 
from Eq. (10.41), Eq. (10.38) governs, and if it is larger, Eq. (10.40) 
governs. The equations can be used with SI or U.S. customary 
units.
 We observe that, by using Eq. (10.50) with Eq. (1.26), we can 
determine if the design is acceptable. The procedure is to first 
determine the slenderness ratio from Eq. (10.41). For values of Lyr 
smaller than this slenderness, the ultimate load PU for use with 
Eq. (1.26) is obtained from Eq. (10.50), using scr determined from 
Eq. (10.38). For values of Lyr larger than this slenderness, the ulti-
mate load PU is obtained by using Eq. (10.50) with Eq. (10.40). The 
Load and Resistance Factor Design Specification of the American 
Institute of Steel Construction specifies that the resistance factor f 
is 0.90.

Note: The design formulas presented throughout Sec. 10.6 are 
intended to provide examples of different design approaches. 
These formulas do not provide all the requirements that are 
needed for many designs, and the student should refer to the 
appropriate design specifications before attempting actual 
designs.

Since the column must carry 32 kips, which is equal to sC d 2, we use 
Eq. (10.47) to write

sall 5
32 kips

d2 5 sCCP 5 1.060CP

Solving this equation for CP and substituting the value obtained into the 
previous equation, we write

30.19
d2 5

1 1 21.98 3 1023 d2

2 10.90 2 2 B c 1 1 21.98 3 1023 d 
2

2 10.90 2 d 2 2
21.98 3 1023 d 

2

0.90

Solving for d by trial and error yields d 5 6.45 in.

667
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SAMPLE PROBLEM 10.3

Column AB consists of a W10 3 39 rolled-steel shape made of a grade of 
steel for which sY 5 36 ksi and E 5 29 3 106 psi. Determine the allowable 
centric load P (a) if the effective length of the column is 24 ft in all direc-
tions, (b) if bracing is provided to prevent the movement of the midpoint 
C in the xz plane. (Assume that the movement of point C in the yz plane 
is not affected by the bracing.)

SOLUTION

We first compute the value of the slenderness ratio from Eq. 10.41 corre-
sponding to the given yield strength sY 5 36 ksi.

L
r

5 4.71 B 29 3 106

36 3 103 5 133.7

 a. Effective Length 5 24 ft. Since ry , rx, buckling will take place in 
the xz plane. For L 5 24 ft and r 5 ry 5 1.98 in., the slenderness ratio is

L
ry

5
124 3 12 2 in.

1.98 in.
5

288 in.
1.98 in.

5 145.5

Since Lyr . 133.7, we use Eq. (10.39) in Eq. (10.40) to determine scr

scr 5 0.877 se 5 0.877 
p2E

1Lyr22 5 0.877 
p2129 3 103 ksi2
1145.5 22 5 11.86 ksi

The allowable stress, determined using Eq. (10.42), and Pall are

 sall 5  
scr

1.67
5

11.86 ksi
1.67

5 7.10 ksi

  Pall 5 sall A 5 17.10 ksi2 111.5 in22 5 81.7 kips >
 b. Bracing at Midpoint C. Since bracing prevents movement of point 
C in the xz plane but not in the yz plane, we must compute the slenderness 
ratio correspoinding to buckling in each plane and determine which is larger.

xz Plane:  Effective length 5 12 ft 5 144 in., r 5 ry 5 1.98 in.
Lyr 5 (144 in.)y(1.98 in.) 5 72.7

yz Plane:  Effective length 5 24 ft 5 288 in., r 5 rx 5 4.27 in.
Lyr 5 (288 in.)y(4.27 in.) 5 67.4

Since the larger slenderness ratio corresponds to a smaller allowable load, 
we choose Lyr 5 72.7. Since this is smaller than Lyr 5 133.7, we use Eqs. 
(10.39) and (10.38) to determine scr

 se 5
p2E

1Lyr22 5
p2129 3 103 ksi2

172.7 22 5 54.1 ksi

 scr 5 30.6581sYyse2 4  FY 5 30.658136 ksiy54.1 ksi2 4  36 ksi 5 27.3 ksi

We now calculate the allowable stress using Eq. (10.42) and the allowable 
load.

 
 sall 5

scr

1.67
5

27.3 ksi
1.67

5 16.32 ksi

 Pall 5 sall A 5 116.32 ksi2 111.5 in22 Pall 5 187.7 ksi  >

y

x

W10 � 39
A � 11.5 in2

rx � 4.27 in.
ry � 1.98 in.

y

B

24 ft

z

x

A

y

B

24 ft

z

x

A

y

B

12 ft

12 ft

z

x

A

C

Buckling in xz plane Buckling in yz plane

y

A

B

24 ft

z

P

x

(a)

y

A

C

B

12 ft

12 ft

z

x

(b)

P
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669

SAMPLE PROBLEM 10.4

Using the aluminum alloy 2014-T6, determine the smallest diameter rod 
that can be used to support the centric load P 5 60 kN if (a) L 5 750 mm, 
(b) L 5 300 mm.

SOLUTION

For the cross section of a solid circular rod, we have

I 5
p

4
 c4    A 5 pc2    r 5 B I

A
5 B

pc4y4

pc2 5
c
2

 a. Length of 750 mm. Since the diameter of the rod is not known, a 
value of Lyr must be assumed; we assume that Lyr . 55 and use Eq. (10.46). 
For the centric load P, we have s 5 P/A and write

 
P
A

5 sall 5
382 3 103 MPa

1Lyr22
 
60 3 103 N
pc2 5

382 3 109 Pa

a0.750 m
cy2

b2

 c4 5 112.5 3 1029 m4    c 5 18.31 mm

For c 5 18.44 mm, the slenderness ratio is

L
r

5
L

cy2
5

750 mm
118.31 mm2y2

5 81.9 . 55

Our assumption is correct, and for L 5 750 mm, the required diameter is

 d 5 2c 5 2118.31 mm2 d 5 36.6 mm  >

 b. Length of 300 mm. We again assume that Lyr . 55. Using 
Eq. (10.46), and following the procedure used in part a, we find that c 5 
11.58 mm and Lyr 5 51.8. Since Lyr is less than 55, our assumption is wrong; we 
now assume that Lyr , 55 and use Eq. (10.459) for the design of this rod.

 
P
A

5 sall 5 c 213 2 1.577 aL
r
b d  MPa

 
60 3 103 N
pc2 5 c 213 2 1.577 a0.3 m

cy2
b d  106 Pa

 c 5 11.95 mm

For c 5 11.95 mm, the slenderness ratio is

L
r

5
L

cy2
5

300 mm
111.95 mm2y2

5 50.2

Our second assumption that Lyr , 55 is correct. For L 5 300 mm, the 
required diameter is

 d 5 2c 5 2111.95 mm2 d 5 23.9 mm  >

d

c

A

d

B

L

P � 60 kN
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PROBLEMS

670

 10.57 Using allowable stress design, determine the allowable centric load 
for a column of 6-m effective length that is made from the follow-
ing rolled-steel shape: (a) W200 3 35.9, (b) W200 3 86. Use 
sY 5 250 MPa and E 5 200 GPa.

 10.58 A W8 3 31 rolled-steel shape is used for a column of 21-ft effec-
tive length. Using allowable stress design, determine the allowable 
centric load if the yield strength of the grade of steel used is 
(a) sY 5 36 ksi, (b) sY 5 50 ksi. Use E 5 29 3 106 psi.

 10.59 A steel pipe having the cross section shown is used as a column. 
Using the allowable stress design determine the allowable centric 
load if the effective length of the column is (a) 18 ft, 
(b) 26 ft. Use sY 5 36 ksi and E 5 29 3 106 psi.

 10.60 A column is made from half of a W360 3 216 rolled-steel shape, 
with the geometric properties as shown. Using allowable stress 
design, determine the allowable centric load if the effective length 
of the column is (a) 4.0 m, (b) 6.5 m. Use sY 5 345 MPa and 
E 5 200 GPa.

t � 0.28 in.

6.0 in.

Fig. P10.59

y

C x

A � 13.75 � 103 mm2

Ix � 26.0 � 106 mm4

Iy � 141.0 � 106 mm4

Fig. P10.60

10.61 A compression member has the cross section shown and an effec-
tive length of 5 ft. Knowing that the aluminum alloy used is 2014-
T6, determine the allowable centric load.

4.0 in.

4.0 in.

t � 0.375 in.

Fig. P10.61

A

B

50 mm

20 mm

L

P

Fig. P10.62

 10.62 Using the aluminum alloy 2014-T6, determine the largest allowable 
length of the aluminum bar AB for a centric load P of magnitude 
(a) 150 kN, (b) 90 kN, (c) 25 kN.
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671Problems 10.63 A sawn lumber column with a 7.5 3 5.5-in. cross section has an 
18-ft effective length. Knowing that for the grade of wood used the 
adjusted allowable stress for compression parallel to the grain is 
sC 5 1200 psi and that the adjusted modulus E 5 470 3 103 psi, 
determine the maximum allowable centric load for the column.

 10.64 A column having a 3.5-m effective length is made of sawn lumber 
with a 114 3 140-mm cross section. Knowing that for the grade of 
wood used the adjusted allowable stress for compression parallel to 
the grain is sC 5 7.6 MPa and the adjusted modulus E 5 2.8 GPa, 
determine the maximum allowable centric load for the column.

 10.65 A compression member of 8.2-ft effective length is obtained by 
bolting together two L5 3 3 3 1

2-in. steel angles as shown. Using 
allowable stress design, determine the allowable centric load for 
the column. Use sY 5 36 ksi and E 5 29 3 106 psi.

 10.66 and 10.67 A compression member of 9-m effective length is 
obtained by welding two 10-mm-thick steel plates to a W250 3 80 
rolled-steel shape as shown. Knowing that sY 5 345 MPa and 
E 5 200 GPa and using allowable stress design, determine the 
allowable centric load for the compression member.

Fig. P10.65

Fig. P10.67Fig. P10.66

 10.68 A column of 18-ft effective length is obtained by connecting four 
L3 3 3 3 3

8-in. steel angles with lacing bars as shown. Using allow-
able stress design, determine the allowable centric load for the 
column. Use sY 5 36 ksi and E 5 29 3 106 psi.

 10.69 An aluminum structural tube is reinforced by bolting two plates to 
it as shown for use as a column of 1.7-m effective length. Knowing 
that all material is aluminum alloy 2014-T6, determine the maxi-
mum allowable centric load.

8 in.

8 in.

Fig. P10.68

54 mm

8 mm

6 mm 6 mm

34 mm
8 mm 8 mm

8 mm

Fig. P10.69
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672 Columns  10.70 A rectangular column with a 4.4-m effective length is made of 
glued laminated wood. Knowing that for the grade of wood used 
the adjusted allowable stress for compression parallel to the grain 
is sC 5 8.3 MPa and the adjusted modulus E 5 4.6 GPa, deter-
mine the maximum allowable centric load for the column.

 10.71 For a rod made of the aluminum alloy 2014-T6, select the smallest 
square cross section that may be used if the rod is to carry a 55-kip 
centric load.

216 mm

140 mm

Fig. P10.70

 10.72 An aluminum tube of 90-mm outer diameter is to carry a centric 
load of 120 kN. Knowing that the stock of tubes available for use 
are made of alloy 2014-T6 and with wall thicknesses in increments 
of 3 mm from 6 mm to 15 mm, determine the lightest tube that 
can be used.

A

B

20 in.
dd

P� 55 kips

Fig. P10.71

A

B

2.25 m 90-mm outside
diameter

120 kN

Fig. P10.72

 10.73 A 72-kN centric load must be supported by an aluminum column 
as shown. Using the aluminum alloy 6061-T6, determine the mini-
mum dimension b that can be used.

A

B

2b b

0.45 m

P

Fig. P10.73
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673Problems 10.74 The glued laminated column shown is free at its top A and fixed 
at its base B. Using wood that has an adjusted allowable stress for 
compression parallel to the grain sC 5 9.2 MPa and an adjusted 
modulus of elasticity E 5 5.7 GPa, determine the smallest cross 
section that can support a centric load of 62 kN.

 10.75 An 18-kip centric load is applied to a rectangular sawn lumber col-
umn of 22-ft effective length. Using sawn lumber for which the 
adjusted allowable stress for compression parallel to the grain is sC 5 
1050 psi and the adjusted modulus is E 5 440 3 103 psi, determine 
the smallest cross section that can be used. Use b 5 2d.

2 m

A

B

d
d

P

Fig. P10.74

b d

P

Fig. P10.75

 10.76 A glue laminated column of 3-m effective length is to be made 
from boards of 24 3 100-mm cross section. Knowing that for the 
grade of wood used, E 5 11 GPa and the adjusted allowable stress 
for compression parallel to the grain is sC 5 9 MPa, determine 
the number of boards that must be used to support the centric 
load shown when (a) P 5 34 kN, (b) P 5 17 kN.

 10.77 A column of 4.5-m effective length must carry a centric load of 
900 kN. Knowing that sY 5 345 MPa and E 5 200 GPa, use 
allowable stress design to select the wide-flange shape of 250-mm 
nominal depth that should be used.

 10.78 A column of 4.6-m effective length must carry a centric load of 
525 kN. Knowing that sY 5 345 MPa and E 5 200 GPa, use 
allowable stress design to select the wide-flange shape of 200-mm 
nominal depth that should be used.

 10.79 A column of 22.5-ft effective length must carry a centric load of 
288 kips. Using allowable stress design, select the wide-flange 
shape of 14-in. nominal depth that should be used. Use sY 5 50 ksi 
and E 5 29 3 106 psi.

 10.80 A square steel tube having the cross section shown is used as a 
column of 26-ft effective length to carry a centric load of 65 kips. 
Knowing that the tubes available for use are made with wall thick-
nesses ranging from 1

4 in. to 3
4 in. in increments of 1

16 in., use allow-
able stress design to determine the lightest tube that can be used. 
Use sY 5 36 ksi and E 5 29 3 106 psi.

 10.81 Solve Prob. 10.80, assuming that the effective length of the column 
is decreased to 20 ft.

A

B

100 mm

24 mm
24 mm
24 mm

P

Fig. P10.76

6 in.

6 in.

Fig. P10.80
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674 Columns  10.82 A centric load P must be supported by the steel bar AB. Using allow-
able stress design, determine the smallest dimension d of the cross 
section that can be used when (a) P 5 108 kN, (b) P 5 166 kN. Use 
sY 5 250 MPa and E 5 200 GPa.

 10.83 Two 31
2 3 21

2-in. angles are bolted together as shown for use as a 
column of 6-ft effective length to carry a centric load of 54 kips. 
Knowing that the angles available have thicknesses of 1

4, 
3
8, and 1

2 in., 
use allowable stress design to determine the lightest angles that can 
be used. Use sY 5 36 ksi and E 5 29 3 106 psi.

A

B

3 d 1.4 md

P

Fig. P10.82

2 in.1
2 2 in.1

2

3 in.1
2

Fig. P10.83

 10.84 Two 89 3 64-mm angles are bolted together as shown for use as a 
column of 2.4-m effective length to carry a centric load of 180 kN. 
Knowing that the angles available have thicknesses of 6.4 mm, 9.5 mm, 
and 12.7 mm, use allowable stress design to determine the lightest 
angles that can be used. Use sY 5 250 MPa and E 5 200 GPa.

  *10.85 A column with a 5.8-m effective length supports a centric load, 
with ratio of dead to live load equal to 1.35. The dead load factor 
is gD 5 1.2, the live load factor gL 5 1.6, and the resistance factor 
f 5 0.90. Use load and resistance factor design to determine the 
allowable centric dead and live loads if the column is made of the 
following rolled-steel shape: (a) W250 3 67, (b) W360 3 101. Use 
sY 5 345 MPa and E 5 200 GPa.

  *10.86 A rectangular steel tube having the cross section shown is used as 
a column of 14.5-ft effective length. Knowing that sY 5 36 ksi and 
E 5 29 3 106 psi., use load and resistance factor design to deter-
mine the largest centric live load that can be applied if the centric 
dead load is 54 kips. Use a dead load factor gD 5 1.2, a live load 
factor gL 5 1.6 and the resistance factor f 5 0.90.

  *10.87 A steel column of 5.5-m effective length must carry a centric dead 
load of 310 kN and a centric live load of 375 kN. Knowing that 
sY 5 250 MPa and E 5 200 GPa, use load and resistance factor 
design to select the wide-flange shape of 310-mm nominal depth 
that should be used. The dead load factor gD 5 1.2, the live load 
factor gL 5 1.6, and the resistance factor f 5 0.90.

  *10.88 The steel tube having the cross section shown is used as a column of 
15-ft effective length to carry a centric dead load of 51 kips and a 
centric live load of 58 kips. Knowing that the tubes available for use 
are made with wall thicknesses in increments of 1

16 in. from 3
16 in. to 

3
8 in., use load and resistance factor design to determine the lightest 
tube that can be used. Use sY 5 36 ksi and E 5 29 3 106 psi. The 
dead load factor gD 5 1.2, the live load factor gL 5 1.6, and the 
resistance factor f 5 0.90.

89 mm 89 mm

64 mm

Fig. P10.84

7 in.

5 in.

in.t � 5
16

Fig. P10.86

6 in.

6 in.

Fig. P10.88
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67510.7  DESIGN OF COLUMNS UNDER AN 
ECCENTRIC LOAD

In this section, the design of columns subjected to an eccentric load 
will be considered. You will see how the empirical formulas devel-
oped in the preceding section for columns under a centric load can 
be modified and used when the load P applied to the column has 
an eccentricity e which is known.
 We first recall from Sec. 4.12 that an eccentric axial load P 
applied in a plane of symmetry of the column can be replaced by an 
equivalent system consisting of a centric load P and a couple M of 
moment M 5 Pe, where e is the distance from the line of action of 
the load to the longitudinal axis of the column (Fig. 10.32). The 
normal stresses exerted on a transverse section of the column can 
then be obtained by superposing the stresses due, respectively, to 
the centric load P and to the couple M (Fig. 10.33), provided that 

10.7 Design of Columns under an 
Eccentric Load

P
e

C
M � Pe

C

P

Fig. 10.32 Column with eccentric load.

centric �
P
A�

bending�

Mc
I

Fig. 10.33 Stresses on column 
transverse section.

the section considered is not too close to either end of the column, 
and as long as the stresses involved do not exceed the proportional 
limit of the material. The normal stresses due to the eccentric load 
P can thus be expressed as

 s 5 scentric 1 sbending (10.51)

Recalling the results obtained in Sec. 4.12, we find that the maxi-
mum compressive stress in the column is

 
smax 5

P
A

1
Mc
I

 (10.52)

 In a properly designed column, the maximum stress defined by 
Eq. (10.52) should not exceed the allowable stress for the column. 
Two alternative approaches can be used to satisfy this requirement, 
namely, the allowable-stress method and the interaction method.

a. Allowable-Stress Method. This method is based on the 
assumption that the allowable stress for an eccentrically loaded col-
umn is the same as if the column were centrically loaded. We must 
have, therefore, smax # sall, where sall is the allowable stress under 
a centric load, or substituting for smax from Eq. (10.52)

 
P
A

1
Mc
I

 # sall (10.53)
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676 Columns The allowable stress is obtained from the formulas of Sec. 10.6 
which, for a given material, express sall as a function of the slender-
ness ratio of the column. The major engineering codes require that 
the largest value of the slenderness ratio of the column be used to 
determine the allowable stress, whether or not this value corresponds 
to the actual plane of bending. This requirement sometimes results 
in an overly conservative design.

EXAMPLE 10.04 A column with a 2-in.-square cross section and 28-in. effective length is 
made of the aluminum alloy 2014-T6. Using the allowable-stress method, 
determine the maximum load P that can be safely supported with an 
eccentricity of 0.8 in.

We first compute the radius of gyration r using the given data

A 5 12 in.22 5 4 in2  I 5 1
12 12 in.24 5 1.333 in4

r 5 B
I
A

5 B
1.333 in4

4 in2 5 0.5774 in.

We next compute Lyr 5 (28 in.)y(0.5774 in.) 5 48.50.
Since Lyr , 55, we use Eq. (10.48) to determine the allowable 

stress for the aluminum column subjected to a centric load. We have

sall 5 330.9 2 0.229148.502 4 5 19.79 ksi

We now use Eq. (10.53) with M 5 Pe and c 5 1
2 12 in.2 5  1 in. to 

determine the allowable load:

P

4 in2 1
P10.8 in.2 11 in.2

1.333 in4 # 19.79 ksi

P # 23.3 kips

The maximum load that can be safely applied is P 5 23.3 kips.

b. Interaction Method. We recall that the allowable stress for a 
column subjected to a centric load (Fig. 10.34a) is generally smaller 
than the allowable stress for a column in pure bending (Fig. 10.34b), 
since the former takes into account the possibility of buckling. 
Therefore, when we use the allowable-stress method to design an 
eccentrically loaded column and write that the sum of the stresses 
due to the centric load P and the bending couple M (Fig. 10.34c) 
must not exceed the allowable stress for a centrically loaded column, 
the resulting design is generally overly conservative. An improved 
method of design can be developed by rewriting Eq. 10.53 in the 
form

 
PyA
sall

1
McyI
sall

# 1 (10.54)

and substituting for sall in the first and second terms the values 
of the allowable stress which correspond, respectively, to the 

(a) (c)(b)

M'

P'P'

M'

PP

M M

Fig. 10.34 Column load possibilities.
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677 centric loading of Fig. 10.34a and to the pure bending of 
Fig. 10.34b. We have

 
PyA

1sall2centric
1

McyI
1sall2bending

# 1 (10.55)

The type of formula obtained is known as an interaction formula.
 We note that, when M 5 0, the use of this formula results in 
the design of a centrically loaded column by the method of Sec. 10.6. 
On the other hand, when P 5 0, the use of the formula results in 
the design of a beam in pure bending by the method of Chap. 4. 
When P and M are both different from zero, the interaction formula 
results in a design that takes into account the capacity of the member 
to resist bending as well as axial loading. In all cases, (sall)centric will 
be determined by using the largest slenderness ratio of the column, 
regardless of the plane in which bending takes place.†
 When the eccentric load P is not applied in a plane of sym-
metry of the column, it causes bending about both of the principal 
axes of the cross section. We recall from Sec. 4.14 that the load P 
can then be replaced by a centric load P and two couples repre-
sented by the couple vectors Mx and Mz shown in Fig. 10.35. The 
interaction formula to be used in this case is

 
PyA

1sall2centric
1

ƒ Mx ƒ zmaxyIx

1sall2bending
1

ƒ Mz ƒ xmaxyIz

1sall2bending
# 1 (10.56)

10.7 Design of Columns under an 
Eccentric Load

†This procedure is required by all major codes for the design of steel, aluminum, and 
timber compression members. In addition, many specifications call for the use of an 
additional factor in the second term of Eq. (10.55); this factor takes into account the 
additional stresses resulting from the deflection of the column due to bending.

EXAMPLE 10.05Use the interaction method to determine the maximum load P that can 
be safely supported by the column of Example 10.04 with an eccentricity 
of 0.8 in. The allowable stress in bending is 24 ksi.

The value of (sall)centric has already been determined in Example 
10.04. We have

1sall2centric 5 19.79 ksi  1sall2bending 5 24 ksi

Substituting these values into Eq. (10.55), we write

PyA
19.79 ksi

1
McyI
24 ksi

# 1.0

Using the numerical data from Example 10.04, we write

Py4
19.79 ksi

1
P10.82 11.02y1.333

24 ksi
# 1.0

P # 26.6 kips

The maximum load that can be safely applied is thus P 5 26.6 kips.

C

y

z

Mz

Mx

C
x

P

P

Fig. 10.35 Column with eccentric load.
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678

SAMPLE PROBLEM 10.5

Using the allowable-stress method, determine the largest load P that can be 
safely carried by a W310 3 74 steel column of 4.5-m effective length. Use 
E 5 200 GPa and sY 5 250 MPa.

SOLUTION

The largest slenderness ratio of the column is Lyry 5 (4.5 m)y(0.0498 m) 5 
90.4. Using Eq. (10.41) with E 5 200 GPa and sY 5 250 MPa, we find that 
the slenderness ratio at the junction between the two equations for scr is 
Lyr 5 133.2. Thus, we use Eqs. (10.38) and (10.39) and find that scr 5 
162.2 MPa. Using Eq. (10.42), the allowable stress is

1sall2centric 5 162.2y1.67 5 97.1 MPa
For the given column and loading, we have

P
A

5
P

9.42 3 1023 m2  
Mc
I

5
M
S

5
P10.200 m2

1.050 3 1023 m3

Substituting into Eq. (10.58), we write
P
A

1
Mc
I

# sall

P

9.42 3 1023 m2 1
P10.200 m2

1.050 3 1023 m3 # 97.1 MPa
  

P # 327 kN

The largest allowable load P is thus P 5 327 kNw ◀

200 mm

C

P

y

x

C

W310 � 74
A � 9420 mm2

rx � 132 mm

Sx � 1050 � 103 mm3
ry � 49.8 mm

200 mm

C C

M � P(0.200 m)

PP

SAMPLE PROBLEM 10.6

Using the interaction method, solve Sample Prob. 10.5. Assume (sall)bending 5 
150 MPa.

SOLUTION

Using Eq. (10.60), we write
PyA

1sall2centric
1

McyI
1sall2bending

# 1

Substituting the given allowable bending stress and the allowable centric 
stress found in Sample Prob. 10.5, as well as the other given data, we have

Py19.42 3 1023 m22
97.1 3 106 Pa

1
P10.200 m2y11.050 3 1023 m32

150 3 106 Pa
# 1

P # 423 kN
The largest allowable load P is thus P = 423 kNw ◀
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679

SAMPLE PROBLEM 10.7

A steel column having an effective length of 16 ft is loaded eccentrically as 
shown. Using the interaction method, select the wide-flange shape of 8-in. 
nominal depth that should be used. Assume E 5 29 3 106 psi and sY 5 36 ksi, 
and use an allowable stress in bending of 22 ksi.

SOLUTION

So that we can select a trial section, we use the allowable-stress method with 
sall 5 22 ksi and write

 
sall 5

P
A

1
Mc
Ix

5
P
A

1
Mc

Ar2
x

 (1)

From Appendix C we observe for shapes of 8-in. nominal depth that 
c < 4 in. and rx < 3.5 in. Substituting into Eq. (1), we have

22 ksi 5
85 kips

A
1
1425 kip ? in.2 14 in.2

A13.5 in.22   
A < 10.2 in2

We select for a first trial shape: W8 3 35.
 Trial 1: W8 3 35.  The allowable stresses are
Allowable Bending Stress:  (see data)  1sall2bending 5 22 ksi
Allowable Concentric Stress:  The largest slenderness ratio of the column 
is Lyry 5 (192 in.)y(2.03 in.) 5 94.6. Using Eq. (10.41) with E 5 29 3 106 psi 
and sY 5 36 ksi, we find that the slenderness ratio at the junction between 
the two equations for scr is Lyr 5 133.7. Thus, we use Eqs. (10.38) and (10.39) 
and find that scr 5 22.5 ksi. Using Eq. (10.42), the allowable stress is

1sall2centric 5 22.5y1.67 5 13.46 ksi
For the W8 3 35 trial shape, we have

P
A

5
85 kips

10.3 in2 5 8.25 ksi
  

Mc
I

5
M
Sx

5
425 kip ? in.

31.2 in3 5 13.62 ksi

With this data we find that the left-hand member of Eq. (10.60) is
PyA

1sall2centric
1

McyI
1sall2bending

5
8.25 ksi
13.46 ksi

1
13.62 ksi

22 ksi
5 1.232

Since 1.232 . 1.000, the requirement expressed by the interaction formula 
is not satisfied; we must select a larger trial shape.
 Trial 2: W8 3 48.  Following the procedure used in trial 1, we write

L
ry

5
192 in.
2.08 in.

5 92.3
  

1sall2centric 5 13.76 ksi

P
A

5
85 kips

14.1 in2 5 6.03 ksi
  

Mc
I

5
M
Sx

5
425 kip ? in.

43.2 in3 5 9.84 ksi

Substituting into Eq. (10.60) gives
PyA

1sall2centric
1

McyI
1sall2bending

5
6.03 ksi
13.76 ksi

1
9.82 ksi
22 ksi

5 0.885 , 1.000

The W8 3 48 shape is satisfactory but may be unnecessarily large.
 Trial 3: W8 3 40.  Following again the same procedure, we find that 
the interaction formula is not satisfied.
 Selection of Shape.  The shape to be used is W8 3 48 ◀

C

5 in.

P � 85 kips

5 in.

P � 85 kips

C

z

x

y

P � 85 kips

M � (85 kips)(5 in.)
� 425 kip · in.

C

z

x

y

y

xC

W8 � 35

A � 10.3 in2

rx � 3.51 in.
ry � 2.03 in.
Sx � 31.2 in3

L � 16 ft � 192 in.

y

xC

W8 � 48

A � 14.1 in2

rx � 3.61 in.
ry � 2.08 in.
Sx � 43.2 in3

L � 16 ft � 192 in.

y

xC

W8 � 40

A � 11.7 in2

rx � 3.53 in.
ry � 2.04 in.
Sx � 35.5 in3

L � 16 ft � 192 in.
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PROBLEMS

680

 10.89 An eccentric load is applied at a point 22 mm from the geometric 
axis of a 60-mm-diameter rod made of a steel for which sY 5
250 MPa and E 5 200 GPa. Using the allowable-stress method, 
determine the allowable load P.

10.90 Solve Prob. 10.89, assuming that the load is applied at a point 40 mm 
from the geometric axis and that the effective length is 0.9 m.

 10.91 A column of 5.5-m effective length is made of the aluminum alloy 
2014-T6, for which the allowable stress in bending is 220 MPa. 
Using the interaction method, determine the allowable load P,
knowing that the eccentricity is (a) e 5 0, (b) e 5 40 mm.

22 mm

60 mm diameter
1.2 m

A

B

P

Fig. P10.89
e

152 mm

152 mm

15 mm

5.5 m

A

B

P

Fig. P10.91

10.92 Solve Prob. 10.91, assuming that the effective length of the column 
is 3.0 m.

 10.93 A sawn-lumber column of 5.0 3 7.5-in. cross section has an effec-
tive length of 8.5 ft. The grade of wood used has an adjusted allow-
able stress for compression parallel to the grain sC 5 1180 psi and 
an adjusted modulus E 5 440 3 103 psi. Using the allowable-stress 
method, determine the largest eccentric load P that can be applied 
when (a) e 5 0.5 in., (b) e 5 1.0 in.

 10.94 Solve Prob. 10.93 using the interaction method and an allowable 
stress in bending of 1300 psi.

 10.95 A column of 14-ft effective length consists of a section of steel 
tubing having the cross section shown. Using the allowable-stress 
method, determine the maximum allowable eccentricity e if 
(a) P 5 55 kips, (b) P 5 35 kips. Use sY 5 36 ksi and E 5 
29 3 106 psi.

 10.96 Solve Prob. 10.95, assuming that the effective length of the column 
is increased to 18 ft and that (a) P 5 28 kips, (b) P 5 18 kips.

e
x

y

z

C
D

7.5 in.

5.0 in.

P

Fig. P10.93

e

4 in.

4 in.

3
8 in.

14 ft

A

B

P

Fig. P10.95

bee80288_ch10_630-691.indd Page 680  11/1/10  2:39:01 PM user-f499bee80288_ch10_630-691.indd Page 680  11/1/10  2:39:01 PM user-f499/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch10/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch



681Problems 10.97 The compression member AB is made of a steel for which sY 5 
250 MPa and E 5 200 GPa. It is free at its top A and fixed at its 
base B. Using the allowable-stress method, determine the largest 
allowable eccentricity ex, knowing that (a) ey 5 0, (b) ey 5 8 mm.

 10.98 The compression member AB is made of a steel for which sY 5 
250 MPa and E 5 200 GPa. It is free at its top A and fixed at its 
base B. Using the interaction method with an allowable bending 
stress equal to 120 MPa and knowing that the eccentricities ex and 
ey are equal, determine their largest allowable common value.

 10.99 An eccentric load P 5 10 kips is applied at a point 0.8 in. from 
the geometric axis of a 2-in.-diameter rod made of the aluminum 
alloy 6061-T6. Using the interaction method and an allowable 
stress in bending of 21 ksi, determine the largest allowable effec-
tive length L that can be used.

0.55 m
50 mm

75 mm

A
C

z

x

y

ex

ey
D

B

P � 170 kN

Fig. P10.97 and P10.98

P � 10 kips
0.8 in.

2 in. diameter
L

A

B

Fig. P10.99

  10.100 Solve Prob. 10.99, assuming that the aluminum alloy used is 2014-
T6 and that the allowable stress in bending is 24 ksi.

 10.101 A rectangular column is made of a grade of sawn wood that has 
an adjusted allowable stress for compression parallel to the grain 
sC 5 8.3 MPa and an adjusted modulus of elasticity E 5 11.1 GPa. 
Using the allowable-stress method, determine the largest allowable 
effective length L that can be used.

 10.102 Solve Prob. 10.101, assuming that P 5 105 kN.

 10.103 An 11-kip vertical load P is applied at the midpoint of one edge 
of the square cross section of the steel compression member AB, 
which is free at its top A and fixed at its base B. Knowing that for 
the grade of steel used sY 5 36 ksi and E 5 29 3 106 psi. and using 
the allowable-stress method, determine the smallest allowable 
dimension d.

 10.104 Solve Prob. 10.103, assuming that the vertical load P is applied at 
the corner of the cross section.

P � 85 kN

C
D

z

y

240 mm

180 mm

x

25 mm

Fig. P10.101

4.5 ft

d d

P � 11 kips

A
D

B

Fig. P10.103
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682 Columns  10.105 A steel tube of 80-mm outer diameter is to carry a 93-kN load P 
with an eccentricity of 20 mm. The tubes available for use are made 
with wall thicknesses in increments of 3 mm from 6 mm to 15 mm. 
Using the allowable-stress method, determine the lightest tube that 
can be used. Assume E 5 200 GPa and sY 5 250 MPa.

 10.106 Solve Prob. 10.105, using the interaction method with P 5 165 kN, 
e 5 15 mm, and an allowable stress in bending of 150 MPa.

 10.107 A compression member of rectangular cross section has an effec-
tive length of 0.9 m and is made of the aluminum alloy 2014-T6 
for which the allowable stress in bending is 160 MPa. Using the 
interaction method, determine the smallest dimension d of the 
cross section that can be used when e 5 10 mm.

 10.108 Solve Prob. 10.107, assuming that e 5 5 mm.

 10.109 An aluminum tube of 3-in. outside diameter is to carry a load of 
10 kips having an eccentricity e 5 0.6 in. Knowing that the stock 
of tubes available for use are made of alloy 2014-T6 and have wall 
thicknesses in increments of 1

16 in. up to 1
2 in. determine the lightest 

tube that can be used. Use the allowable-stress method.

 10.110 Solve Prob. 10.109, using the interaction method of design with an 
allowable stress in bending of 25 ksi.

 10.111 A sawn lumber column of rectangular cross section has a 2.2-m 
effective length and supports a 41-kN load as shown. The sizes 
available for use have b equal to 90 mm, 140 mm, 190 mm, and 
240 mm. The grade of wood has an adjusted allowable stress for 
compression parallel to the grain sC 5 8.1 MPa and an adjusted 
modulus E 5 8.3 GPa. Using the allowable-stress method, deter-
mine the lightest section that can be used.

2.2 m
80-mm outer

diameter

A

B

e

e � 20 mm
P

Fig. P10.105

d

CD

P � 144 kN

e

56 mm

Fig. P10.107

 10.112 Solve Prob. 10.111, assuming that e 5 40 mm.

e � 0.6 in.

e

3-in. outside
diameter

B

A

6 ft

P � 10 kips

Fig. P10.109

41 kN

D
C

190 mm

e � 80 mm

b

Fig. P10.111
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683Problems 10.113 A steel column having a 24-ft effective length is loaded eccentri-
cally as shown. Using the allowable-stress method, select the wide-
flange shape of 14-in. nominal depth that should be used. Use 
sY 5 36 ksi and E 5 29 3 106 psi.

 10.114 Solve Prob. 10.113 using the interaction method, assuming that 
sY 5 50 ksi and the allowable stress in bending is 30 ksi.

 10.115 A steel column of 7.2-m effective length is to support an 83-kN 
eccentric load P at a point D, located on the x axis as shown. Using 
the allowable-stress method, select the wide-flange shape of 
250-mm nominal depth that should be used. Use E 5 200 GPa and 
sY 5 250 MPa.

P � 120 kips

8 in.

C
D

Fig. P10.113

C

y

x

z

ex � 70 mm
P

D

Fig. P10.115 
C

D

125 mm
P

Fig. P10.116

 10.116 A steel compression member of 5.8-m effective length is to support a 
296-kN eccentric load P. Using the interaction method, select the 
wide-flange shape of 200-mm nominal depth that should be used. Use 
E 5 200 GPa, sY 5 250 MPa, and sall 5 150 MPa in bending.
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684

REVIEW AND SUMMARY

This chapter was devoted to the design and analysis of columns, i.e., 
prismatic members supporting axial loads. In order to gain insight 
into the behavior of columns, we first considered in Sec. 10.2 the 
equilibrium of a simple model and found that for values of the load 
P exceeding a certain value Pcr , called the critical load, two equilib-
rium positions of the model were possible: the original position with 
zero transverse deflections and a second position involving deflec-
tions that could be quite large. This led us to conclude that the first 
equilibrium position was unstable for P . Pcr , and stable for P , Pcr , 
since in the latter case it was the only possible equilibrium 
position.

In Sec. 10.3, we considered a pin-ended column of length L and of 
constant flexural rigidity EI subjected to an axial centric load P. 
Assuming that the column had buckled (Fig. 10.36), we noted that 
the bending moment at point Q was equal to 2Py and wrote

 

d2y

dx2 5
M
EI

5 2
P
EI

 y (10.4)

Critical load

Euler’s formula

L

Q Q

B

A
A

x

y

y

x

x

y

P'

P'

M

y
[ x � 0, y � 0]  

[ x � L, y � 0]  

(a) (b)

P P

Fig. 10.36

Solving this differential equation, subject to the boundary conditions 
corresponding to a pin-ended column, we determined the smallest 
load P for which buckling can take place. This load, known as the 
critical load and denoted by Pcr , is given by Euler’s formula:

Pcr 5
p 2EI

L2  (10.11)
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685where L is the length of the column. For this load or any larger load, 
the equilibrium of the column is unstable and transverse deflections 
will occur.
 Denoting the cross-sectional area of the column by A and its 
radius of gyration by r, we determined the critical stress scr corre-
sponding to the critical load Pcr:

 scr 5
p2E

1Lyr22 (10.13)

The quantity Lyr is called the slenderness ratio and we plotted scr 
as a function of Lyr (Fig. 10.37). Since our analysis was based on 
stresses remaining below the yield strength of the material, we noted 
that the column would fail by yielding when scr . sY.
 In Sec. 10.4, we discussed the critical load of columns with 
various end conditions and wrote

 Pcr 5
p 2EI

L2
e

 (10.119)

where Le is the effective length of the column, i.e., the length of 
an equivalent pin-ended column. The effective lengths of several 
columns with various end conditions were calculated and shown in 
Fig. 10.17 on page 642.

In Sec. 10.5, we considered columns supporting an eccentric axial 
load. For a pin-ended column subjected to a load P applied with an 
eccentricity e, we replaced the load by a centric axial load and a 
couple of moment MA 5 Pe (Figs. 10.38 and 10.39) and derived the 
following expression for the maximum transverse deflection:

 
ymax 5 e c sec aB

P
EI

 
L
2
b 2 1 d  (10.28)

100

0 10089 200

200

250

300

(MPa)

Y � 250 MPa

E � 200 GPa

2E
(L/r)2

L/r

�

�

cr �� �

Fig. 10.37

Effective length

Review and Summary

Eccentric axial load. Secant formula.

P

e

B

A

P'

L

Fig. 10.38

A

B

P'

MB � Pe

P

MA � Pe

ymax

Fig. 10.39

Slenderness ratio
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686 Columns We then determined the maximum stress in the column, and from the 
expression obtained for that stress, we derived the secant formula:

 

P
A

5
smax

1 1
ec
r2  sec a1

2A
P

EA
 
Le

r
b

 (10.36)

This equation can be solved for the force per unit area, PyA, that 
causes a specified maximum stress smax in a pin-ended column or 
any other column of effective slenderness ratio Leyr.

In the first part of the chapter we considered each column as a 
straight homogeneous prism. Since imperfections exist in all real col-
umns, the design of real columns is done by using empirical formulas 
based on laboratory tests and set forth in specifications and codes 
issued by professional organizations. In Sec. 10.6, we discussed the 
design of centrically loaded columns made of steel, aluminum, or 
wood. For each material, the design of the column was based on 
formulas expressing the allowable stress as a function of the slender-
ness ratio Lyr of the column. For structural steel, we also discussed 
the alternative method of Load and Resistance Factor Design.

In the last section of the chapter [Sec. 10.7], we studied two methods 
used for the design of columns under an eccentric load. The first 
method was the allowable-stress method, a conservative method in 
which it is assumed that the allowable stress is the same as if the 
column were centrically loaded. The allowble-stress method requires 
that the following inequality be satisfied:

 
P
A

1
Mc
I

# sall (10.53)

The second method was the interaction method, a method used in 
most modern specifications. In this method the allowable stress for 
a centrically loaded column is used for the portion of the total stress 
due to the axial load and the allowable stress in bending for the stress 
due to bending. Thus, the inequality to be satisfied is

 
PyA

1sall2centric
1

McyI
1sall2bending

# 1
 (10.55)

Eccentrically loaded columns

Allowable-stress method

Interaction method

Design of real columns

Centrically loaded columns
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687

REVIEW PROBLEMS

 10.117 The rigid bar AD is attached to two springs of constant k and is 
in equilibrium in the position shown. Knowing that the equal and 
opposite loads P and P9 remain horizontal, determine the magni-
tude Pcr of the critical load for the system.

 10.118 The steel rod BC is attached to the rigid bar AB and to the fixed 
support at C. Knowing that G 5 11.2 3 106 psi, determine the 
diameter of rod BC for which the critical load Pcr of the system is 
80 lb.

B

l

AP C

a

D P'

k k

Fig. P10.117

15 in.

A

C

B

d

20 in.

P

Fig. P10.118

10.119 Determine (a) the critical load for the steel strut, (b) the dimension 
d for which the aluminum strut will have the same critical load. 
(c) Express the weight of the aluminum strut as a percent of the 
weight of the steel strut.

 10.120 Supports A and B of the pin-ended column shown are at a fixed 
distance L from each other. Knowing that at a temperature T0
the force in the column is zero and that buckling occurs when the 
temperature is T1 5 T0 1 DT, express DT in terms of b, L and the 
coefficient of thermal expansion a.

in.1
2

C

A

B

D

4 ft

4 ft

d d

Steel
   E � 29  � 106 psi

�  � 490 lb/ft3 

Aluminum
   E � 10.1  � 106 psi

�  � 170 lb/ft3 

P

P

Fig. P10.119

A

B

L
bb

Fig. P10.120
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688 Columns  10.121 Members AB and CD are 30-mm-diameter steel rods, and members 
BC and AD are 22-mm-diameter steel rods. When the turnbuckle 
is tightened, the diagonal member AC is put in tension. Knowing 
that a factor of safety with respect to buckling of 2.75 is required, 
determine the largest allowable tension in AC. Use E 5 200 GPa 
and consider only buckling in the plane of the structure.

 10.122 The uniform aluminum bar AB has a 20 3 36-mm rectangular 
cross section and is supported by pins and brackets as shown. Each 
end of the bar may rotate freely about a horizontal axis through the 
pin, but rotation about a vertical axis is prevented by the brackets. 
Using E 5 70 GPa, determine the allowable centric load P if a 
factor of safety of 2.5 is required.

2.25 m

A D

C
B

3.5 m

Fig. P10.121

A

2 m

B
P

Fig. P10.122

 10.123 A column with the cross section shown has a 13.5-ft effective 
length. Using allowable stress design, determine the largest cen-
tric load that can be applied to the column. Use sY 5 36 ksi and 
E 5 29 3 106 psi.

10 in.

6 in.

in.1
4

in.1
2

in.1
2

Fig. P10.123

P

A

C

B

θ

-in. diameter3
4

-in. diameter5
8

3 ft

2 ft

Fig. P10.124

 10.124 (a) Considering only buckling in the plane of the structure shown 
and using Euler’s formula, determine the value of u between 0 and 
908 for which the allowable magnitude of the load P is maximum. 
(b) Determine the corresponding maximum value of P knowing 
that a factor of safety of 3.2 is required. Use E 5 29 3 106 psi.
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689Review Problems 10.125 An axial load P of magnitude 560 kN is applied at a point on the 
x axis at a distance e 5 6 mm from the geometric axis of the 
W200 3 46.1 rolled-steel column BC. Using E 5 200 GPa, deter-
mine (a) the horizontal deflection of end C, (b) the maximum stress 
in the column.

 10.126 A column of 17-ft effective length must carry a centric load of 
235 kips. Using allowable stress design, select the wide-flange 
shape of 10-in. nominal depth that should be used. Use sY 5 36 ksi 
and E 5 29 3 106 psi.

 10.127 Bar AB is free at its end A and fixed at its base B. Determine 
the allowable centric load P if the aluminum alloy is (a) 6061-T6, 
(b) 2014-T6.

W200 � 46.1

2.3 m

B

C

y

z
x

P

e

Fig. P10.125

P

B

A

85 mm

30 mm
10 mm

Fig. P10.127

 10.128 A 43-kip axial load P is applied to the rolled-steel column BC at 
a point on the x axis at a distance e 5 2.5 in. from the geometric 
axis of the column. Using the allowable-stress method, select the 
wide-flange shape of 8-in. nominal depth that should be used. Use 
E 5 29 3 106 psi and sY 5 36 ksi.

8 ft

B

C

y

z
x

P

e

Fig. P10.128
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690

COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

 10.C1 A solid steel rod having an effective length of 500 mm is to be 
used as a compression strut to carry a centric load P. For the grade of steel 
used, E 5 200 GPa and sY 5 245 MPa. Knowing that a factor of safety of 
2.8 is required and using Euler’s formula, write a computer program and 
use it to calculate the allowable centric load Pall for values of the radius of 
the rod from 6 mm to 24 mm, using 2-mm increments.

 10.C2 An aluminum bar is fixed at end A and supported at end B so that 
it is free to rotate about a horizontal axis through the pin. Rotation about a 
vertical axis at end B is prevented by the brackets. Knowing that E 5 10.1 3 
106 psi, use Euler’s formula with a factor of safety of 2.5 to determine the 
allowable centric load P for values of b from 0.75 in. to 1.5 in., using 0.125-in. 
increments.

 10.C3 The pin-ended members AB and BC consist of sections of alumi-
num pipe of 120-mm outer diameter and 10-mm wall thickness. Knowing 
that a factor of safety of 3.5 is required, determine the mass m of the largest 
block that can be supported by the cable arrangement shown for values of 
h from 4 m to 8 m, using 0.25-m increments. Use E 5 70 GPa and consider 
only buckling in the plane of the structure.

A b

1.5 in.

6 ft

B

P

Fig. P10.C2

h

D

m

3 m

4 m

3 m
C

A

B

Fig. P10.C3

 10.C4 An axial load P is applied at a point located on the x axis at a dis-
tance e 5 0.5 in. from the geometric axis of the W8 3 40 rolled-steel col-
umn AB. Using E 5 29 3 106 psi, write a computer program and use it to 
calculate for values of P from 25 to 75 kips, using 5-kip increments, (a) the 
horizontal deflection at the midpoint C, (b) the maximum stress in the 
column.

W8 � 40

C

B

A

y

z

18.4 ft

e

P'

P

x

Fig. P10.C4
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691Computer Problems 10.C5 A column of effective length L is made from a rolled-steel shape 
and carries a centric axial load P. The yield strength for the grade of steel 
used is denoted by sY, the modulus of elasticity by E, the cross-sectional 
area of the selected shape by A, and its smallest radius of gyration by r. 
Using the AISC design formulas for allowable stress design, write a com-
puter program that can be used with either SI or U.S. customary units to 
determine the allowable load P. Use this program to solve (a) Prob. 10.57, 
(b) Prob. 10.58, (c) Prob. 10.60.

 10.C6 A column of effective length L is made from a rolled-steel shape 
and is loaded eccentrically as shown. The yield strength of the grade of 
steel used is denoted by sY, the allowable stress in bending by sall, the 
modulus of elasticity by E, the cross-sectional area of the selected shape 
by A, and its smallest radius of gyration by r. Write a computer program 
that can be used with either SI or U.S. customary units to determine the 
allowable load P, using either the allowable-stress method or the interaction 
method. Use this program to check the given answer for (a) Prob. 10.113, 
(b) Prob. 10.114.

C

z

D

y

x

ex

ey

P

Fig. P10.C6
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As the diver comes down on the diving 

board the potential energy due to his 

elevation above the board will be 

converted into strain energy due to 

the bending of the board. The normal 

and shearing stresses resulting from 

energy loadings will be determined

in this chapter.
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694

Chapter 11 Energy Methods
 11.1 Introduction
 11.2 Strain Energy
 11.3 Strain-Energy Density
 11.4 Elastic Strain Energy for Normal 

Stresses
 11.5 Elastic Strain Energy for Shearing 

Stresses
 11.6 Strain Energy for a General 

State of Stress
 11.7 Impact Loading
 11.8 Design for Impact Loads
 11.9 Work and Energy under a 

Single Load
 11.10 Deflection under a Single Load 

By the Work-Energy Method
 *11.11 Work and Energy under Several 

Loads
 *11.12 Castigliano’s Theorem
 *11.13 Deflections by Castigliano’s 

Theorem
 *11.14 Statically Indeterminate Structures

11.1 INTRODUCTION
In the previous chapter we were concerned with the relations exist-
ing between forces and deformations under various loading condi-
tions. Our analysis was based on two fundamental concepts, the 
concept of stress (Chap. 1) and the concept of strain (Chap. 2). A 
third important concept, the concept of strain energy, will now be 
introduced.
 In Sec. 11.2, the strain energy of a member will be defined as 
the increase in energy associated with the deformation of the mem-
ber. You will see that the strain energy is equal to the work done by 
a slowly increasing load applied to the member. The strain-energy 
density of a material will be defined as the strain energy per unit 
volume; it will be seen that it is equal to the area under the stress-
strain diagram of the material (Sec. 11.3). From the stress-strain 
diagram of a material two additional properties will be defined, 
namely, the modulus of toughness and the modulus of resilience of 
the material.
 In Sec. 11.4 the elastic strain energy associated with normal 
stresses will be discussed, first in members under axial loading and 
then in members in bending. Later you will consider the elastic 
strain energy associated with shearing stresses such as occur in tor-
sional loadings of shafts and in transverse loadings of beams (Sec. 
11.5). Strain energy for a general state of stress will be considered 
in Sec. 11.6, where the maximum-distortion-energy criterion for 
yielding will be derived.
 The effect of impact loading on members will be considered 
in Sec. 11.7. You will learn to calculate both the maximum stress and 
the maximum deflection caused by a moving mass impacting on a 
member. Properties that increase the ability of a structure to with-
stand impact loads effectively will be discussed in Sec. 11.8.
 In Sec. 11.9 the elastic strain of a member subjected to a 
single concentrated load will be calculated, and in Sec. 11.10 the 
deflection at the point of application of a single load will be 
determined.
 The last portion of the chapter will be devoted to the determi-
nation of the strain energy of structures subjected to several loads 
(Sec. 11.11). Castigliano’s theorem will be derived in Sec. 11.12 and 
used in Sec. 11.13 to determine the deflection at a given point of a 
structure subjected to several loads. In the last section Castigliano’s 
theorem will be applied to the analysis of indeterminate structures 
(Sec. 11.14).

11.2 STRAIN ENERGY
Consider a rod BC of length L and uniform cross-sectional area A, 
which is attached at B to a fixed support, and subjected at C to a 
slowly increasing axial load P (Fig. 11.1). As we noted in Sec. 2.2, 
by plotting the magnitude P of the load against the deformation x of 
the rod, we obtain a certain load-deformation diagram (Fig. 11.2) 
that is characteristic of the rod BC.

C

C

A

L

B

B

P

x

Fig. 11.1 Axially loaded rod.
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69511.2 Strain Energy

 Let us now consider the work dU done by the load P as the 
rod elongates by a small amount dx. This elementary work is equal 
to the product of the magnitude P of the load and of the small elon-
gation dx. We write

 dU 5 P dx (11.1)

and note that the expression obtained is equal to the element of area 
of width dx located under the load-deformation diagram (Fig. 11.3). 
The total work U done by the load as the rod undergoes a deforma-
tion x1 is thus

U 5 #
x1

0

 P dx

and is equal to the area under the load-deformation diagram between 
x 5 0 and x 5 x1.
 The work done by the load P as it is slowly applied to the rod 
must result in the increase of some energy associated with the defor-
mation of the rod. This energy is referred to as the strain energy of 
the rod. We have, by definition,

 
Strain energy 5 U 5 #

x1

0

 P dx (11.2)

 We recall that work and energy should be expressed in units 
obtained by multiplying units of length by units of force. Thus, if SI 
metric units are used, work and energy are expressed in N ? m; this 
unit is called a joule (J). If U.S. customary units are used, work and 
energy are expressed in ft ? lb or in in ? lb.
 In the case of a linear and elastic deformation, the portion of 
the load-deformation diagram involved can be represented by a 
straight line of equation P 5 kx (Fig. 11.4). Substituting for P in Eq. 
(11.2), we have

U 5 #
x1

0

 kx dx 5 1
2 kx2

1

or

 U 5 1
2P1x1 (11.3)

where P1 is the value of the load corresponding to the deformation x1.

P

O x

Fig. 11.2 Load-deformation diagram.

P

P U � Area

O
x

xx1

dx

Fig. 11.3 Work due to load P.

P
P � kx

U � P1x1

x1 x

P1

O

1
2

Fig. 11.4 Work due to linear, 
elastic deformation.
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696 Energy Methods  The concept of strain energy is particularly useful in the deter-
mination of the effects of impact loadings on structures or machine 
components. Consider, for example, a body of mass m moving with 
a velocity v0 which strikes the end B of a rod AB (Fig. 11.5a). 
Neglecting the inertia of the elements of the rod, and assuming no 
dissipation of energy during the impact, we find that the maximum 
strain energy Um acquired by the rod (Fig. 11.5b) is equal to the 
original kinetic energy T 5 1

2 mv2
0 of the moving body. We then deter-

mine the value Pm of the static load which would have produced the 
same strain energy in the rod, and obtain the value sm of the largest 
stress occurring in the rod by dividing Pm by the cross-sectional area 
of the rod.

11.3 STRAIN-ENERGY DENSITY
As we noted in Sec. 2.2, the load-deformation diagram for a rod BC 
depends upon the length L and the cross-sectional area A of the rod. 
The strain energy U defined by Eq. (11.2), therefore, will also depend 
upon the dimensions of the rod. In order to eliminate the effect of size 
from our discussion and direct our attention to the properties of the 
material, the strain energy per unit volume will be considered. Dividing 
the strain energy U by the volume V 5 AL of the rod (Fig. 11.1), and 
using Eq. (11.2), we have

U
V

5 #
x1

0

 
P
A

 
dx
L

 Recalling that PyA represents the normal stress sx in the rod, 
and x/L the normal strain Px, we write

U
V

5 #
P1

0

 sx dPx

where P1 denotes the value of the strain corresponding to the elonga-
tion x1. The strain energy per unit volume, UyV, is referred to as the 
strain-energy density and will be denoted by the letter u. We have, 
therefore,

 
Strain-energy density 5 u 5 #

P1

0

 sx dPx (11.4)

The strain-energy density u is expressed in units obtained by divid-
ing units of energy by units of volume. Thus, if SI metric units are 
used, the strain-energy density is expressed in J/m3 or its multiples 
kJ/m3 and MJ/m3; if U.S. customary units are used, it is expressed 
in in ? lb/in3.†

U � 0

� 0�

T � 

v0

mv

m

1
2

2
0

BA

U � Um

� m� � T � 0 v � 0

BA

(a)

(b)

Fig. 11.5 Rod subject to impact loading.

†We note that 1 J/m3 and 1 Pa are both equal to 1 N/m2, while 1 in ? lb/in3 and 1 psi are 
both equal to 1 lb/in2. Thus, strain-energy density and stress are dimensionally equal and 
could be expressed in the same units.
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697 Referring to Fig. 11.6, we note that the strain-energy density 
u is equal to the area under the stress-strain curve, measured from 
Px 5 0 to Px 5 P1. If the material is unloaded, the stress returns to zero, 
but there is a permanent deformation represented by the strain Pp, and 
only the portion of the strain energy per unit volume corresponding to 
the triangular area is recovered. The remainder of the energy spent in 
deforming the material is dissipated in the form of heat.

�

�O
p � �1

Fig. 11.6 Strain energy.

�

�O
R �

Modulus
of toughness Rupture

Fig. 11.7 Modulus of toughness.

Photo 11.1 The railroad coupler is made 
of a ductile steel that has a large modulus 
of toughness.

 The value of the strain-energy density obtained by setting P1 5 
PR in Eq. (11.4), where PR is the strain at rupture, is known as the 
modulus of toughness of the material. It is equal to the area under 
the entire stress-strain diagram (Fig. 11.7) and represents the energy 
per unit volume required to cause the material to rupture. It is clear 
that the toughness of a material is related to its ductility as well as 
to its ultimate strength (Sec. 2.3), and that the capacity of a structure 
to withstand an impact load depends upon the toughness of the 
material used (Photo 11.1).
 If the stress sx remains within the proportional limit of the 
material, Hooke’s law applies and we write

 sx 5 EPx (11.5)

Substituting for sx from (11.5) into (11.4), we have

 
u 5 #

P1

0

 EPx dPx 5
EP1

2

2
 (11.6)

or, using Eq. (11.5) to express P1 in terms of the corresponding stress 
s1,

 
u 5

s1
2

2E
 (11.7)

 The value uY of the strain-energy density obtained by setting 
s1 5 sY in Eq. (11.7), where sY is the yield strength, is called the 
modulus of resilience of the material. We have

 
uY 5

sY
2

2E
 (11.8)

11.3 Strain-Energy Density

bee80288_ch11_692-758.indd Page 697  11/12/10  5:12:32 PM user-f499bee80288_ch11_692-758.indd Page 697  11/12/10  5:12:32 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch11/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch11



698 Energy Methods The modulus of resilience is equal to the area under the straight-line 
portion OY of the stress-strain diagram (Fig. 11.8) and represents 
the energy per unit volume that the material can absorb without 
yielding. The capacity of a structure to withstand an impact load 
without being permanently deformed clearly depends upon the resil-
ience of the material used.
 Since the modulus of toughness and the modulus of resilience 
represent characteristic values of the strain-energy density of the material 
considered, they are both expressed in J/m3 or its multiples if SI units 
are used, and in in ? lb/in3 if U.S. customary units are used.†

11.4  ELASTIC STRAIN ENERGY FOR NORMAL STRESSES
Since the rod considered in the preceding section was subjected to 
uniformly distributed stresses sx, the strain-energy density was con-
stant throughout the rod and could be defined as the ratio UyV of 
the strain energy U and the volume V of the rod. In a structural 
element or machine part with a nonuniform stress distribution, the 
strain-energy density u can be defined by considering the strain 
energy of a small element of material of volume DV and writing

u 5 lim
¢Vy0

 
¢U
¢V

or

 
u 5

dU
dV  

(11.9)

The expression obtained for u in Sec. 11.3 in terms of sx and Px 
remains valid, i.e., we still have

 
u 5 #

Px

0

 sx dPx (11.10)

but the stress sx, the strain Px, and the strain-energy density u will 
generally vary from point to point.
 For values of sx within the proportional limit, we may set 
sx 5 EPx in Eq. (11.10) and write

 
u 5

1
2

 EP2
x 5

1
2

 sx Px 5
1
2

 
s2

x

E
 (11.11)

The value of the strain energy U of a body subjected to uniaxial nor-
mal stresses can be obtained by substituting for u from Eq. (11.11) 
into Eq. (11.9) and integrating both members. We have

 
U 5 #  

s2
x

2E
 dV (11.12)

The expression obtained is valid only for elastic deformations and is 
referred to as the elastic strain energy of the body.

†However, referring to the footnote on page 696, we note that the modulus of toughness 
and the modulus of resilience could be expressed in the same units as stress.

Modulus
of resilience

�

� Y

� �Y

Y

O

Fig. 11.8 Modulus of resilience.
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699Strain Energy under Axial Loading. We recall from Sec. 2.17 
that, when a rod is subjected to a centric axial loading, the normal 
stresses sx can be assumed uniformly distributed in any given trans-
verse section. Denoting by A the area of the section located at a dis-
tance x from the end B of the rod (Fig. 11.9), and by P the internal 
force in that section, we write sx 5 PyA. Substituting for sx into 
Eq. (11.12), we have

U 5 # P2

2EA2 dV

or, setting dV 5 A dx,

 
U 5 #

L

0

 
P2

2AE
 dx (11.13)

 In the case of a rod of uniform cross section subjected at its 
ends to equal and opposite forces of magnitude P (Fig. 11.10), Eq. 
(11.13) yields

 
U 5

P2L
2AE

 (11.14)

11.4 Elastic Strain Energy for Normal Stresses

EXAMPLE 11.01A rod consists of two portions BC and CD of the same material and same 
length, but of different cross sections (Fig. 11.11). Determine the strain 
energy of the rod when it is subjected to a centric axial load P, expressing 
the result in terms of P, L, E, the cross-sectional area A of portion CD, 
and the ratio n of the two diameters.

We use Eq. (11.14) to compute the strain energy of each of the two 
portions, and add the expressions obtained:

Un 5
P2112L2
2AE

1
P2112L2

21n2A2E 5
P2L
4AE

 a1 1
1
n2b

or

 
Un 5

1 1 n2

2n2  
P2L
2AE 

(11.15)

We check that, for n 5 1, we have

U1 5
P2L
2AE

which is the expression given in Eq. (11.14) for a rod of length L and uni-
form cross section of area A. We also note that, for n . 1, we have Un , 
U1; for example, when n 5 2, we have U2 5 158 2U1. Since the maximum 
stress occurs in portion CD of the rod and is equal to smax 5 PyA, it follows 
that, for a given allowable stress, increasing the diameter of portion BC of 
the rod results in a decrease of the overall energy-absorbing capacity of the 
rod. Unnecessary changes in cross-sectional area should therefore be avoided 
in the design of members that may be subjected to loadings, such as impact 
loadings, where the energy-absorbing capacity of the member is critical.

C

B

L

x

P

A

Fig. 11.9 Rod with centric axial load.

P'

L

P

A

Fig. 11.10

C

B
D

P

A

Area � n2A

L1
2

L1
2

Fig. 11.11
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EXAMPLE 11.02 A load P is supported at B by two rods of the same material and of the 
same uniform cross section of area A (Fig. 11.12). Determine the strain 
energy of the system.

Denoting by FBC and FBD, respectively, the forces in members BC 
and BD, and recalling Eq. (11.14), we express the strain energy of the 
system as

 
U 5

F2
BC1BC2
2AE

1
F2

BD1BD2
2AE  

(11.16)

But we note from Fig. 11.12 that

BC 5 0.6l  BD 5 0.8l

C

D

B

l

P

3

3

4

4

Fig. 11.12

and from the free-body diagram of pin B and the corresponding force 
triangle (Fig. 11.13) that

FBC 5 10.6P  FBD 5 20.8P

Substituting into Eq. (11.16), we have

U 5
P2l 3 10.623 1 10.823 4

2AE
5 0.364 

P2l
AE

B

FBC FBC

FBD FBD

P P

5
3

4

Fig. 11.13
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Strain Energy in Bending.  Consider a beam AB subjected to a 
given loading (Fig. 11.14), and let M be the bending moment at a 
distance x from end A. Neglecting for the time being the effect of 
shear, and taking into account only the normal stresses sx 5 MyyI, 
we substitute this expression into Eq. (11.12) and write

U 5 #  
s2

x

2E
 dV 5 #  

M2y2

2EI2  dV

Setting dV 5 dA dx, where dA represents an element of the cross-
 sectional area, and recalling that M2y2EI2 is a function of x alone, 
we have

U 5 #
L

0

 
M2

2EI2 a #y2 dAb dx

Recalling that the integral within the parentheses represents the moment 
of inertia I of the cross section about its neutral axis, we write

 
U 5 #

L

0

 
M2

2EI
 dx (11.17)

BA

x

Fig. 11.14 Beam subject to 
transverse loads.
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11.5  ELASTIC STRAIN ENERGY FOR 
SHEARING STRESSES

When a material is subjected to plane shearing stresses txy, the 
strain-energy density at a given point can be expressed as

 
u 5 #

gxy

0

txy dgxy (11.18)

where gxy is the shearing strain corresponding to txy (Fig. 11.16a). 
We note that the strain-energy density u is equal to the area under 
the shearing-stress-strain diagram (Fig. 11.16b).
 For values of txy within the proportional limit, we have txy 5 
Ggxy, where G is the modulus of rigidity of the material. Substituting 
for txy into Eq. (11.18) and performing the integration, we write

 
u 5

1
2

 Gg2
xy 5

1
2

 txygxy 5
t2

xy

2G
 (11.19)

 The value of the strain energy U of a body subjected to plane 
shearing stresses can be obtained by recalling from Sec. 11.4 that

 
u 5

dU
dV

 (11.9)

Substituting for u from Eq. (11.19) into Eq. (11.9) and integrating 
both members, we have

 
U 5 #

 t2
xy

2G
 dV (11.20)

This expression defines the elastic strain associated with the shear 
deformations of the body. Like the similar expression obtained in 
Sec. 11.4 for uniaxial normal stresses, it is valid only for elastic 
deformations.

Strain Energy in Torsion.  Consider a shaft BC of length L sub-
jected to one or several twisting couples. Denoting by J the polar 
moment of inertia of the cross section located at a distance x from 
B (Fig. 11.17), and by T the internal torque in that section, we recall 

701

EXAMPLE 11.03Determine the strain energy of the prismatic cantilever beam AB 
(Fig. 11.15), taking into account only the effect of the normal stresses.

The bending moment at a distance x from end A is M 5 2Px. 
Substituting this expression into Eq. (11.17), we write

U 5 #
L

0

 
P2x2

2EI
 dx 5

P2L3

6EI

P

A
B

L

Fig. 11.15

(a)

O

(b)

�
2 xy��

xy�

xy�

xy�

Fig. 11.16 Strain energy due 
to shear.

C

B

L

x

T

Fig. 11.17 Shaft subject to torque.
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702 Energy Methods that the shearing stresses in the section are txy 5 TryJ. Substituting 
for txy into Eq. (11.20), we have

U 5 #  
t2

xy

2G
 dV 5 #  

T2r2

2GJ2 dV

Setting dV 5 dA dx, where dA represents an element of the cross-
sectional area, and observing that T 2y2GJ2 is a function of x alone, 
we write

U 5 #
L

0

 
T2

2GJ2  a #r2 dAb dx

Recalling that the integral within the parentheses represents the 
polar moment of inertia J of the cross section, we have

 
U 5 #

L

0

 
T 

2

2GJ
 dx (11.21)

 In the case of a shaft of uniform cross section subjected at its 
ends to equal and opposite couples of magnitude T (Fig. 11.18), 
Eq. (11.21) yields

 
U 5

T 
2L

2GJ
 (11.22)

L

T

T'

Fig. 11.18

EXAMPLE 11.04 A circular shaft consists of two portions BC and CD of the same material 
and same length, but of different cross sections (Fig. 11.19). Determine the 
strain energy of the shaft when it is subjected to a twisting couple T at end 
D, expressing the result in terms of T, L, G, the polar moment of inertia J 
of the smaller cross section, and the ratio n of the two diameters.

We use Eq. (11.22) to compute the strain energy of each of the two 
portions of shaft, and add the expressions obtained. Noting that the polar 
moment of inertia of portion BC is equal to n4J, we write

Un 5
T 

2112L2
2GJ

1
T 

2112L2
2G1n4J2 5

T 
2L

4GJ
 a1 1

1
n4b

or

 
Un 5

1 1 n4 
2n4  

T 
2L

2GJ 
(11.23)

We check that, for n 5 1, we have

U1 5
T 

2L
2GJ

which is the expression given in Eq. (11.22) for a shaft of length L and uni-
form cross section. We also note that, for n . 1, we have Un , U1; for 
example, when n 5 2, we have U2 5 117

32 2U1. Since the maximum shearing 
stress occurs in the portion CD of the shaft and is proportional to the torque 
T, we note as we did earlier in the case of the axial loading of a rod that, for 
a given allowable stress, increasing the diameter of portion BC of the shaft 
results in a decrease of the overall energy-absorbing capacity of the shaft.

1
2 L

1
2 L

C

D

T
B

diam. � nd
diam. � d

Fig. 11.19
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703Strain Energy under Transverse Loading. In Sec. 11.4 we 
obtained an expression for the strain energy of a beam subjected to 
a transverse loading. However, in deriving that expression we took 
into account only the effect of the normal stresses due to bending 
and neglected the effect of the shearing stresses. In Example 11.05 
both types of stresses will be taken into account.

11.5 Elastic Strain Energy for Shearing Stresses

EXAMPLE 11.05Determine the strain energy of the rectangular cantilever beam AB 
(Fig. 11.20), taking into account the effect of both normal and shearing 
stresses.

We first recall from Example 11.03 that the strain energy due to 
the normal stresses sx is

Us 5
P2L3

6EI

To determine the strain energy Ut due to the shearing stresses txy, we 
recall Eq. (6.9) of Sec. 6.4 and find that, for a beam with a rectangular 
cross section of width b and depth h,

txy 5
3
2

 
V
A

 a1 2
y2

c2b 5
3
2

 
P
bh

 a1 2
y2

c2b
Substituting for txy into Eq. (11.20), we write

Ut 5
1

2G
 a3

2
 

P
bh
b2

#a1 2
y2

c2b
2

 dV

or, setting dV 5 b dy dx, and after reductions,

Ut 5
9P2

8Gbh2 #
c

2c
 a1 2 2 

y2

c2 1
y4

c4b dy#
L

0
 dx

Performing the integrations, and recalling that c 5 hy2, we have

Ut 5
9P2L

8Gbh2 c y 2
2
3

 
y3

c2 1
1
5

 
y5

c4 d
1c

2c
5

3P2L
5Gbh

5
3P2L
5GA

 The total strain energy of the beam is thus

U 5 Us 1 Ut 5
P2L3

6EI
1

3P2L
5GA

or, noting that IyA 5 h2y12 and factoring the expression for Us,

 
U 5

P2L3

6EI
 a1 1

3Eh2

10GL2b 5 Us a1 1
3Eh2

10GL2b (11.24)

Recalling from Sec. 2.14 that G $ Ey3, we conclude that the paren-
thesis in the expression obtained is less than 1 1 0.9(hyL)2 and, thus, that 
the relative error is less than 0.9(hyL)2 when the effect of shear is 
neglected. For a beam with a ratio hyL less than 1

10, the percentage error 
is less than 0.9%. It is therefore customary in engineering practice to 
neglect the effect of shear in computing the strain energy of slender 
beams.

P
L

A

B

h

b

Fig. 11.20
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704 Energy Methods 11.6  STRAIN ENERGY FOR A GENERAL
STATE OF STRESS

In the preceding sections, we determined the strain energy of a 
body in a state of uniaxial stress (Sec. 11.4) and in a state of plane 
shearing stress (Sec. 11.5). In the case of a body in a general state 
of stress characterized by the six stress components sx, sy, sz, 
txy, tyz, and tzx, the strain-energy density can be obtained by add-
ing the expressions given in Eqs. (11.10) and (11.18), as well as 
the four other expressions obtained through a permutation of the 
subscripts.
 In the case of the elastic deformation of an isotropic body, each 
of the six stress-strain relations involved is linear, and the strain-
energy density can be expressed as

 u 5 1
2 1sxPx 1 syPy 1 szPz 1 txygxy 1 tyzgyz 1 tzxgzx2  (11.25)

Recalling the relations (2.38) obtained in Sec. 2.14, and substituting 
for the strain components into (11.25), we have, for the most general 
state of stress at a given point of an elastic isotropic body,

u 5
1

2E
 3s2

x 1 s2
y 1 s2

z 2 2n1sxsy 1 sysz 1 szsx2 4

 
1

1
2G
1t2

xy 1 t2
yz 1 t2

zx2  
(11.26)

If the principal axes at the given point are used as coordinate axes, 
the shearing stresses become zero and Eq. (11.26) reduces to

 
u 5

1
2E

 3s2
a 1 s2

b 1 s2
c 2 2n1sasb 1 sbsc 1 scsa2 4  (11.27)

where sa, sb, and sc are the principal stresses at the given point.
 We now recall from Sec. 7.7 that one of the criteria used to 
predict whether a given state of stress will cause a ductile material 
to yield, namely, the maximum-distortion-energy criterion, is based 
on the determination of the energy per unit volume associated 
with the distortion, or change in shape, of that material. Let us, 
therefore, attempt to separate the strain-energy density u at a 
given point into two parts, a part uv associated with a change in 
volume of the material at that point, and a part ud associated with 
a distortion, or change in shape, of the material at the same point. 
We write

 u 5 uv 1 ud (11.28)

 In order to determine uv and ud, we introduce the average 
value s of the principal stresses at the point considered,

 
s 5

sa 1 sb 1 sc

3
 (11.29)

and set

 sa 5 s 1 sa¿  sb 5 s 1 sb¿  sc 5 s 1 sc¿ (11.30)
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705

Thus, the given state of stress (Fig. 11.21a) can be obtained by 
superposing the states of stress shown in Fig. 11.21b and c. We 
note that the state of stress described in Fig. 11.21b tends 
to change the volume of the element of material, but not its 
shape, since all the faces of the element are subjected to the same 
stress s. On the other hand, it follows from Eqs. (11.29) and 
(11.30) that

 sa¿ 1 sb¿ 1 sc¿ 5 0 (11.31)

which indicates that some of the stresses shown in Fig. 11.21c are 
tensile and others compressive. Thus, this state of stress tends to 
change the shape of the element. However, it does not tend to 
change its volume. Indeed, recalling Eq. (2.31) of Sec. 2.13, we note 
that the dilatation e (i.e., the change in volume per unit volume) 
caused by this state of stress is

e 5
1 2 2n

E
 1sa¿ 1 sb¿ 1 sc¿ 2

or e 5 0, in view of Eq. (11.31). We conclude from these observa-
tions that the portion uv of the strain-energy density must be 
associated with the state of stress shown in Fig. 11.21b, while the 
portion ud must be associated with the state of stress shown in 
Fig. 11.21c.
 It follows that the portion uv of the strain-energy density cor-
responding to a change in volume of the element can be obtained 
by substituting s for each of the principal stresses in Eq. (11.27). 
We have

uv 5
1

2E
 33s 

2 2 2n13s 
22 4 5

311 2 2n2
2E

 s 
2

or, recalling Eq. (11.29),

 
uv 5

1 2 2n
6E

 1sa 1 sb 1 sc22 (11.32)

 The portion of the strain-energy density corresponding to the 
distortion of the element is obtained by solving Eq. (11.28) for ud 

11.6 Strain Energy for a General
State of Stress

�a

�b

�c �

� 'b

� 'a

� 'c

�

�

(a) (b) (c)

Fig. 11.21 Element subject to multiaxial stress.
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706 Energy Methods and substituting for u and uv from Eqs. (11.27) and (11.32), respec-
tively. We write

ud 5 u 2 uv 5
1

6E
 331s2

a 1 s2
b 1 s2

c 2 2 6n1sasb 1 sbsc 1 scsa2
 2 11 2 2n2 1sa 1 sb 1 sc22 4
Expanding the square and rearranging terms, we have

ud 5
1 1 n

6E
 3 1s2

a 2 2sasb 1 s2
b2 1 1s2

b 2 2sbsc 1 s2
c 2

 1 1s2
c 2 2scsa 1 s2

a2 4
Noting that each of the parentheses inside the bracket is a perfect 
square, and recalling from Eq. (2.43) of Sec. 2.15 that the coefficient 
in front of the bracket is equal to 1y12G, we obtain the following 
expression for the portion ud of the strain-energy density, i.e., for the 
distortion energy per unit volume,

 
ud 5

1
12G

 3 1sa 2 sb22 1 1sb 2 sc22 1 1sc 2 sa22 4   
(11.33)

In the case of plane stress, and assuming that the c axis is per-
pendicular to the plane of stress, we have sc 5 0 and Eq. (11.33) 
reduces to

 
ud 5

1
6G

 1sa
2 2 sasb 1 s2

b2 (11.34)

 Considering the particular case of a tensile-test specimen, we 
note that, at yield, we have sa 5 sY, sb 5 0, and thus 1ud2Y 5 s2

Yy6G. 
The maximum-distortion-energy criterion for plane stress indicates 
that a given state of stress is safe as long as ud , (ud)Y or, substituting 
for ud from Eq. (11.34), as long as

 s2
a 2 sasb 1 s2

b , s2
Y (7.26)

which is the condition stated in Sec. 7.7 and represented graphi-
cally by the ellipse of Fig. 7.39. In the case of a general state of 
stress, the expression (11.33) obtained for ud should be used. The 
maximum-distortion-energy criterion is then expressed by the 
condition.

 1sa 2 sb22 1 1sb 2 sc22 1 1sc 2 sa22 , 2s2
Y (11.35)

which indicates that a given state of stress is safe if the point of 
coordinates sa, sb, sc is located within the surface defined by the 
equation

 1sa 2 sb22 1 1sb 2 sc22 1 1sc 2 sa22 5 2s2
Y (11.36)

This surface is a circular cylinder of radius 12y3 sY with an axis of 
symmetry forming equal angles with the three principal axes of 
stress.
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707 

SAMPLE PROBLEM 11.1

During a routine manufacturing operation, rod AB must acquire an elastic 
strain energy of 120 in ? lb. Using E 5 29 3 106 psi, determine the required 
yield strength of the steel if the factor of safety with respect to permanent 
deformation is to be five.

SOLUTION

 Factor of Safety.  Since a factor of safety of five is required, the rod 
should be designed for a strain energy of

U 5 51120 in ? lb2 5 600 in ? lb

 Strain-Energy Density.  The volume of the rod is

V 5 AL 5
p

4
 10.75 in.22160 in.2 5 26.5 in3

Since the rod is of uniform cross section, the required strain-energy 
density is

u 5
U
V

5
600 in ? lb

26.5 in3 5 22.6 in ? lb/in3

 Yield Strength.  We recall that the modulus of resilience is equal to 
the strain-energy density when the maximum stress is equal to sY. Using 
Eq. (11.8), we write

 
 u 5

s2
Y

2E

 
 22.6 in ? lb/in3 5

s2
Y

2129 3 106 psi2  sY = 36.2 ksi ◀

 Comment.  It is important to note that, since energy loads are not 
linearly related to the stresses they produce, factors of safety associated with 
energy loads should be applied to the energy loads and not to the 
stresses.

5 ft

B A

P

-in. diameter3
4

Modulus of
resilience

�

�

�Y
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SOLUTION

 Bending Moment.  Using the free-body diagram of the entire beam, 
we determine the reactions

RA 5
Pb
L
x

  
RB 5

Pa
L
x

For portion AD of the beam, the bending moment is

M1 5
Pb
L

 x

For portion DB, the bending moment at a distance v from end B is

M2 5
Pa
L

 v

 a. Strain Energy. Since strain energy is a scalar quantity, we add the 
strain energy of portion AD to that of portion DB to obtain the total strain 
energy of the beam. Using Eq. (11.17), we write

 U 5 UAD 1 UDB

 5 #
a

0

 
M2

1

2EI
 dx 1 #

b

0

 
M2

2

2EI
 dv

 5
1

2EI #
a

0
 aPb

L
 xb2

dx 1
1

2EI #
b

0
 aPa

L
 vb2

dv

 5
1

2EI
 
P2

L2 ab2a3

3
1

a2b3

3
b 5

P2a2b2

6EIL2 1a 1 b2

or, since (a 1 b) 5 L,
 

U 5
P2a2b2

6EIL
 ◀

 b. Evaluation of the Strain Energy. The moment of inertia of a 
W10 3 45 rolled-steel shape is obtained from Appendix C and the given 
data is restated using units of kips and inches.

 P 5 40 kips L 5 12 ft 5 144 in.
 a 5 3 ft 5 36 in. b 5 9 ft 5 108 in.

E 5 29 3 106 psi 5 29 3 103 ksi  I 5 248 in4

Substituting into the expression for U, we have

U 5
140 kips22136 in.221108 in.22

6129 3 103 ksi2 1248 in42 1144 in.2  U 5 3.89 in ? kips ◀

SAMPLE PROBLEM 11.2

(a) Taking into account only the effect of normal stresses due to bending, 
determine the strain energy of the prismatic beam AB for the loading shown. 
(b) Evaluate the strain energy, knowing that the beam is a W10 3 45, 
P 5 40 kips, L 5 12 ft, a 5 3 ft, b 5 9 ft, and E 5 29 3 106 psi.

A

L

a b

B
D

P

x v

a

Pb
L

b

D

M2

RA�

M1

M

x

A B

Pa
LRB�

P

x

A
Pb
LM1�

V1

x

Pb
LRA�

From A to D:

v

B

V2

Pa
LM2 � v

Pb
LRB �

From B to D:
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PROBLEMS

709

 11.1 Determine the modulus of resilience for each of the following 
metals:

  (a) Stainless steel
   AISI 302 (annealed):   E 5 190 GPa  sY 5 260 MPa
  (b) Stainless steel 2014-T6
   AISI 302 (cold-rolled): E 5 190 GPa sY 5 520 MPa
  (c) Malleable cast iron: E 5 165 GPa sY 5 230 MPa

 11.2 Determine the modulus of resilience for each of the following 
alloys:

  (a) Titanium: E 5 16.5 3 106 psi sY 5 120 ksi
  (b) Magnesium: E 5  6.5 3 106 psi sY 5 29 ksi
  (c) Cupronickel (annealed) E 5   20 3 106 psi sY 5 16 ksi

 11.3 Determine the modulus of resilience for each of the following 
grades of structural steel:

  (a) ASTM A709 Grade 50: sY 5 50 ksi
  (b) ASTM A913 Grade 65: sY 5 65 ksi
  (c) ASTM A709 Grade 100:  sY 5 100 ksi

 11.4 Determine the modulus of resilience for each of the following alu-
minum alloys:

  (a) 1100-H14:  E 5 70 GPa  sY 5 55 MPa
  (b) 2014-T6 E 5 72 GPa: sY 5 220 MPa
  (c) 6061-T6 E 5 69 GPa: sY 5 150 MPa

 11.5 The stress-strain diagram shown has been drawn from data obtained 
during a tensile test of an aluminum alloy. Using E 5 72 GPa, 
determine (a) the modulus of resilience of the alloy, (b) the modu-
lus of toughness of the alloy.

 11.6 The stress-strain diagram shown has been drawn from data obtained 
during a tensile test of a specimen of structural steel. Using E 5 
29 3 106 psi, determine (a) the modulus of resilience of the steel, 
(b) the modulus of toughness of the steel.

(MPa)

600

450

300

�

150

0.006
0.14 0.18

�

Fig. P11.5

0.002
0.021 0.2 0.25

100

(ksi)

80

60

40

20

0

�

�

Fig. P11.6
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710 Energy Methods

40

30

20

10

0.104
1.85

P'

P (kips)

(in.)	

	

15 in.

P

Fig. P11.7

 11.7 The load-deformation diagram shown has been drawn from data 
obtained during a tensile test of a 0.875-in.-diameter rod of an 
aluminum alloy. Knowing that the deformation was measured using 
a 15-in. gage length, determine (a) the modulus of resilience of 
the alloy, (b) the modulus of toughness of the alloy.

 11.8 The load-deformation diagram shown has been drawn from data 
obtained during a tensile test of structural steel. Knowing that the 
cross-sectional area of the specimen is 250 mm2 and that the defor-
mation was measured using a 500-mm gage length, determine 
(a) the modulus of resilience of the steel, (b) the modulus of tough-
ness of the steel.

P

B

C

2 ft

3 ft

A

in.3
4

in.5
8

Fig. P11.9

0.6
8.6 78 96

P

P'

500 mm75

100

P (kN)

(mm)	

	

50

25

Fig. P11.8

 11.9 Using E 5 29 3 106 psi, determine (a) the strain energy of the 
steel rod ABC when P 5 8 kips, (b) the corresponding strain 
energy density in portions AB and BC of the rod.
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711Problems 11.10 Using E 5 200 GPa, determine (a) the strain energy of the steel 
rod ABC when P 5 25 kN, (b) the corresponding strain-energy 
density in portions AB and BC of the rod.

 11.11 A 30-in. length of aluminum pipe of cross-sectional area 1.85 in2 
is welded to a fixed support A and to a rigid cap B. The steel rod 
EF, of 0.75-in. diameter, is welded to cap B. Knowing that the 
modulus of elasticity is 29 3 106 psi for the steel and 10.6 3 106 
psi for the aluminum, determine (a) the total strain energy of the 
system when P 5 8 kips, (b) the corresponding strain-energy den-
sity of the pipe CD and in the rod EF.

20-mm diameter

1.2 m

0.8 m
2 m

16-mm diameter

P

B
A

C

Fig. P11.10

 11.12 Rod AB is made of a steel for which the yield strength is sY 5 
450 MPa and E 5 200 GPa; rod BC is made of an aluminum alloy 
for which sY 5 280 MPa and E 5 73 GPa. Determine the maxi-
mum strain energy that can be acquired by the composite rod ABC 
without causing any permanent deformations.

 11.13 A single 6-mm-diameter steel pin B is used to connect the steel 
strip DE to two aluminum strips, each of 20-mm width and 5-mm 
thickness. The modulus of elasticity is 200 GPa for the steel and 
70 GPa for the aluminum. Knowing that for the pin at B the allow-
able shearing stress is tall 5 85 MPa, determine, for the loading 
shown, the maximum strain energy that can be acquired by the 
assembled strips.

14-mm diameter

1.6 m

1.2 m

10-mm diameter

P

B

C

A

Fig. P11.12

1.25 m

0.5 m

5 mm

20 mm

B
A

D
C

E
P

Fig. P11.13

1.8 m

BC

P

Fig. P11.14

 11.14 Rod BC is made of a steel for which the yield strength is sY 5 
300 MPa and the modulus of elasticity is E 5 200 GPa. Knowing 
that a strain energy of 10 J must be acquired by the rod when 
the axial load P is applied, determine the diameter of the rod 
for which the factor of safety with respect to permanent defor-
mation is six.

Fig. P11.11

30 in.
D

B

A

E F
P

C

48 in.
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712 Energy Methods  11.15 The assembly ABC is made of a steel for which E 5 200 GPa and 
sY 5 320 MPa. Knowing that a strain energy of 5 J must be 
acquired by the assembly as the axial load P is applied, determine 
the factor of safety with respect to permanent deformation when 
(a) x 5 300 mm, (b) x 5 600 mm.

 11.16 Using E 5 10.6 3 106 psi, determine by approximate means the 
maximum strain energy that can be acquired by the aluminum rod 
shown if the allowable normal stress is sall 5 22 ksi.

P

A
x 900 mm

18-mm diameter

12-mm diameter B

C

Fig. P11.15

4 @ 1.5 in. � 6 in.

A

B

1.5 in.
2.10 in.

2.55 in.
2.85 in.

3 in.
P

Fig. P11.16

 11.17 Show by integration that the strain energy of the tapered rod AB is

U 5
1
4

 
P2L

EAmin

  where Amin is the cross-sectional area at end B.

 11.18 through 11.21 In the truss shown, all members are made of 
the same material and have the uniform cross-sectional area indi-
cated. Determine the strain energy of the truss when the load P 
is applied.

Fig. P11.17

L
B

2c

c

A

P

Fig. P11.18

l

C

A

A

P

D

B60�

Fig. P11.20

A A

2A DB

C

l l
P

l1
2

Fig. P11.21

C

30°

B

l

A

A A

D

P

l

l

D

B

C
1
2

l1
2

A

A
P

Fig. P11.19
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713Problems 11.22 Each member of the truss shown is made of steel and has the 
cross-sectional area shown. Using E 5 29 3 106 psi, determine the 
strain energy of the truss for the loading shown.

3 in2

4 in2
20 kips

24 kips

D

B

C

7.5 ft

4 ft

Fig. P11.22

 11.23 Each member of the truss shown is made of aluminum and has 
the cross-sectional area shown. Using E 5 72 GPa, determine the 
strain energy of the truss for the loading shown.

 11.24 through 11.27 Taking into account only the effect of normal 
stresses, determine the strain energy of the prismatic beam AB for 
the loading shown.

30 kN

80 kN

2500 mm2

2000 mm2

C

D
B

2.2 m
1 m

2.4 m

Fig. P11.23

w

B
A

L

Fig. P11.24

B

w

A

L

Fig. P11.25

M0

A B
D

L

a b

Fig. P11.26

D E
BA

a a

L

P P

Fig. P11.27

 11.28 and 11.29 Using E 5 200 GPa, determine the strain energy 
due to bending for the steel beam and loading shown. (Ignore the 
effect of shearing stresses.)

Fig. P11.28

B
C

180 kN

A

2.4 m 2.4 m

4.8 m

W360 
 64

Fig. P11.29

B
D E

80 kN

A

80 kN

W310 
 74

1.6 m 1.6 m 1.6 m

4.8 m
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714 Energy Methods  11.30 and 11.31 Using E 5 29 3 106 psi, determine the strain energy 
due to bending for the steel beam and loading shown. (Ignore the 
effect of shearing stresses.)

C
B

4 kips

A

W6 � 9
8 ft

2 ft

Fig. P11.30

B
A D

C
D

60 in.
15 in. 15 in.

1.5 in.

3 in.

2 kips 2 kips

Fig. P11.31

 11.32 Assuming that the prismatic beam AB has a rectangular cross sec-
tion, show that for the given loading the maximum value of the 
strain-energy density in the beam is

umax 5 15 

U
V

  where U is the strain energy of the beam and V is its volume.

 11.33 The ship at A has just started to drill for oil on the ocean floor at 
a depth of 5000 ft. The steel drill pipe has an outer diameter of 
8 in. and a uniform wall thickness of 0.5 in. Knowing that the top 
of the drill pipe rotates through two complete revolutions before 
the drill bit at B starts to operate and using G 5 11.2 3 106 psi, 
determine the maximum strain energy acquired by the drill pipe.

 11.34 Rod AC is made of aluminum and is subjected to a torque T applied 
at C. Knowing that G 5 73 GPa and that portion BC of the rod is 
hollow and has an inner diameter of 16 mm, determine the strain 
energy of the rod for a maximum shearing stress of 120 MPa.

w

B
A

L

Fig. P11.32

5000 ft

A

B

Fig. P11.33

24-mm diameter

400 mm

500 mm

C
B

A

T

Fig. P11.34

 11.35 Show by integration that the strain energy in the tapered rod AB 
is

U 5
7
48

 
T 

2L
GJmin

  where Jmin is the polar moment of inertia of the rod at end B.Fig. P11.35

L
B

2c

c

A

T
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715Problems 11.36 The state of stress shown occurs in a machine component made 
of a grade of steel for which sY 5 65 ksi. Using the maximum-
distortion-energy criterion, determine the factor of safety associated 
with the yield strength when (a) sy 5 116 ksi, (b) sy 5 216 ksi.

 11.37 The state of stress shown occurs in a machine component made 
of a grade of steel for which sY 5 65 ksi. Using the maximum-
distortion-energy criterion, determine the range of values of sy for 
which the factor of safety associated with the yield strength is equal 
to or larger than 2.2.

 11.38 The state of stress shown occurs in a machine component made of 
a brass for which sY 5 160 MPa. Using the maximum-distortion-
energy criterion, determine the range of values of sz for which 
yield does not occur.

z x

8 ksi

14 ksi

y

σy

Fig. P11.36 and P11.37

z

σz

75 MPa

y

x

100 MPa

20 MPa

Fig. P11.38 and P11.39

 11.39 The state of stress shown occurs in a machine component made of 
a brass for which sY 5 160 MPa. Using the maximum-distortion-
energy criterion, determine whether yield occurs when (a) sz 5 
145 MPa, (b) sz 5 245 MPa.

 11.40 Determine the strain energy of the prismatic beam AB, taking into 
account the effect of both normal and shearing stresses.

 *11.41 A vibration isolation support is made by bonding a rod A, of radius 
R1, and a tube B, of inner radius R2, to a hollow rubber cylinder. 
Denoting by G the modulus of rigidity of the rubber, determine 
the strain energy of the hollow rubber cylinder for the loading 
shown.

B

b

dA

L

M0

Fig. P11.40

Q

B

A

L

(b)

A

B

R2 R1

(a)

A
Q

Fig. P11.41
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716 Energy Methods 11.7 IMPACT LOADING
Consider a rod BD of uniform cross section which is hit at its end B 
by a body of mass m moving with a velocity v0 (Fig. 11.22a). As the 
rod deforms under the impact (Fig. 11.22b), stresses develop within 
the rod and reach a maximum value sm. After vibrating for a while, 
the rod will come to rest, and all stresses will disappear. Such a 
sequence of events is referred to as an impact loading (Photo 11.2).
 In order to determine the maximum value sm of the stress 
occurring at a given point of a structure subjected to an impact load-
ing, we are going to make several simplifying assumptions.
 First, we assume that the kinetic energy T 5 1

2 mv2
0 of the strik-

ing body is transferred entirely to the structure and, thus, that the 
strain energy Um corresponding to the maximum deformation xm is

 Um 5 1
2 mv2

0 (11.37)

This assumption leads to the following two specific requirements:

 1. No energy should be dissipated during the impact.
 2. The striking body should not bounce off the structure and 

retain part of its energy. This, in turn, necessitates that the 
inertia of the structure be negligible, compared to the inertia 
of the striking body.

 In practice, neither of these requirements is satisfied, and only 
part of the kinetic energy of the striking body is actually transferred 
to the structure. Thus, assuming that all of the kinetic energy of the 
striking body is transferred to the structure leads to a conservative 
design of that structure.
 We further assume that the stress-strain diagram obtained from 
a static test of the material is also valid under impact loading. Thus, 
for an elastic deformation of the structure, we can express the maxi-
mum value of the strain energy as

 
Um 5 #  

s2
m

2E
 dV

 
(11.38)

 In the case of the uniform rod of Fig. 11.22, the maximum 
stress sm has the same value throughout the rod, and we write 
Um 5 s2

m Vy2E. Solving for sm and substituting for Um from Eq. 
(11.37), we write

 
sm 5 B

2UmE
V

5 B
mv2

0E
V  

(11.39)

We note from the expression obtained that selecting a rod with a 
large volume V and a low modulus of elasticity E will result in a 
smaller value of the maximum stress sm for a given impact 
loading.
 In most problems, the distribution of stresses in the structure 
is not uniform, and formula (11.39) does not apply. It is then 
 convenient to determine the static load Pm, which would produce 
the same strain energy as the impact loading, and compute from Pm 
the corresponding value sm of the largest stress occurring in the 
structure.

(a)

Area � A

v0

v � 0

B

B

D

D

L

(b)

m

xm

Fig. 11.22 Rod subject to impact loading.

Photo 11.2 Steam alternately lifts a weight 
inside the pile driver and then propels it 
downward. This delivers a large impact load to 
the pile that is being driven into the ground.
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717

EXAMPLE 11.06A body of mass m moving with a velocity v0 hits the end B of the non-
uniform rod BCD (Fig. 11.23). Knowing that the diameter of portion BC 
is twice the diameter of portion CD, determine the maximum value sm 
of the stress in the rod.

Making n 5 2 in the expression (11.15) obtained in Example 11.01, 
we find that when rod BCD is subjected to a static load Pm, its strain 
energy is

 
Um 5

5P2
mL

16AE 
(11.40)

where A is the cross-sectional area of portion CD of the rod. Solving 
Eq. (11.40) for Pm, we find that the static load that produces in the rod 
the same strain energy as the given impact loading is

Pm 5 B
16
5

 
UmAE

L

where Um is given by Eq. (11.37). The largest stress occurs in portion CD 
of the rod. Dividing Pm by the area A of that portion, we have

 
sm 5

Pm

A
5 B

16
5

 
UmE
AL  

(11.41)

or, substituting for Um from Eq. (11.37),

sm 5 B
8
5

 
mv2

0 E
AL

5 1.265B
mv2

0 E
AL

Comparing this value with the value obtained for sm in the case of 
the uniform rod of Fig. 11.22 and making V 5 AL in Eq. (11.39), we note 
that the maximum stress in the rod of variable cross section is 26.5% larger 
than in the lighter uniform rod. Thus, as we observed earlier in our discus-
sion of Example 11.01, increasing the diameter of portion BC of the rod 
results in a decrease of the energy-absorbing capacity of the rod.

Area � 4A

v0

B

C

L

A

D

1
2

L1
2

Fig. 11.23

EXAMPLE 11.07A block of weight W is dropped from a height h onto the free end of the 
cantilever beam AB (Fig. 11.24). Determine the maximum value of the 
stress in the beam.

As it falls through the distance h, the potential energy Wh of the 
block is transformed into kinetic energy. As a result of the impact, the 
kinetic energy in turn is transformed into strain energy. We have, 
therefore,†

 Um 5 Wh (11.42)

h

A
B

W

L

Fig. 11.24

†The total distance through which the block drops is actually h 1 ym, where ym is the 
maximum deflection of the end of the beam. Thus, a more accurate expression for Um 
(see Sample Prob. 11.3) is

 Um 5 W(h 1 ym) (11.429)

However, when h W ym, we may neglect ym and use Eq. (11.42).
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Recalling the expression obtained for the strain energy of the can-
tilever beam AB in Example 11.03 and neglecting the effect of shear, we 
write

Um 5
P2

mL3

6EI

Solving this equation for Pm, we find that the static force that produces 
in the beam the same strain energy is

 
Pm 5 B

6UmEI

L3  
(11.43)

The maximum stress sm occurs at the fixed end B and is

sm 5
0M 0 c

I
5

PmLc
I

Substituting for Pm from (11.43), we write

 
sm 5 B

6UmE

L1Iyc22  (11.44)

or, recalling (11.42),

sm 5 B
6WhE

L1Iyc22

718

11.8 DESIGN FOR IMPACT LOADS
Let us now compare the values obtained in the preceding section for 
the maximum stress sm (a) in the rod of uniform cross section of 
Fig. 11.22, (b) in the rod of variable cross section of Example 11.06, 
and (c) in the cantilever beam of Example 11.07, assuming that the 
last has a circular cross section of radius c.
 (a) We first recall from Eq. (11.39) that, if Um denotes the 
amount of energy transferred to the rod as a result of the impact 
loading, the maximum stress in the rod of uniform cross section is

 
sm 5 B

2UmE
V

 (11.45a)

where V is the volume of the rod.
 (b) Considering next the rod of Example 11.06 and observing 
that the volume of the rod is

V 5 4A1Ly22 1 A1Ly22 5 5ALy2

we substitute AL 5 2Vy5 into Eq. (11.41) and write

 
sm 5 B

8UmE
V

 (11.45b)

 (c) Finally, recalling that I 5 1
4 pc4 for a beam of circular cross 

section, we note that

L1Iyc22 5 L114 pc4yc22 5 1
4 1pc2L2 5 1

4V
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719where V denotes the volume of the beam. Substituting into Eq. 
(11.44), we express the maximum stress in the cantilever beam of 
Example 11.07 as

 
sm 5 B

24UmE
V

 (11.45c)

 We note that, in each case, the maximum stress sm is propor-
tional to the square root of the modulus of elasticity of the material 
and inversely proportional to the square root of the volume of the 
member. Assuming all three members to have the same volume and 
to be of the same material, we also note that, for a given value of 
the absorbed energy, the uniform rod will experience the lowest 
maximum stress, and the cantilever beam the highest one.
 This observation can be explained by the fact that, the distribu-
tion of stresses being uniform in case a, the strain energy will be 
uniformly distributed throughout the rod. In case b, on the other 
hand, the stresses in portion BC of the rod are only 25% as large as 
the stresses in portion CD. This uneven distribution of the stresses 
and of the strain energy results in a maximum stress sm twice as 
large as the corresponding stress in the uniform rod. Finally, in case 
c, where the cantilever beam is subjected to a transverse impact 
loading, the stresses vary linearly along the beam as well as across a 
transverse section. The very uneven resulting distribution of strain 
energy causes the maximum stress sm to be 3.46 times larger than 
if the same member had been loaded axially as in case a.
 The properties noted in the three specific cases discussed in 
this section are quite general and can be observed in all types of 
structures and impact loadings. We thus conclude that a structure 
designed to withstand effectively an impact load should

 1. Have a large volume
 2. Be made of a material with a low modulus of elasticity and a 

high yield strength
 3. Be shaped so that the stresses are distributed as evenly as pos-

sible throughout the structure

11.9 WORK AND ENERGY UNDER A SINGLE LOAD
When we first introduced the concept of strain energy at the begin-
ning of this chapter, we considered the work done by an axial load 
P applied to the end of a rod of uniform cross section (Fig. 11.1). 
We defined the strain energy of the rod for an elongation x1 as the 
work of the load P as it is slowly increased from 0 to the value P1 
corresponding to x1. We wrote

 
Strain energy 5 U 5 #

x1

0

P dx (11.2)

In the case of an elastic deformation, the work of the load P, and 
thus the strain energy of the rod, were expressed as

 U 5 1
2 P1x1 (11.3)

11.9 Work and Energy under a Single Load
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720 Energy Methods  Later, in Secs. 11.4 and 11.5, we computed the strain energy 
of structural members under various loading conditions by determin-
ing the strain-energy density u at every point of the member and 
integrating u over the entire member.
 However, when a structure or member is subjected to a single 
concentrated load, it is possible to use Eq. (11.3) to evaluate its elastic 
strain energy, provided, of course, that the relation between the load 
and the resulting deformation is known. For instance, in the case of 
the cantilever beam of Example 11.03 (Fig. 11.25), we write

U 5 1
2 P1y1

and, substituting for y1 the value obtained from the table of Beam 
Deflections and Slopes of Appendix D,

 
U 5

1
2

 P1aP1L
3

3EI
b 5

P2
1L

3

6EI
 (11.46)

 A similar approach can be used to determine the strain energy 
of a structure or member subjected to a single couple. Recalling that 
the elementary work of a couple of moment M is M du, where du is 
a small angle, we find, since M and u are linearly related, that the 
elastic strain energy of a cantilever beam AB subjected to a single 
couple M1 at its end A (Fig. 11.26) can be expressed as

 
U 5 #

u1

0

M du 5 1
2 M1u1 (11.47)

where u1 is the slope of the beam at A. Substituting for u1 the value 
obtained from Appendix D, we write

 
U 5

1
2

 M1aM1L
EI
b 5

M2
1L

2EI
 (11.48)

 In a similar way, the elastic strain energy of a uniform circular 
shaft AB of length L subjected at its end B to a single torque T1 
(Fig. 11.27) can be expressed as

 
U 5 #

f1

0
 T df 5 1

2 T1f1 (11.49)

L

A

B

P1

y1

Fig. 11.25 Cantilever beam 
with load P1.

L

A

B

M1

�1

Fig. 11.26 Cantilever beam 
with couple M1.

�1

T1

L

A

B

Fig. 11.27 Shaft with Torque T1.
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721

Photo 11.3 As the automobile crashed into the barrier, considerable energy 
was dissipated as heat during the permanent deformation of the automobile and 
the barrier. Source: Crash test photo courtesy of Sec-Envel and L.I.E.R., France.

11.9 Work and Energy under a Single Load

EXAMPLE 11.08A block of mass m moving with a velocity v0 hits squarely the prismatic 
member AB at its midpoint C (Fig. 11.28). Determine (a) the equivalent 
static load Pm, (b) the maximum stress sm in the member, and (c) the 
maximum deflection xm at point C.

(a) Equivalent Static Load. The maximum strain energy of the mem-
ber is equal to the kinetic energy of the block before impact. We have

 Um 5 1
2 mv2

0 (11.50)

On the other hand, expressing Um as the work of the equivalent horizontal 
static load as it is slowly applied at the midpoint C of the member, we write

 Um 5 1
2 Pm xm (11.51)

where xm is the deflection of C corresponding to the static load Pm. From 
the table of Beam Deflections and Slopes of Appendix D, we find that

 
xm 5

PmL3

48EI
 (11.52)

L

v0

B

A

C
m

1
2

L1
2

Fig. 11.28

Substituting for the angle of twist f1 from Eq. (3.16), we verify 
that

U 5
1
2

 T1aT1L
JG
b 5

T1
2L

2JG

as previously obtained in Sec. 11.5.
 The method presented in this section may simplify the solution 
of many impact-loading problems. In Example 11.08, the crash of an 
automobile into a barrier (Photo 11.3) is considered by using a sim-
plified model consisting of a block and a simple beam.
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Substituting for xm from (11.52) into (11.51), we write

Um 5
1
2

 
P2

m L
3

48EI

Solving for Pm and recalling Eq. (11.50), we find that the static load 
equivalent to the given impact loading is

 
Pm 5 B

96UmEI

L3 5 B
48mv2

0 EI

L3  (11.53)

(b) Maximum Stress. Drawing the free-body diagram of the 
member (Fig. 11.29), we find that the maximum value of the bending 
moment occurs at C and is Mmax 5 PmLy4. The maximum stress, there-
fore, occurs in a transverse section through C and is equal to

sm 5
Mmax c

I
5

PmLc
4I

Substituting for Pm from (11.53), we write

sm 5 B
3mv2

0 EI

L1Iyc22
(c) Maximum Deflection. Substituting into Eq. (11.52) the 

expression obtained for Pm in (11.53), we have

xm 5
L3

48EI
 B

48mv2
0 EI

L3 5 B
mv2

0 L
3

48EI

722

11.10  DEFLECTION UNDER A SINGLE LOAD 
BY THE WORK-ENERGY METHOD

We saw in the preceding section that, if the deflection x1 of a struc-
ture or member under a single concentrated load P1 is known, the 
corresponding strain energy U is obtained by writing

 U 5 1
2 P1x1 (11.3)

A similar expression for the strain energy of a structural member 
under a single couple M1 is:

 U 5 1
2 M1u1 (11.47)

 Conversely, if the strain energy U of a structure or member 
subjected to a single concentrated load P1 or couple M1 is known, 
Eq. (11.3) or (11.47) can be used to determine the corresponding 
deflection x1 or angle u1. In order to determine the deflection 
under a single load applied to a structure consisting of several com-
ponent parts, it is easier, rather than use one of the methods of 
Chap. 9, to first compute the strain energy of the structure by 
integrating the strain-energy density over its various parts, as was 
done in Secs. 11.4 and 11.5, and then use either Eq. (11.3) or 
Eq. (11.47) to obtain the desired deflection. Similarly, the angle of 
twist f1 of a composite shaft can be obtained by integrating the 

Pm

B

A

C

L1
2

PmRB �
1
2

PmRA �
1
2

Fig. 11.29

bee80288_ch11_692-758.indd Page 722  11/12/10  5:15:22 PM user-f499bee80288_ch11_692-758.indd Page 722  11/12/10  5:15:22 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch11/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/ch11



723

EXAMPLE 11.09A load P is supported at B by two uniform rods of the same cross-sectional 
area A (Fig. 11.30). Determine the vertical deflection of point B.

The strain energy of the system under the given load was deter-
mined in Example 11.02. Equating the expression obtained for U to the 
work of the load, we write

U 5 0.364 
P2l
AE

5
1
2

 PyB

and, solving for the vertical deflection of B,

yB 5 0.728 
Pl
AE

Remark.  We should note that, once the forces in the two rods have 
been obtained (see Example 11.02), the deformations dByC and dByD of the 
rods could be obtained by the method of Chap. 2. Determining the vertical 
deflection of point B from these deformations, however, would require a 
careful geometric analysis of the various displacements involved. The 
strain-energy method used here makes such an analysis unnecessary.

C

D

B

l

P

3

3

4

4

Fig. 11.30

EXAMPLE 11.10Determine the deflection of end A of the cantilever beam AB (Fig. 11.31), 
taking into account the effect of (a) the normal stresses only, (b) both the 
normal and shearing stresses.

(a) Effect of Normal Stresses. The work of the force P as it is 
slowly applied to A is

U 5 1
2 PyA

Substituting for U the expression obtained for the strain energy of the 
beam in Example 11.03, where only the effect of the normal stresses was 
considered, we write

P2L3

6EI
5

1
2

 PyA

strain-energy density over the various parts of the shaft and solving 
Eq. (11.49) for f1.
 It should be kept in mind that the method presented in this 
section can be used only if the given structure is subjected to a single 
concentrated load or couple. The strain energy of a structure sub-
jected to several loads cannot be determined by computing the work 
of each load as if it were applied independently to the structure (see 
Sec. 11.11). We can also observe that, even if it were possible to 
compute the strain energy of the structure in this manner, only one 
equation would be available to determine the deflections correspond-
ing to the various loads. In Secs. 11.12 and 11.13, another method 
based on the concept of strain energy is presented, one that can be 
used to determine the deflection or slope at a given point of a struc-
ture, even when that structure is subjected simultaneously to several 
concentrated loads, distributed loads, or couples.

Fig. 11.31

P
L

A

B

h

b

11.10 Defl ection under a Single Load 
by the Work-Energy Method
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and, solving for yA,

yA 5
PL3

3EI

(b) Effect of Normal and Shearing Stresses. We now substi-
tute for U the expression (11.24) obtained in Example 11.05, where the 
effects of both the normal and shearing stresses were taken into account. 
We have

P2L3

6EI
 a1 1

3Eh2

10GL2b 5
1
2

 PyA

and, solving for yA,

yA 5
PL3

3EI
 a1 1

3Eh2

10GL2b
We note that the relative error when the effect of shear is neglected is 
the same that was obtained in Example 11.05, i.e., less than 0.9(hyL)2. As 
we indicated then, this is less than 0.9% for a beam with a ratio hyL less 
than 1

10.

 EXAMPLE 11.11 A torque T is applied at the end D of shaft BCD (Fig. 11.32). Knowing 
that both portions of the shaft are of the same material and same length, 
but that the diameter of BC is twice the diameter of CD, determine the 
angle of twist for the entire shaft.

Fig. 11.32

1
2 L

1
2 L

C

D

T
B

diam. � 2d
diam. � d

The strain energy of a similar shaft was determined in Example 
11.04 by breaking the shaft into its component parts BC and CD. Making 
n 5 2 in Eq. (11.23), we have

U 5
17
32

 
T 

2L
2GJ

where G is the modulus of rigidity of the material and J the polar moment 
of inertia of portion CD of the shaft. Setting U equal to the work of the 
torque as it is slowly applied to end D, and recalling Eq. (11.49), we 
write

17
32

 
T 

2L
2GJ

5
1
2

 TfDyB

and, solving for the angle of twist fDyB,

fDyB 5
17TL
32GJ

724
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725

SOLUTION

 Principle of Work and Energy.  Since the block is released from rest, 
we note that in position 1 both the kinetic energy and the strain energy are 
zero. In position 2, where the maximum deflection ym occurs, the kinetic 
energy is again zero. Referring to the table of Beam Deflections and Slopes 
of Appendix D, we find the expression for ym shown. The strain energy of 
the beam in position 2 is

U2 5
1
2

 Pmym 5
1
2

 
48EI

L3  y2
m  

U2 5
24EI

L3  y2
m

We observe that the work done by the weight W of the block is W(h 1 ym). 
Equating the strain energy of the beam to the work done by W, we have

 
24EI

L3  y2
m 5 W1h 1 ym2 (1)

 a. Maximum Deflection of Point C. From the given data we have

EI 5 173 3 109 Pa2 1
12 10.04 m24 5 15.573 3 103 N ? m2

L 5 1 m  h 5 0.040 m  W 5 mg 5 180 kg2 19.81 m/s22 5 784.8 N

Substituting into Eq. (1), we obtain and solve the quadratic equation

1373.8 3 1032y2
m 2 784.8ym 2 31.39 5 0 ym 5 10.27 mm ◀

 b. Maximum Stress. The value of Pm is

Pm 5
48EI

L3  ym 5
48115.573 3 103 N ? m2

11 m23 10.01027 m2
  

Pm 5 7677 N

Recalling that sm 5 Mmaxc/I and Mmax 5 1
4 PmL, we write

 
sm 5

114 PmL2c
I

5

1
4 17677 N2 11 m2 10.020 m2

1
12 10.040 m24   

sm 5 179.9 MPa ◀

An approximation for the work done by the weight of the block can be 
obtained by omitting ym from the expression for the work and from the 
right-hand member of Eq. (1), as was done in Example 11.07. If this approx-
imation is used here, we find ym 5 9.16 mm; the error is 10.8%. However, 
if an 8-kg block is dropped from a height of 400 mm, producing the same 
value of Wh, omitting ym from the right-hand member of Eq. (1) results in 
an error of only 1.2%. A further discussion of this approximation is given in 
Prob. 11.70.

SAMPLE PROBLEM 11.3

The block D of mass m is released from rest and falls a distance h before 
it strikes the midpoint C of the aluminum beam AB. Using E 5 73 GPa, 
determine (a) the maximum deflection of point C, (b) the maximum stress 
that occurs in the beam.

A

L � 1 m

B

D

C

m � 80 kg

h � 40 mm

40 mm

40 mm

A

Position 1 Position 2

AB Bh

ym

D

D

A B

C

PmL3

48EI
ym �

48EI
L3Pm � ym

From Appendix D
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SOLUTION

 Axial Forces in Truss Members.  The reactions are found by using 
the free-body diagram of the entire truss. We then consider in sequence the 
equilibrium of joints, E, C, D, and B. At each joint we determine the forces 
indicated by dashed lines. At joint B, the equation oFx 5 0 provides a check 
of our computations.

SAMPLE PROBLEM 11.4

Members of the truss shown consist of sections of aluminum pipe with the 
cross-sectional areas indicated. Using E 5 73 GPa, determine the vertical 
deflection of point E caused by the load P.

500 mm2

0.8 m

0.6 m
1.5 m

P � 40 kN

A C E

B D

500 mm2

1000 mm2

A

B

E 17
178

8
4 5

3

15
8

15
15

E
C

D
B � 21P/8

Ax � 21P/8

P
Ay � P

FCE FAC
FCE �

FCD � 0
FAD

FBD

P

FCDFDE

17
8FDE � P

21
8FBD �

FAB

P21
8B � P

B

P

 oFy 5 0:  FDE 5 217
8  P   oFx 5 0:  FAC 5 115

8  P   oFy 5 0:  FAD 5 15
4 P    oFy 5 0: FAB 5 0

 oFx 5 0:  FCE 5 115
8  P  oFy 5 0:  FCD 5 0   oFx 5 0:  FBD 5 221

8 P  oFx 5 0: 1Checks2
 Strain Energy.  Noting that E is the same for all members, we express 
the strain energy of the truss as follows

 
U 5 a

F2
i  Li

2Ai E
5

1
2E

 a
F2

i  Li

Ai
 (1)

where Fi is the force in a given member 
as indicated in the following table and 
where the summation is extended over all 
members of the truss.

a
Fi

2Li

Ai
5 29 700P2

Returning to Eq. (1), we have

U 5 11y2E2 129.7 3 103P22.
 Principle of Work-Energy.  We recall that the work done by the load 
P as it is gradually applied is 1

2 PyE. Equating the work done by P to the 
strain energy U and recalling that E 5 73 GPa and P 5 40 kN, we have

1
2

 PyE 5 U
  

1
2

 PyE 5
1

2E
 129.7 3 103P22

yE 5
1
E

 129.7 3 103P2 5
129.7 3 1032 140 3 1032

73 3 109

 yE 5 16.27 3 1023 m yE 5 16.27 mmw ◀

Member Fi Li, m Ai, m
2 

Fi
2Li

Ai

 AB 0 0.8 500 3 1026 0
 AC 115Py8 0.6 500 3 1026 4 219P2

 AD 15Py4 1.0 500 3 1026 3 125P2

 BD 221Py8 0.6 1000 3 1026 4 134P2

 CD 0 0.8 1000 3 1026 0
 CE 115Py8 1.5 500 3 1026 10 547P2

 DE 217Py8 1.7 1000 3 1026 7 677P2
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PROBLEMS
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 11.42 The cylindrical block E has a speed v0 5 16 ft/s when it strikes 
squarely the yoke BD that is attached to the 7

8-in.-diameter rods 
AB and CD. Knowing that the rods are made of a steel for which 
sY 5 50 ksi and E 5 29 3 106 psi, determine the weight of block 
E for which the factor of safety is five with respect to permanent 
deformation of the rods.

 11.43 The 18-lb cylindrical block E has a horizontal velocity v0 when it 
strikes squarely the yoke BD that is attached to the 7

8-in.-diameter 
rods AB and CD. Knowing that the rods are made of a steel for which 
sY 5 50 ksi and E 5 29 3 106 psi, determine the maximum allow-
able speed v0 if the rods are not to be permanently deformed.

 11.44 Collar D is released from rest in the position shown and is stopped 
by a small plate attached at end C of the vertical rod ABC. Deter-
mine the mass of the collar for which the maximum normal stress 
in portion BC is 125 MPa.

3.5 ft

A

E

B

DC

v0

Fig. P11.42 and P11.43

B

A

C

D

Bronze
E � 105 GPa
12-mm diameter

Aluminum
E � 70 GPa
9-mm diameter

0.6 m

2.5 m

4 m

Fig. P11.44
2.5 m

B F

h

D

G

A EC

Fig. P11.46

 11.45 Solve Prob. 11.44, assuming that both portions of rod ABC are 
made of aluminum.

11.46 The 48-kg collar G is released from rest in the position shown and 
is stopped by plate BDF that is attached to the 20-mm-diameter 
steel rod CD and to the 15-mm-diameter steel rods AB and EF. 
Knowing that for the grade of steel used sall 5 180 MPa and E 5
200 GPa, determine the largest allowable distance h.

 11.47 Solve Prob. 11.46, assuming that the 20-mm-diameter steel rod CD
is replaced by a 20-mm-diameter rod made of an aluminum alloy 
for which sall 5 150 MPa and E 5 75 GPa.

 11.48 The steel beam AB is struck squarely at its midpoint C by a 
45-kg block moving horizontally with a speed v0 5 2 m/s. Using 
E 5 200 GPa, determine (a) the equivalent static load, (b) the 
maximum normal stress in the beam, (c) the maximum deflection 
of the midpoint C of the beam.

 11.49 Solve Prob. 11.48, assuming that the W150 3 13.5 rolled-steel beam 
is rotated by 908 about its longitudinal axis so that its web is vertical.

1.5 m

A

B

v0
D

C

1.5 m

W150 � 13.5

Fig. P11.48 
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728 Energy Methods  11.50 A 25-lb block C moving horizontally with at velocity v0 hits the 
post AB squarely as shown. Using E 5 29 3 106 psi, determine 
the largest speed v0 for which the maximum normal stress in the 
pipe does not exceed 18 ksi.

 11.51 Solve Prob. 11.50, assuming that the post AB has been rotated 908 
about its longitudinal axis.

 11.52 and 11.53 The 2-kg block D is dropped from the position 
shown onto the end of a 16-mm-diameter rod. Knowing that E 5 
200 GPa, determine (a) the maximum deflection of end A, (b) the 
maximum bending moment in the rod, (c) the maximum normal 
stress in the rod.

7.5 ft

A

B

v0

W5 � 16

C

Fig. P11.50

B

D

0.6 m

2 kg
40 mm

A

Fig. P11.52

D
2 kg

40 mm B
CA

0.6 m 0.6 m

Fig. P11.53

 11.54 The 45-lb block D is dropped from a height h 5 0.6 ft onto the 
steel beam AB. Knowing that E 5 29 3 106 psi, determine (a) the 
maximum deflection at point E, (b) the maximum normal stress in 
the beam.

 11.55 Solve Prob. 11.54, assuming that a W4 3 13 rolled-steel shape is 
used for beam AB.

 11.56 A block of weight W is dropped from a height h onto the horizontal 
beam AB and hits it at point D. (a) Show that the maximum deflec-
tion ym at point D can be expressed as

ym 5 ysta1 1 B1 1
2h
yst
b

  where yst represents the deflection at D caused by a static load W 
applied at that point and where the quantity in parenthesis is 
referred to as the impact factor. (b) Compute the impact factor for 
the beam and the impact of Prob. 11.52.

 11.57 A block of weight W is dropped from a height h onto the horizontal 
beam AB and hits point D. (a) Denoting by ym the exact value of 
the maximum deflection at D and by y9m the value obtained by 
neglecting the effect of this deflection on the change in potential 
energy of the block, show that the absolute value of the relative 
error is (y9m 2 ym)yym, never exceeding y9my2h. (b) Check the result 
obtained in part a by solving part a of Prob. 11.52 without taking 
ym into account when determining the change in potential energy 
of the load, and comparing the answer obtained in this way with 
the exact answer to that problem.

BA
E

D

S5 � 10

h

2 ft 4 ft

Fig. P11.54

BA

D'

D
h

W

ym

Fig. P11.56 and P11.57
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729Problems 11.58 and 11.59 Using the method of work and energy, determine 
the deflection at point D caused by the load P.

D

a L

B
A

P

Fig. P11.58

A

L

a b

B
D

P

Fig. P11.59

 11.60 and 11.61 Using the method of work and energy, determine 
the slope at point D caused by the couple M0.

AD

a L

B

M0

Fig. P11.60

M0

A B
D

L

a b

Fig. P11.61

 11.62 and 11.63 Using the method of work and energy, determine 
the deflection at point C caused by the load P.

2EI

EI EI

P

A B
C

a a a a

Fig. P11.62

B
A

L/2

2EI EI

L/2

C

P

Fig. P11.63

 11.64 Using the method of work and energy, determine the slope at point 
A caused by the couple M0.

 11.65 Using the method of work and energy, determine the slope at point 
D caused by the couple M0.

2EI
EIA

B

C

L/2L/2

M0

Fig. P11.64

2EI
EIA

B

D

L/2L/2

M0

Fig. P11.65
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730 Energy Methods  11.66 Torques of the same magnitude T are applied to the steel shafts 
AB and CD. Using the method of work and energy, determine the 
length L of the hollow portion of shaft CD for which the angle of 
twist at C is equal to 1.25 times the angle of twist at A.

60 in.

2 in.

1.5 in.

T

L
C

A

E
T

B

D

Fig. P11.66

 11.67 The 20-mm diameter steel rod BC is attached to the lever AB and 
to the fixed support C. The uniform steel lever is 10 mm thick and 
30 mm deep. Using the method of work and energy, determine 
the deflection of point A when L 5 600 mm. Use E 5 200 GPa 
and G 5 77.2 GPa.

 11.68 The 20-mm diameter steel rod BC is attached to the lever AB and 
to the fixed support C. The uniform steel lever is 10 mm thick and 
30 mm deep. Using the method of work and energy, determine 
the length L of the rod BC for which the deflection at point A is 
40 mm. Use E 5 200 GPa and G 5 77.2 GPa.

 11.69 Two solid steel shafts are connected by the gears shown. Using the 
method of work and energy, determine the angle through which 
end D rotates when T 5 820 N ? m. Use G 5 77.2 GPa.

C

A

450 N

B

L
500 mm

Fig. P11.67 and P11.68

A

60 mm

100 mm

50 mm

0.60 m

0.40 m D

C

B

T

40 mm

Fig. P11.69
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731Problems 11.70 The thin-walled hollow cylindrical member AB has a noncircular 
cross section of nonuniform thickness. Using the expression given 
in Eq. (3.53) of Sec. 3.13, and the expression for the strain-energy 
density given in Eq. (11.19), show that the angle of twist of mem-
ber AB is

f 5
TL

4A 
2G

 
C

 
ds
t

  where ds is an element of the center line of the wall cross section 
and A is the area enclosed by that center line.

 11.71 Each member of the truss shown has a uniform cross-sectional area A. 
Using the method of work and energy, determine the vertical 
deflection of the point of application of the load P.

L

T

T'

A

B

t

x

ds

Fig. P11.70

l3
4

l

P

DC

BA

Fig. P11.71

 11.72 Each member of the truss shown is made of steel and has a cross-
sectional area of 400 mm2. Using E 5 200 GPa, determine the 
deflection of point D caused by the 16-kN load.

 11.73 Each member of the truss shown is made of steel and has a cross-
sectional area of 5 in2. Using E 5 29 3 106 psi, determine the 
vertical deflection of point B caused by the 20-kip load.

C

D

16 kN

E

A B
1.5 m

0.8 m

Fig. P11.72

6 ft 6 ft

20 kips

2.5 ft
D

A
C

B

Fig. P11.73

6 ft 6 ft

2.5 ft

A B

DE

C

15 kips

Fig. P11.74

 11.74 Each member of the truss shown is made of steel and has a uni-
form cross-sectional area of 5 in2. Using E 5 29 3 106 psi, deter-
mine the vertical deflection of joint C caused by the application of 
the 15-kip load.
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 11.75 Each member of the truss shown is made of steel; the cross-
sectional area of member BC is 800 mm2 and for all other  members 
the cross-sectional area is 400 mm2. Using E 5 200 GPa,  determine 
the deflection of point D caused by the 60-kN load.

 11.76 The steel rod BC has a 24-mm diameter and the steel cable 
ABDCA has a 12-mm diameter. Using E 5 200 GPa, determine 
the deflection of joint D caused by the 12-kN load.

12 kN

D

C

A

B
360 mm

360 mm

480 mm 480 mm

Fig. P11.76

1.2 m

0.5 m

1.2 m

A

B D

C

60 kN

Fig. P11.75

*11.11 WORK AND ENERGY UNDER SEVERAL LOADS
In this section, the strain energy of a structure subjected to several 
loads will be considered and will be expressed in terms of the loads 
and the resulting deflections.
 Consider an elastic beam AB subjected to two concentrated loads 
P1 and P2. The strain energy of the beam is equal to the work of P1 
and P2 as they are slowly applied to the beam at C1 and C2, respectively 
(Fig. 11.33). However, in order to evaluate this work, we must first 
express the deflections x1 and x2 in terms of the loads P1 and P2.

BA

P1

C1

x1 x2

C2

P2

Fig. 11.33 Beam with multiple loads.BA

P1

x11 x21

C'1 C'2

Fig. 11.34

BA

P2

C"1 C"2

x12 x22

Fig. 11.35

 Let us assume that only P1 is applied to the beam (Fig. 11.34). 
We note that both C1 and C2 are deflected and that their deflections 
are proportional to the load P1. Denoting these deflections by x11 and 
x21, respectively, we write

 x11 5 a11P1  x21 5 a21P1 (11.54)

where a11 and a21 are constants called influence coefficients. These 
constants represent the deflections of C1 and C2, respectively, when 
a unit load is applied at C1 and are characteristics of the beam AB.
 Let us now assume that only P2 is applied to the beam 
(Fig. 11.35). Denoting by x12 and x22, respectively, the resulting 
deflections of C1 and C2, we write

 x12 5 a12P2  x22 5 a22P2 (11.55)

732 Energy Methods
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733

where a12 and a22 are the influence coefficients representing the 
deflections of C1 and C2, respectively, when a unit load is applied at 
C2. Applying the principle of superposition, we express the deflections 
x1 and x2 of C1 and C2 when both loads are applied (Fig. 11.33) as

 x1 5 x11 1 x12 5 a11P1 1 a12P2 (11.56)
 x2 5 x21 1 x22 5 a21P1 1 a22P2 (11.57)

 To compute the work done by P1 and P2, and thus the strain 
energy of the beam, it is convenient to assume that P1 is first applied 
slowly at C1 (Fig. 11.36a). Recalling the first of Eqs. (11.54), we 
express the work of P1 as

 1
2 P1x11 5 1

2 P11a11P12 5 1
2 a11P

2
1 (11.58)

and note that P2 does no work while C2 moves through x21, since it 
has not yet been applied to the beam.
 Now we slowly apply P2 at C2 (Fig. 11.36b); recalling the sec-
ond of Eqs. (11.55), we express the work of P2 as

 1
2 P2x22 5 1

2 P21a22P22 5 1
2 a22P

2
2 (11.59)

But, as P2 is slowly applied at C2, the point of application of P1 moves 
through x12 from C91 to C1, and the load P1 does work. Since P1 is 
fully applied during this displacement (Fig. 11.37), its work is equal 
to P1x12 or, recalling the first of Eqs. (11.55),

 P1x12 5 P11a12P22 5 a12P1P2 (11.60)

11.11 Work and Energy under Several Loads

P2P1

C'1 C'2

BA
x11 x21

C1 C2

C'2C'1 BA

x22x12

(b)

(a) P1

Fig. 11.36

C1C'

P1

P

O
1

x1

x11 x12

x

(a) Load-displacement
      diagram for C1 

C2

P2

P

O
C'2

x2

x21 x22

x

(b) Load-displacement
      diagram for C2 

Fig. 11.37 Load-displacement diagrams.
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734 Energy Methods

*11.12 CASTIGLIANO’S THEOREM
We recall the expression obtained in the preceding section for the strain 
energy of an elastic structure subjected to two loads P1 and P2:

 U 5 1
2 1a11P1

2 1 2a12P1P2 1 a22P2
22 (11.61)

where a11, a12, and a22 are the influence coefficients associated with 
the points of application C1 and C2 of the two loads. Differentiating 
both members of Eq. (11.61) with respect to P1 and recalling Eq. 
(11.56), we write

 
0U
0P1

5 a11P1 1 a12P2 5 x1 (11.63)

C1C"

P1

P

O
1

x1

x12 x11

x
C2C"

P2

P

O
2

x2

x22 x21

x

(a) Load-displacement
      diagram for C1 

(b) Load-displacement
      diagram for C2 

Fig. 11.39 Alternative load-displacement diagrams.

Adding the expressions obtained in (11.58), (11.59), and (11.60), we 
express the strain energy of the beam under the loads P1 and P2 as

 U 5 1
2 1a11P1

2 1 2a12P1P2 1 a22P2
22 (11.61)

 If the load P2 had first been applied to the beam (Fig. 11.38a), 
and then the load P1 (Fig. 11.38b), the work done by each load would 
have been as shown in Fig. 11.39. Calculations similar to those we 
have just carried out would lead to the following alternative expres-
sion for the strain energy of the beam:

 U 5 1
2 1a22P2

2 1 2a21P2P1 1 a11P1
22 (11.62)

Equating the right-hand members of Eqs. (11.61) and (11.62), we find 
that a12 5 a21, and thus conclude that the deflection produced at C1 by 
a unit load applied at C2 is equal to the deflection produced at C2 by a 
unit load applied at C1. This is known as Maxwell’s reciprocal theorem, 
after the British physicist James Clerk Maxwell (1831–1879).
 While we are now able to express the strain energy U of a 
structure subjected to several loads as a function of these loads, we 
cannot use the method of Sec. 11.10 to determine the deflection of 
such a structure. Indeed, computing the strain energy U by integrat-
ing the strain-energy density u over the structure and substituting 
the expression obtained into (11.61) would yield only one equation, 
which clearly could not be solved for the various coefficients a.

P1 P2

P2

C"1 C"2

BA
x12 x22

C1 C2

C"2C"1
BA

x21x11

(b)

(a)

Fig. 11.38
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735Differentiating both members of Eq. (11.61) with respect to P2, 
recalling Eq. (11.57), and keeping in mind that a12 5 a21, we have

 
0U
0P2

5 a12P1 1 a22P2 5 x2 (11.64)

 More generally, if an elastic structure is subjected to n loads 
P1, P2, . . ., Pn, the deflection xj of the point of application of Pj, 
measured along the line of action of Pj, can be expressed as the 
partial derivative of the strain energy of the structure with respect 
to the load Pj. We write

 
xj 5

0U
0Pj

 (11.65)

This is Castigliano’s theorem, named after the Italian engineer 
Alberto Castigliano (1847–1884) who first stated it.†
 Recalling that the work of a couple M is 1

2 Mu, where u is the 
angle of rotation at the point where the couple is slowly applied, we 
note that Castigliano’s theorem may be used to determine the slope 
of a beam at the point of application of a couple Mj. We have

 
uj 5

0U
0Mj

 (11.68)

Similarly, the angle of twist fj in a section of a shaft where a torque 
Tj is slowly applied is obtained by differentiating the strain energy 
of the shaft with respect to Tj:

 
fj 5

0U
0Tj

 (11.69)

†In the case of an elastic structure subjected to n loads P1, P2, . . ., Pn, the deflection of 
the point of application of Pj, measured along the line of action of Pj, can be expressed as

 
xj 5 a

k
ajkPk (11.66)

and the strain energy of the structure is found to be

 
U 5 1

2a
i
a

k
aikPiPk (11.67)

Differentiating U with respect to Pj, and observing that Pj is found in terms corresponding 
to either i 5 j or k 5 j, we write

0U
0Pj

5
1
2ak

ajk Pk 1
1
2ai

aijPi

or, since aij 5 aji,

0U
0Pj

5
1
2ak

ajk Pk 1
1
2ai

ajiPi 5 a
k
ajkPk

Recalling Eq. (11.66), we verify that

 
xj 5

0U
0Pj

 (11.65)

11.12 Castigliano’s Theorem
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736 Energy Methods *11.13 DEFLECTIONS BY CASTIGLIANO’S THEOREM
We saw in the preceding section that the deflection xj of a structure 
at the point of application of a load Pj can be determined by comput-
ing the partial derivative 0Uy0Pj of the strain energy U of the struc-
ture. As we recall from Secs. 11.4 and 11.5, the strain energy U is 
obtained by integrating or summing over the structure the strain 
energy of each element of the structure. The calculation by Castigli-
ano’s theorem of the deflection xj is simplified if the differentiation 
with respect to the load Pj is carried out before the integration or 
summation.
 In the case of a beam, for example, we recall from Sec. 11.4 
that

 
U 5 #

L

0

 
M2

2EI
 dx (11.17)

and determine the deflection xj of the point of application of the load 
Pj by writing

 
xj 5

0U
0Pj

5 #
L

0

 
M
EI

 
0M
0Pj

 dx (11.70)

 In the case of a truss consisting of n uniform members of length 
Li, cross-sectional area Ai, and internal force Fi, we recall Eq. (11.14) 
and express the strain energy U of the truss as

 
U 5 a

n

i51
 
Fi

2Li

2AiE
 (11.71)

The deflection xj of the point of application of the load Pj is obtained 
by differentiating with respect to Pj each term of the sum. We 
write

 
xj 5

0U
0Pj

5 a
n

i51
 
Fi Li

Ai E
 
0Fi

0Pj
 (11.72)

EXAMPLE 11.12 The cantilever beam AB supports a uniformly distributed load w and 
a concentrated load P as shown (Fig. 11.40). Knowing that L 5 2 m, 
w 5 4 kN/m, P 5 6 kN, and EI 5 5 MN ? m2, determine the deflec-
tion at A.

Fig. 11.40

B
A

P

w

L
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The deflection yA of the point A where the load P is applied is 
obtained from Eq. (11.70). Since P is vertical and directed downward, yA 
represents a vertical deflection and is positive downward. We have

 
yA 5

0U
0P

5 #
L

0

 
M
EI

 
0M
0P

 dx
 

(11.73)

The bending moment M at a distance x from A is

 M 5 21Px 1 1
2 wx22 (11.74)

and its derivative with respect to P is

0M
0P

5 2x

Substituting for M and 0My0P into Eq. (11.73), we write

yA 5
1

EI #
L

0

 aPx2 1
1
2

 wx3b dx

 
yA 5

1
EI

 aPL3

3
1

wL4

8
b
 

(11.75)

Substituting the given data, we have

yA 5
1

5 3 106 N ? m2 
c 16 3 103 N2 12 m23

3
1
14 3 103 N/m2 12 m24

8
d

yA 5 4.8 3 1023 m   yA 5 4.8 mmw

We note that the computation of the partial derivative 0My0P could not 
have been carried out if the numerical value of P had been substituted 
for P in the expression (11.74) for the bending moment.

 We can observe that the deflection xj of a structure at a given 
point Cj can be obtained by the direct application of Castigliano’s 
theorem only if a load Pj happens to be applied at Cj in the direction 
in which xj is to be determined. When no load is applied at Cj, or 
when a load is applied in a direction other than the desired one, we 
can still obtain the deflection xj by Castigliano’s theorem if we use 
the following procedure: We apply a fictitious or “dummy” load Qj 
at Cj in the direction in which the deflection xj is to be determined 
and use Castigliano’s theorem to obtain the deflection

 
xj 5

0U
0Qj

 (11.76)

due to Qj and the actual loads. Making Qj 5 0 in Eq. (11.76) yields 
the deflection at Cj in the desired direction under the given 
loading.
 The slope uj of a beam at a point Cj can be determined in a 
similar manner by applying a fictitious couple Mj at Cj, computing 
the partial derivative 0Uy0Mj, and making Mj 5 0 in the expression 
obtained.

737
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EXAMPLE 11.13 The cantilever beam AB supports a uniformly distributed load w (Fig. 
11.41). Determine the deflection and slope at A.

Deflection at A.  We apply a dummy downward load QA at A 
(Fig. 11.42) and write

 
yA 5

0U
0QA

5 #
L

0

 
M
EI

 
0M
0QA

 dx (11.77)

The bending moment M at a distance x from A is

 M 5 2QAx 2 1
2 wx2 (11.78)

and its derivative with respect to QA is

 
0M
0QA

5 2x
 

(11.79)

Substituting for M and 0M/0QA from (11.78) and (11.79) into (11.77), and 
making QA 5 0, we obtain the deflection at A for the given loading:

yA 5
1

EI
 #

L

0

 121
2 wx22 12x2 dx 5 1

wL4

8EI

Since the dummy load was directed downward, the positive sign indicates 
that

yA 5
wL4

8EI
 w

Slope at A.  We apply a dummy counterclockwise couple MA at 
A (Fig. 11.43) and write

uA 5
0U

0MA

Recalling Eq. (11.17), we have

 
uA 5

0
0MA

 #
L

0

 
M2

2EI
 dx 5 #

L

0

 
M
EI

 
0M
0MA

 dx
 

(11.80)

The bending moment M at a distance x from A is

 M 5 2MA 2 1
2wx2 (11.81)

and its derivative with respect to MA is

 
0M
0MA

5 21
 

(11.82)

Substituting for M and 0My0MA from (11.81) and (11.82) into (11.80), 
and making MA 5 0, we obtain the slope at A for the given loading:

uA 5
1

EI
 #

L

0

 121
2 wx22 1212 dx 5 1

wL3

6EI

Since the dummy couple was counterclockwise, the positive sign indicates 
that the angle uA is also counterclockwise:

uA 5
wL3

6EI  
a

B
A

w

L

Fig. 11.41

B
A

QA

w

L

Fig. 11.42

B
A

w

MA L

Fig. 11.43
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739

EXAMPLE 11.14A load P is supported at B by two rods of the same material and of the 
same cross-sectional area A (Fig. 11.44). Determine the horizontal and 
vertical deflection of point B.

We apply a dummy horizontal load Q at B (Fig. 11.45). From 
 Castigliano’s theorem we have

xB 5
0U
0Q  

yB 5
0U
0P

Recalling from Sec. 11.4 the expression (11.14) for the strain energy of a 
rod, we write

U 5
F2

BC 1BC2
2AE

1
F2

BD 1BD2
2AE

where FBC and FBD represent the forces in BC and BD, respectively. We 
have, therefore,

 
xB 5

0U
0Q

5
FBC 1BC2

AE
 
0FBC

0Q
1

FBD 1BD2
AE

 
0FBD

0Q
 (11.83)

and

 
yB 5

0U
0P

5
FBC 1BC2

AE
 
0FBC

0P
1

FBD 1BD2
AE

 
0FBD

0P
 (11.84)

From the free-body diagram of pin B (Fig. 11.46), we obtain

 FBC 5 0.6P 1 0.8Q  FBD 5 20.8P 1 0.6Q (11.85)

Differentiating these expressions with respect to Q and P, we write

 
0FBC

0Q
5 0.8

 
0FBD

0Q
5 0.6

 
0FBC

0P
5 0.6

  
0FBD

0P
5 20.8

 

(11.86)

Substituting from (11.85) and (11.86) into both (11.83) and (11.84), mak-
ing Q 5 0, and noting that BC 5 0.6l and BD 5 0.8l, we obtain the 
horizontal and vertical deflections of point B under the given load P:

 xB 5
10.6P2 10.6l2

AE
 10.82 1

120.8P2 10.8l2
AE

 10.62
 5 20.096 

Pl
AE

 yB 5
10.6P2 10.6l2

AE
 10.62 1

120.8P2 10.8l2
AE

 120.82
 5  10.728 

Pl
AE

Referring to the directions of the loads Q and P, we conclude that

xB 5 0.096 
Pl
AE
z

  
yB 5 0.728 

Pl
 AE
w

We check that the expression obtained for the vertical deflection of B is 
the same that was found in Example 11.09.

C

D

B

l

P

3

3

4

4

Fig. 11.44

Q

C

D

B

l

P

3

3

4

4

Fig. 11.45

B
3

3
4

4

FBC

FBD

P

Q

Fig. 11.46
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740 Energy Methods *11.14 STATICALLY INDETERMINATE STRUCTURES
The reactions at the supports of a statically indeterminate elastic struc-
ture can be determined by Castigliano’s theorem. In the case of a 
structure indeterminate to the first degree, for example, we designate 
one of the reactions as redundant and eliminate or modify accordingly 
the corresponding support. The redundant reaction is then treated as 
an unknown load that, together with the other loads, must produce 
deformations that are compatible with the original supports. We first 
calculate the strain energy U of the structure due to the combined 
action of the given loads and the redundant reaction. Observing that 
the partial derivative of U with respect to the redundant reaction rep-
resents the deflection (or slope) at the support that has been elimi-
nated or modified, we then set this derivative equal to zero and solve 
the equation obtained for the redundant reaction.† The remaining 
reactions can be obtained from the equations of statics.

†This is in the case of a rigid support allowing no deflection. For other types of support, 
the partial derivative of U should be set equal to the allowed deflection.

EXAMPLE 11.15 Determine the reactions at the supports for the prismatic beam and load-
ing shown (Fig. 11.47).

The beam is statically indeterminate to the first degree. We con-
sider the reaction at A as redundant and release the beam from that 
support. The reaction RA is now considered as an unknown load (Fig. 
11.48) and will be determined from the condition that the deflection yA 
at A must be zero. By Castigliano’s theorem yA 5 0Uy0RA, where U is the 
strain energy of the beam under the distributed load and the redundant 
reaction. Recalling Eq. (11.70), we write

 
yA 5

0U
0RA

5 #
L

0

 
M
EI

 
0M
0RA

 dx (11.87)

 We now express the bending moment M for the loading of Fig. 11.48.
The bending moment at a distance x from A is

 M 5 RAx 2 1
2 wx2 (11.88)

and its derivative with respect to RA is

 
0M
0RA

5 x (11.89)

 Substituting for M and 0M/0RA from (11.88) and (11.89) into 
(11.87), we write

yA 5
1

EI
  #

L

0

 aRAx2 2
1
2

 wx3b dx 5
1

EI
 aRAL3

3
2

wL4

8
b

Setting yA 5 0 and solving for RA, we have

RA 5 3
8 wL  RA 5 3

8 wLx

From the conditions of equilibrium for the beam, we find that the reac-
tion at B consists of the following force and couple:

RB 5 5
8 wLx  MB 5 1

8 wL2 
i

B
A

w

L

Fig. 11.47

RA

yA � 0 B
A

w

L

Fig. 11.48
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741

EXAMPLE 11.16A load P is supported at B by three rods of the same material and the same 
cross-sectional area A (Fig. 11.49). Determine the force in each rod.

Fig. 11.49

H

0.5l

0.6 l

0.8l

C

D

l

P

B HC

D

P

B

RH

yH � 0

Fig. 11.50

B

FBC

FBH � RH

FBD
P

Fig. 11.51

The structure is statically indeterminate to the first degree. We 
consider the reaction at H as redundant and release rod BH from its sup-
port at H. The reaction RH is now considered as an unknown load (Fig. 
11.50) and will be determined from the condition that the deflection yH 
of point H must be zero. By Castigliano’s theorem yH 5 0Uy0RH, where 
U is the strain energy of the three-rod system under the load P and the 
redundant reaction RH. Recalling Eq. (11.72), we write

 
yH 5

FBC 1BC2
AE

 
0FBC

0RH
1

FBD 1BD2
AE

 
0FBD

0RH
1

FBH 1BH2
AE

 
0FBH

0RH
  (11.90)

 We note that the force in rod BH is equal to RH and write

 FBH 5 RH (11.91)

Then, from the free-body diagram of pin B (Fig. 11.51), we obtain

 FBC 5 0.6P 2 0.6RH  FBD 5 0.8RH 2 0.8P (11.92)

Differentiating with respect to RH the force in each rod, we write

 
0FBC

0RH
5 20.6   0FBD

0RH
5 0.8   0FBH

0RH
5 1  (11.93)

Substituting from (11.91), (11.92), and (11.93) into (11.90), and not-
ing that the lengths BC, BD, and BH are, respectively, equal to 0.6l, 0.8l, 
and 0.5l, we write

yH 5
1

AE
 3 10.6P 2 0.6RH2 10.6l2 120.62

 1 10.8RH 2 0.8P2 10.8l2 10.82 1 RH 10.5l2 112 4
 Setting yH 5 0, we obtain

1.228RH 2 0.728P 5 0
and, solving for RH,

RH 5 0.593P

Carrying this value into Eqs. (11.91) and (11.92), we obtain the forces in 
the three rods:

FBC 5 10.244P  FBD 5 20.326P  FBH 5 10.593P
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742

SOLUTION

 Castigliano’s Theorem.  Since no vertical load is applied at joint C, 
we introduce the dummy load Q as shown. Using Castigliano’s theorem, and 
denoting by Fi the force in a given member i caused by the combined load-
ing of P and Q, we have, since E 5 constant,

 
yC 5 a aFiLi

AiE
b 0Fi

0Q
5

1
Ea

aFiLi

Ai
b 0Fi

0Q 
(1)

 Force in Members.  Considering in sequence the equilibrium of joints 
E, C, B, and D, we determine the force in each member caused by load Q.

Joint E: FCE 5 FDE 5 0
Joint C: FAC 5 0; FCD 5 2Q
Joint B: FAB 5 0; FBD 5 23

4 Q

 The force in each member caused by the load P was previously found 
in Sample Prob. 11.4. The total force in each member under the combined 
action of Q and P is shown in the following table. Forming 0Fiy0Q for each 
member, we then compute (FiLiyAi)10Fiy0Q2 as indicated in the table.

SAMPLE PROBLEM 11.5

For the truss and loading of Sample Prob. 11.4, determine the vertical 
deflection of joint C.

a  aFiLi

Ai
b 0Fi

0Q
5 4306P 1 4263Q

 Deflection of C.  Substituting into Eq. (1), we have

yC 5
1
E

 a aFiLi

Ai
b 0Fi

0Q
5

1
E

 14306P 1 4263Q2
Since the load Q is not part of the original loading, we set Q 5 0. Substitut-
ing the given data, P 5 40 kN and E 5 73 GPa, we find

 
yC 5

4306 140 3 103 N2
73 3 109 Pa

5 2.36 3 1023 m
  

yC 5 2.36 mmw ◀

Member Fi 0Fiy0Q Li, m Ai, m
2 

aFiLi

Ai
b 0Fi

0Q

AB 0 0 0.8 500 3 1026 0
AC 115Py8 0 0.6 500 3 1026 0
AD 15Py4 1 5Qy4 5

4 1.0 500 3 1026 13125P 1 3125Q
BD 221Py8 2 3Qy4 23

4 0.6 1000 3 1026 11181P 1  338Q
CD 2Q 21 0.8 1000 3 1026 1  800Q
CE 115Py8 0 1.5 500 3 1026 0
DE 217Py8 0 1.7 1000 3 1026 0

500 mm2

0.8 m

0.6 m
1.5 m

P � 40 kN

A C E

B D

500 mm2

1000 mm2

C

Q

A

B D

E

P

A C

QQ

0.8 m

Q

Q

3
4

3
4

E

B

0.6 m

D

Joint D Force triangle

D

FAD
FCD � Q

FCD � Q

3
4FBD � Q 3

4FBD � Q

5
4FAD � Q
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743

SOLUTION

 Castigliano’s Theorem.  Since the given loading does not include a 
vertical load at point D, we introduce the dummy load Q as shown. Using 
Castigliano’s theorem and noting that EI is constant, we write

 
yD 5 #  

M
EI

 a 0M
0Q
b dx 5

1
EI

 #  M a 0M
0Q
b dx (1)

The integration will be performed separately for portions AD and DB.
 Reactions.  Using the free-body diagram of the entire beam, we find

RA 5
wb2

2L
1 Q 

b
L
x

  
RB 5

wb1a 1 1
2 b2

L
1 Q 

a
L
x

 Portion AD of Beam.  Using the free body shown, we find

M1 5 RAx 5 awb2

2L
1 Q 

b
L
b x

  
0M1

0Q
5 1

bx
L

Substituting into Eq. (1) and integrating from A to D gives

1
EI

 #  M1 
0M1

0Q
 dx 5

1
EI

 #
a

0

 RAx abx
L
b dx 5

RAa3b
3EIL

We substitute for RA and then set the dummy load Q equal to zero.

 
1

EI
 #  M1 

0M1

0Q
 dx 5

wa3b3

6EIL2 (2)

 Portion DB of Beam.  Using the free body shown, we find that the 
bending moment at a distance v from end B is

M2 5 RBv 2
wv2

2
5 cwb1a 1 1

2 b2
L

1 Q 

a
L
d v 2

wv2

2   
0M2

0Q
5 1

av
L

Substituting into Eq. (1) and integrating from point B where v 5 0, to point 
D where v 5 b, we write

1
EI

 #  M2 
0M2

0Q
 dv 5

1
EI

 #
b

0

 aRBv 2
wv2

2
b aav

L
b dv 5

RBab3

3EIL
2

wab4

8EIL

Substituting for RB and setting Q 5 0,

 
1

EI
 #  M2 

0M2

0Q
 dv 5 cwb1a 1 1

2 b2
L

d  ab3

3EIL
2

wab4

8EIL
5

5a2b4 1 ab5

24EIL2  w (3)

 Deflection at Point D.  Recalling Eqs. (1), (2), and (3), we have

yD 5
wab3

24EIL2 14a2 1 5ab 1 b225 wab3

24EIL2 14a 1 b2 1a 1 b2 5 wab3

24EIL
 14a 1 b2

From Appendix C we find that I 5 68.9 in4 for a W10 3 15. Substituting 
for I, w, a, b, and L their numerical values, we obtain

yD 5 0.262 in.w ◀

SAMPLE PROBLEM 11.6

For the beam and loading shown, determine the deflection at point D. Use 
E 5 29 3 106 psi.BA

D

L � 12 ft

a � 4.5 ft

w � 1.8 kips/ft

b � 7.5 ft

W10 � 15

BA
D

L

a

w

b

Q

BA
D

L

a

a � b1
2

wb

b
RA RB

b1
2

Q

x
(x � a)

A

From A to D

M1

RA

V1

w
From B to D

B

v
RB

M2

V2

(v � b)
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744

SOLUTION

 Castigliano’s Theorem.  The beam is indeterminate to the first degree 
and we choose the reaction RA as redundant. Using Castigliano’s theorem, 
we determine the deflection at A due to the combined action of RA and the 
distributed load. Since EI is constant, we write

 
yA 5 #  

M
EI

 a 0M
0RA
b dx 5

1
EI

 #  M 
0M
0RA

 dx (1)

The integration will be performed separately for portions AB and BC of the 
beam. Finally, RA is obtained by setting yA equal to zero.

 Free Body: Entire Beam.  We express the reactions at B and C in 
terms of RA and the distributed load

 RB 5 9
4 wL 2 3RA  RC 5 2RA 2 3

4 wL (2)

 Portion AB of Beam.  Using the free-body diagram shown, we find

M1 5 RAx 2
wx2

2   
0M1

0RA
5 x

Substituting into Eq. (1) and integrating from A to B, we have

 
1

EI
 #  M1 

0M
0RA

 dx 5
1

EI
 #

L

0

 aRAx2 2
wx3

2
b dx 5

1
EI

 aRAL3

3
2

wL4

8
b (3)

 Portion BC of Beam.  We have

M2 5 a2RA 2
3
4

 wLb v 2
wv2

2   
0M2

0RA
5 2v

Substituting into Eq. (1) and integrating from C, where v 5 0, to B, where 
v 5 1

2 L, we have

1
EI

 #  M2 
0M2

0RA
 dv 5

1
EI

 #
Ly2

0

 a4RAv2 2
3
2

 wLv2 2 wv3b dv

5
1

EI
 aRAL3

6
2

wL4

16
2

wL4

64
b 5

1
EI

 aRAL3

6
2

5wL4

64
b
  

(4)

 Reaction at A.  Adding the expressions obtained in (3) and (4), we 
determine yA and set it equal to zero

yA 5
1

EI
 aRAL3

3
2

wL4

8
b 1

1
EI

 aRAL3

6
2

5wL4

64
b 5 0

Solving for RA,
 

RA 5
13
32

 wL
 

RA 5
13
32

 wLx ◀

 Reactions at B and C.  Substituting for RA into Eqs. (2), we obtain

RB 5
33
32

 wLx
  

RC 5
wL
16

 x ◀

SAMPLE PROBLEM 11.7

For the uniform beam and loading shown, determine the reactions at the 
supports.

CA
B

L L
2

w

B
A C

LRA
L
2

w

B
A C

L

wL3
2 L

4
3L
4

L
2

RA RB RC

wx

x

A

From A to B

M1

RA
V1

x
2

(x � L)

(v �   )

From C to B

C

v

RC � 2RA �

M2

V2

L
2

v
2

wv

wL3
4
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PROBLEMS

745

 11.77 through 11.79 Using the information in Appendix D, com-
pute the work of the loads as they are applied to the beam (a) if 
the load P is applied first, (b) if the couple M is applied first.

L

B
A

M0

P

Fig. P11.77

B

A
C

M0

L/2 L/2

P

Fig. P11.78

BA
C

P
M0

L/2 L/2

Fig. P11.79

 11.80 through 11.82 For the beam and loading shown, (a) compute 
the work of the loads as they are applied successively to the beam, 
using the information provided in Appendix D, (b) compute the 
strain energy of the beam by the method of Sec. 11.4 and show 
that it is equal to the work obtained in part a.

D E
BA

L
4

L
2

L
4

P P

Fig. P11.80

BA
C

L/2 L/2

PP

Fig. P11.81

C

B

L/2 L/2

A

M0M0

Fig. P11.82

 11.83 and 11.84 For the prismatic beam shown, determine the 
deflection of point D.

BD

L/2 L/2

A

P

Fig. P11.83 and P11.85

 11.85 and 11.86 For the prismatic beam shown, determine the slope 
at point D.

11.87 and 11.88 For the prismatic beam shown, determine the 
deflection at point D.

L/2 L/2

B
A

D

w

Fig. P11.84 and P11.86

 11.89 and 11.90 For the prismatic beam shown, determine the slope 
at point D.

A B

w

D E

L/2 L/2 L/2

Fig. P11.87 and P11.89

A B
D E

L/2 L/2 L/2

P P

Fig. P11.88 and P11.90
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746 Energy Methods  11.91 For the beam and loading shown, determine the slope at end A. 
Use E 5 200 GPa.

 11.92 For the beam and loading shown, determine the slope at end C. 
Use E 5 29 3 106 psi.

B
C

160 kN

A

2.4 m 2.4 m

4.8 m

W310 � 74

Fig. P11.91

BA
C

6 ft
2 ft

8 kips 4 kips

W14 � 30

Fig. P11.92 and P11.93

 11.93 For the beam and loading shown, determine the deflection at end C. 
Use E 5 29 3 106 psi.

 11.94 For the beam and loading shown, determine the deflection at 
point D. Use E 5 200 GPa.

BA
D E

0.6 m

90 kN 90 kN

0.6 m
2 m

S250 � 37.8

Fig. P11.94

 11.95 and 11.96 For the beam and loading shown, determine the 
deflection at point B. Use E 5 200 GPa.

A
CB

0.6 m 0.9 m

40 mm

80 mm

5 kN/m

4 kN

Fig. P11.95

8 kN

A
C

18 kN/m

B

1 m 1.5 m

2.5 m

W250 � 22.3

Fig. P11.96

 11.97 For the beam and loading shown, determine the deflection at point C. 
Use E 5 29 3 106 psi.

B
DC

A

8 kips

S8 � 18.4

6 ft 3 ft

3 ft

Fig. P11.97 and P11.98

 11.98 For the beam and loading shown, determine the slope at end A. 
Use E 5 29 3 106 psi.
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747Problems 11.99 and 11.100 For the truss and loading shown, determine the 
horizontal and vertical deflection of joint C.

A A

2A DB

C

l l
P

l1
2

Fig. P11.99

l

l

D

B

C
1
2

l1
2

A

A
P

Fig. P11.100

 11.101 and 11.102 Each member of the truss shown is made of steel 
and has a cross-sectional area of 500mm2. Using E 5 200 GPa, 
determine the deflection indicated.

   11.101 Vertical deflection of joint B.
   11.102 Horizontal deflection of joint B.

 11.103 and 11.104 Each member of the truss shown is made of steel 
and has the cross-sectional area shown. Using E 5 29 3 106 psi, 
determine the deflection indicated.

   11.103 Vertical deflection of joint C.
   11.104 Horizontal deflection of joint C.

2.5 m

1.6 m

1.2 m

1.2 m

4.8 kN

C
D

B

A

Fig. P11.101 and P11.102

C

B

4 ft 5 ft

3.75 ft

7.5 kips

4 in2

A

2 in2

6 in2

Fig. P11.103 and P11.104

 11.105 Two rods AB and BC of the same flexural rigidity EI are welded 
together at B. For the loading shown, determine (a) the deflection 
of point C, (b) the slope of member BC at point C.

 11.106 A uniform rod of flexural rigidity EI is bent and loaded as shown. 
Determine (a) the horizontal deflection of point D, (b) the slope 
at point D.

C

l

l

B

A

P

Fig. P11.105

C

P
D

l

l

A

B

Fig. P11.106 and P11.107

 11.107 A uniform rod of flexural rigidity EI is bent and loaded as shown. 
Determine (a) the vertical deflection of point D, (b) the slope of 
BC at point C.
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748 Energy Methods  11.108 A uniform rod of flexural rigidity EI is bent and loaded as shown. 
Determine (a) the vertical deflection of point A, (b) the horizontal 
deflection of point A.

 11.109 For the beam and loading shown and using Castigliano’s theorem, 
determine (a) the horizontal deflection of point B, (b) the vertical 
deflection of point B.

L

L
C

B

A

60	

P

Fig. P11.108

B

R

A

P

Fig. P11.109

 11.110 For the uniform rod and loading shown and using Castigliano’s 
theorem, determine the deflection of point B.

 11.111 through 11.114 Determine the reaction at the roller support 
and draw the bending-moment diagram for the beam and loading 
shown.

A

R

B

P

Fig. P11.110

A

M0

B

L

Fig. P11.111

A
B

C

P

L/2 L/2

Fig. P11.112

L/2 L/2

B
A

C

w

Fig. P11.113

A

L

BD

a b

M0

Fig. P11.114

 11.115 For the uniform beam and loading shown, determine the reaction 
at each support.

M0

L/2 L

A
B

C

Fig. P11.115
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749Problems 11.116 Determine the reaction at the roller support and draw the  bending-
moment diagram for the beam and loading shown.

BD
A

L
3

2L
3

P

Fig. P11.116

P

l

CD
� �

E

B

Fig. P11.117

45�

C

DR

E
B

P

Fig. P11.118

D
C

3
4

E
B

l

l

P

Fig. P11.119

B
D

A C

l

l

30�

P

Fig. P11.120

 11.121 and 11.122 Knowing that the eight members of the indeter-
minate truss shown have the same uniform cross-sectional area, 
determine the force in member AB.

P
l

l3
4

C

ED

A B

Fig. P11.121

P

l3
4

C

A B

l
ED

Fig. P11.122

 11.117 through 11.120 Three members of the same material and 
same cross-sectional area are used to support the loading P. Deter-
mine the force in member BC.
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750

REVIEW AND SUMMARY

This chapter was devoted to the study of strain energy and to the 
ways in which it can be used to determine the stresses and deforma-
tions in structures subjected to both static and impact loadings.

In Sec. 11.2 we considered a uniform rod subjected to a slowly 
increasing axial load P (Fig. 11.52). We noted that the area under 

Strain energy

Strain-energy density

C

C

A

L

B

B

P

x

Fig. 11.52

P

P U � Area

O
x

xx1

dx

Fig. 11.53




�O
p � �1

Fig. 11.54

the load-deformation diagram (Fig. 11.53) represents the work done 
by P. This work is equal to the strain energy of the rod associated 
with the deformation caused by the load P:

 
Strain energy 5 U 5 #

x1

0

 P dx (11.2)

Since the stress is uniform throughout the rod, we were able to 
divide the strain energy by the volume of the rod and obtain the 
strain energy per unit volume, which we defined as the strain-energy 
density of the material [Sec. 11.3]. We found that

 
Strain-energy density 5 u 5 #

P1

0

 sx dPx (11.4)

and noted that the strain-energy density is equal to the area under 
the stress-strain diagram of the material (Fig. 11.54). As we saw in 
Sec. 11.4, Eq. (11.4) remains valid when the stresses are not uni-
formly distributed, but the strain-energy density will then vary from 
point to point. If the material is unloaded, there is a permanent strain 
Pp and only the strain-energy density corresponding to the triangular 
area is recovered, the remainder of the energy having been dissi-
pated in the form of heat during the deformation of the material.

The area under the entire stress-strain diagram was defined as the 
modulus of toughness and is a measure of the total energy that can 
be acquired by the material.

Modulus of toughness
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751 If the normal stress s remains within the proportional limit of 
the material, the strain-energy density u is expressed as

u 5
s2

2E

The area under the stress-strain curve from zero strain to the strain 
PY at yield (Fig. 11.55) is referred to as the modulus of resilience of 
the material and represents the energy per unit volume that the 
material can absorb without yielding. We wrote

 
uY 5

sY
2

2E
 (11.8)

 In Sec. 11.4 we considered the strain energy associated with 
normal stresses. We saw that if a rod of length L and variable cross-
sectional area A is subjected at its end to a centric axial load P, the 
strain energy of the rod is

 
U 5 #

L

0

 
P2

2AE
 dx (11.13)

If the rod is of uniform cross section of area A, the strain energy is

 
U 5

P2L
2AE

 (11.14)

We saw that for a beam subjected to transverse loads (Fig. 11.56) 
the strain energy associated with the normal stresses is

 
U 5 #

L

0

 
M2

2EI
 dx (11.17)

where M is the bending moment and EI the flexural rigidity of the 
beam.

The strain energy associated with shearing stresses was considered 
in Sec. 11.5. We found that the strain-energy density for a material 
in pure shear is

 
u 5

t2
xy

2G
 (11.19)

where txy is the shearing stress and G the modulus of rigidity of the 
material.

For a shaft of length L and uniform cross section subjected at its 
ends to couples of magnitude T (Fig. 11.57) the strain energy was 
found to be

 
U 5

T 
2L

2GJ
 (11.22)

where J is the polar moment of inertia of the cross-sectional area of 
the shaft.

Review and Summary

Modulus
of resilience





 Y

� �Y

Y

O

Fig. 11.55

BA

x

Fig. 11.56

L

T

T'

Fig. 11.57

Strain energy due to torsion

Modulus of resilience

Strain energy under axial load

Strain energy due to bending

Strain energy due to shearing 
stresses
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752 Energy Methods In Sec. 11.6 we considered the strain energy of an elastic isotropic 
material under a general state of stress and expressed the strain-
energy density at a given point in terms of the principal stresses sa, 
sb, and sc at that point:

 
u 5

1
2E

 3s2
a 1 s2

b 1 s2
c 2 2n1sasb 1 sbsc 1 scsa2 4  (11.27)

The strain-energy density at a given point was divided into two parts: 
uv, associated with a change in volume of the material at that point, 
and ud, associated with a distortion of the material at the same point. 
We wrote u 5 uv 1 ud, where

 
uv 5

1 2 2n
6E

 1sa 1 sb 1 sc22 (11.32)

and

 
ud 5

1
12G

 3 1sa 2 sb22 1 1sb 2 sc22 1 1sc 2 sa22 4   
(11.33)

Using the expression obtained for ud, we derived the maximum-
distortion-energy criterion, which was used in Sec. 7.7 to predict 
whether a ductile material would yield under a given state of plane 
stress.

In Sec. 11.7 we considered the impact loading of an elastic structure 
being hit by a mass moving with a given velocity. We assumed that 
the kinetic energy of the mass is transferred entirely to the structure 
and defined the equivalent static load as the load that would cause 
the same deformations and stresses as are caused by the impact 
loading.
 After discussing several examples, we noted that a structure 
designed to withstand effectively an impact load should be shaped 
in such a way that stresses are evenly distributed throughout the 
structure, and that the material used should have a low modulus of 
elasticity and a high yield strength [Sec. 11.8].

The strain energy of structural members subjected to a single load 
was considered in Sec. 11.9. In the case of the beam and loading of 
Fig. 11.58 we found that the strain energy of the beam is

 
U 5

P2
1L

3

6EI
 (11.46)

Observing that the work done by the load P is equal to 1
2P1y1, we 

equated the work of the load and the strain energy of the beam and 
determined the deflection y1 at the point of application of the load 
[Sec. 11.10 and Example 11.10].
 The method just described is of limited value, since it is 
restricted to structures subjected to a single concentrated load and 
to the determination of the deflection at the point of application of 
that load. In the remaining sections of the chapter, we presented a 

Members subjected to a single load

L

A

B

P1

y1

Fig. 11.58

General state of stress

Impact loading

Equivalent static load
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753more general method, which can be used to determine deflections 
at various points of structures subjected to several loads.

In Sec. 11.11 we discussed the strain energy of a structure subjected 
to several loads, and in Sec. 11.12 introduced Castigliano’s theorem, 
which states that the deflection xj, of the point of application of a 
load Pj measured along the line of action of Pj is equal to the partial 
derivative of the strain energy of the structure with respect to the 
load Pj. We wrote

 
xj 5

0U
0Pj

 (11.65)

We also found that we could use Castigliano’s theorem to determine 
the slope of a beam at the point of application of a couple Mj by 
writing

 
uj 5

0U
0Mj

 (11.68)

and the angle of twist in a section of a shaft where a torque Tj is 
applied by writing

 
fj 5

0U
0Tj

 (11.69)

 In Sec. 11.13, Castigliano’s theorem was applied to the deter-
mination of deflections and slopes at various points of a given struc-
ture. The use of “dummy” loads enabled us to include points where 
no actual load was applied. We also observed that the calculation of 
a deflection xj was simplified if the differentiation with respect to the 
load Pj was carried out before the integration. In the case of a beam, 
recalling Eq. (11.17), we wrote

 
xj 5

0U
0Pj

5 #
L

0

 
M
EI

 
0M
0Pj

 dx (11.70)

Similarly, for a truss consisting of n members, the deflection xj at the 
point of application of the load Pj was found by writing

 
xj 5

0U
0Pj

5 a
n

i51
 
FiLi

AiE
 
0Fi

0Pj
 (11.72)

The chapter concluded [Sec. 11.14] with the application of Castigliano’s 
theorem to the analysis of statically indeterminate structures [Sample 
Prob. 11.7, Examples 11.15 and 11.16].

Castigliano’s theorem

Indeterminate structures 

Review and Summary
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754

REVIEW PROBLEMS

11.123 Rods AB and BC are made of a steel for which the yield strength 
is sY 5 300 MPa and the modulus of elasticity is E 5 200 GPa. 
Determine the maximum strain energy that can be acquired by 
the assembly without causing permanent deformation when the 
length a of rod AB is (a) 2 m, (b) 4 m.

 11.124 Assuming that the prismatic beam AB has a rectangular cross sec-
tion, show that for the given loading the maximum value of the 
strain-energy density in the beam is

umax 5
45
8

 
U
V

  where U is the strain energy of the beam and V is its volume.

12-mm diameter

a

5 m

8-mm diameterBA

C
P

Fig. P11.123

B

w

A

L

Fig. P11.124

 11.125 A 5-kg collar D moves along the uniform rod AB and has a speed 
v0 5 6 m/s when it strikes a small plate attached to end A of the 
rod. Using E 5 200 GPa and knowing that the allowable stress in 
the rod is 250 MPa, determine the smallest diameter that can be 
used for the rod.

 11.126 A 160-lb diver jumps from a height of 20 in. onto end C of a diving 
board having the uniform cross section shown. Assuming that the 
diver’s legs remain rigid and using E 5 1.8 3 106 psi, determine 
(a) the maximum deflection at point C, (b) the maximum normal 
stress in the board, (c) the equivalent static load.

1.2 m

A
V0

B

D

Fig. P11.125

A
B

C

2.5 ft
9.5 ft 16 in.

2.65 in.
20 in.

Fig. P11.126

 11.127 A block of weight W is placed in contact with a beam at some given 
point D and released. Show that the resulting maximum deflection 
at point D is twice as large as the deflection due to a static load 
W applied at D.
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755Review Problems 11.128 The 12-mm-diameter steel rod ABC has been bent into the shape 
shown. Knowing that E 5 200 GPa and G 5 77.2 GPa, determine 
the deflection of end C caused by the 150-N force.

l � 200 mm l � 200 mm

P � 150 N

B

C

A

Fig. P11.128

T
E

F B

A

3 in.

4 in.

8 in.

6 in.

5 in.

D

C

Fig. P11.129

 11.130 Each member of the truss shown is made of steel and has a uni-
form cross-sectional area of 3 in2. Using E 5 29 3 106 psi, deter-
mine the vertical deflection of joint A caused by the application 
of the 24-kip load.

24 kips

A

B

4 ft

3 ft

C

Fig. P11.130

 11.129 Two steel shafts, each of 0.75-in diameter, are connected by the 
gears shown. Knowing that G 5 11.2 3 106 psi and that shaft DF
is fixed at F, determine the angle through which end A rotates 
when a 750-lb ? in. torque is applied at A. (Ignore the strain energy 
due to the bending of the shafts.)
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756 Energy Methods  11.131 A disk of radius a has been welded to end B of the solid steel shaft 
AB. A cable is then wrapped around the disk and a vertical force 
P is applied to end C of the cable. Knowing that the radius of the 
shaft is r and neglecting the deformations of the disk and of the 
cable, show that the deflection of point C caused by the application 
of P is

dC 5
PL3

3EI
 a1 1 1.5 

Er2

GL2b

 11.132 Three rods, each of the same flexural rigidity EI, are welded to 
form the frame ABCD. For the loading shown, determine the 
angle formed by the frame at point D.

aa

BB

CC

L

P

AA

Fig. P11.131

P

L

L

A D

B C

Fig. P11.132

 11.133 The steel bar ABC has a square cross section of side 0.75 in. and 
is subjected to a 50-lb load P. Using E 5 29 3 106 psi for rod BD 
and the bar, determine the deflection of point C.

P

D

C
B

A

25 in.

10 in.

0.2-in. diameter

30 in.

Fig. P11.133

 11.134 For the uniform beam and loading shown, determine the reaction 
at each support.

B
C

w

A

LL/2

Fig. P11.134
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757

COMPUTER PROBLEMS

The following problems are designed to be solved with a computer.

 11.C1 A rod consisting of n elements, each of which is homogeneous and 
of uniform cross section, is subjected to a load P applied at its free end. 
The length of element i is denoted by Li and its diameter by di. (a) Denot-
ing by E the modulus of elasticity of the material used in the rod, write a 
computer program that can be used to determine the strain energy acquired 
by the rod and the deformation measured at its free end. (b) Use this pro-
gram to determine the strain energy and deformation for the rods of Probs. 
11.9 and 11.10.

 11.C2 Two 0.75 3 6-in. cover plates are welded to a W8 3 18 rolled-steel 
beam as shown. The 1500-lb block is to be dropped from a height h 5 2 in. 
onto the beam. (a) Write a computer program to calculate the maximum 
normal stress on transverse sections just to the left of D and at the center 
of the beam for values of a from 0 to 60 in. using 5-in. increments. (b) From 
the values considered in part a, select the distance a for which the maximum 
normal stress is as small as possible. Use E 5 29 3 106 psi.

P

Element i
Element 1

Element n

Fig. P11.C1 

B

D C h

60 in. 60 in.

a a

E

F 1500 lb
� 6 in.

W8 � 18

A

3
4

Fig. P11.C2

 11.C3 The 16-kg block D is dropped from a height h onto the free end 
of the steel bar AB. For the steel used sall 5 120 MPa and E 5 200 GPa. 
(a) Write a computer program to calculate the maximum allowable height 
h for values of the length L from 100 mm to 1.2 m, using 100-mm incre-
ments. (b) From the values considered in part a, select the length corre-
sponding to the largest allowable height.

B

24 mm

24 mm

h

D

A

L

Fig. P11.C3
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758 Energy Methods  11.C4 The block D of mass m 5 8 kg is dropped from a height h 5 750 mm 
onto the rolled-steel beam AB. Knowing that E 5 200 GPa, write a com-
puter program to calculate the maximum deflection of point E and the 
maximum normal stress in the beam for values of a from 100 to 900 m, 
using 100-mm increments.

A

1.8 m

a

B
E

D m

h

W150 � 13.5

Fig. P11.C4

 11.C5 The steel rods AB and BC are made of a steel for which sY 5 
300 MPa and E 5 200 GPa. (a) Write a computer program to calculate for 
values of a from 0 to 6 m, using 1-m increments, the maximum strain energy 
that can be acquired by the assembly without causing any permanent defor-
mation. (b) For each value of a considered, calculate the diameter of a 
uniform rod of length 6 m and of the same mass as the original assembly, 
and the maximum strain energy that could be acquired by this uniform rod 
without causing permanent deformation.

10-mm diameter

a

6 m

6-mm diameter

P

BA

C

Fig. P11.C5

 11.C6 A 160-lb diver jumps from a height of 20 in. onto end C of a diving 
board having the uniform cross section shown. Write a computer program 
to calculate for values of a from 10 to 50 in., using 10-in. increments, (a) the 
maximum deflection of point C, (b) the maximum bending moment in the 
board, (c) the equivalent static load. Assume that the diver’s legs remain 
rigid and use E 5 1.8 3 106 psi.

A B
C

12 ft
16 in.

2.65 in.
20 in.

a

Fig. P11.C6
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A2

Moments of Areas

A2

A.1  FIRST MOMENT OF AN AREA; 
CENTROID OF AN AREA

Consider an area A located in the xy plane (Fig. A.1). Denoting by 
x and y the coordinates of an element of area dA, we define the first 
moment of the area A with respect to the x axis as the integral

 
Qx 5 #

A
 y dA

 
(A.1)

Similarly, the first moment of the area A with respect to the y axis is 
defined as the integral

Qy 5 #
A

 x dA
 

(A.2)

We note that each of these integrals may be positive, negative, or 
zero, depending on the position of the coordinate axes. If SI units 
are used, the first moments Qx and Qy are expressed in m3 or mm3;
if U.S. customary units are used, they are expressed in ft3 or in3.
 The centroid of the area A is defined as the point C of coordi-
nates x and y (Fig. A.2), which satisfy the relations

 #
A

 x dA 5 Ax  #
A

 
y dA 5 Ay

 
(A.3)

Comparing Eqs. (A.1) and (A.2) with Eqs. (A.3), we note that the 
first moments of the area A can be expressed as the products of the 
area and of the coordinates of its centroid:

 Qx 5 Ay   Qy 5 Ax (A.4)

A

x dA

x

y

y

O

Fig. A.1

A

Cx

x

y

y

O

Fig. A.2

  Appendix A
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A3 When an area possesses an axis of symmetry, the first moment 
of the area with respect to that axis is zero. Indeed, considering the 
area A of Fig. A.3, which is symmetric with respect to the y axis, we 
observe that to every element of area dA of abscissa x corresponds 
an element of area dA¿ of abscissa 2x. It follows that the integral in 
Eq. (A.2) is zero and, thus, that Qy 5 0. It also follows from the first 
of the relations (A.3) that x 5 0. Thus, if an area A possesses an axis 
of symmetry, its centroid C is located on that axis.

A.1 First Moment of an Area

 Since a rectangle possesses two axes of symmetry (Fig. A.4a), 
the centroid C of a rectangular area coincides with its geometric 
center. Similarly, the centroid of a circular area coincides with the 
center of the circle (Fig. A.4b).
 When an area possesses a center of symmetry O, the first 
moment of the area about any axis through O is zero. Indeed, con-
sidering the area A of Fig. A.5, we observe that to every element of 
area dA of coordinates x and y corresponds an element of area dA¿ 
of coordinates 2x and 2y. It follows that the integrals in Eqs. (A.1) 
and (A.2) are both zero, and that Qx 5 Qy 5 0. It also follows from 
Eqs. (A.3) that x 5 y 5 0, that is, the centroid of the area coincides 
with its center of symmetry.
 When the centroid C of an area can be located by symmetry, 
the first moment of that area with respect to any given axis can be 
readily obtained from Eqs. (A.4). For example, in the case of the 
rectangular area of Fig. A.6, we have

 Qx 5 Ay 5 1bh2 112h2 5 1
2bh2

and

 Qy 5 Ax 5 1bh2 112b2 5 1
2b

2h

In most cases, however, it is necessary to perform the integrations 
indicated in Eqs. (A.1) through (A.3) to determine the first moments 
and the centroid of a given area. While each of the integrals involved 
is actually a double integral, it is possible in many applications to 
select elements of area dA in the shape of thin horizontal or vertical 
strips, and thus to reduce the computations to integrations in a single 
variable. This is illustrated in Example A.01. Centroids of common 
geometric shapes are indicated in a table inside the back cover of 
this book.

x

x

dA'

A
C

O

dA

y

–x

Fig. A.3

A A

C C

(a) (b)

Fig. A.4

Fig. A.6

A

C

O

y � h

h

y

x

1
2

x � b

b

1
2

x

dA
A

O

dA'

y

–y

–x

y

x

Fig. A.5
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A.2  DETERMINATION OF THE FIRST MOMENT AND 
CENTROID OF A COMPOSITE AREA

Consider an area A, such as the trapezoidal area shown in Fig. A.9, 
which may be divided into simple geometric shapes. As we saw in 
the preceding section, the first moment Qx of the area with respect 
to the x axis is represented by the integral ey dA, which extends 
over the entire area A. Dividing A into its component parts A1, A2, A3, 
we write

 
Qx 5 #

A

 y dA 5 #
A1

 y dA 1 #
A2

 y dA 1 #
A3

 y dA

or, recalling the second of Eqs. (A.3),

 Qx 5 A1y1 1 A2y2 1 A3y3

where y1, y2, and y3 represent the ordinates of the centroids of the 
 com ponent areas. Extending this result to an arbitrary number of 
 compo nent areas, and noting that a similar expression may be 
obtained for Qy, we write

 
Qx 5 a  Ai yi   Qy 5 a  Ai xi 

(A.5)

A4

For the triangular area of Fig. A.7, determine (a) the first moment Qx of 
the area with respect to the x axis, (b) the ordinate y of the centroid of 
the area.

 (a) First Moment Qx.  We select as an element of area a horizon-
tal strip of length u and thickness dy, and note that all the points within 
the element are at the same distance y from the x axis (Fig. A.8). From 
similar triangles, we have

u
b

5
h 2 y

h
   u 5 b 

h 2 y

h

and

dA 5 u dy 5 b 

h 2 y

h
 dy

The first moment of the area with respect to the x axis is

 Qx 5 #
A

 y dA 5 #
h

0

 yb 

h 2 y

h
 dy 5

b
h

 #
h

0

 1hy 2 y22 dy

 5
b
h
ch 

y2

2
2

y3

3
d h

0
  Qx 5 1

6 bh2

 (b) Ordinate of Centroid.  Recalling the first of Eqs. (A.4) and 
observing that A 5 1

2bh, we have

 Qx 5 Ay   1
6bh2 5 112 bh2y

y 5 1
3 h

EXAMPLE  A.01

Fig. A.7

h

x

y

b

h
h – ydy

x
yu

y

b

Fig. A.8

Fig. A.9

X

A

C

O

y

x

Y

C3

C2C1

A2A1

A3

O

y

x
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A5 To obtain the coordinates X and Y of the centroid C of the 
composite area A, we substitute Qx 5 AY and Qy 5 AX into Eqs. 
(A.5). We have

 
AY 5 a

i
 Ai yi   AX 5 a

i
 Ai xi

Solving for X and Y and recalling that the area A is the sum of the 
component areas Ai, we write

 

X 5
a

i
 Ai xi

a
i

Ai

   Y 5
a

i
 Ai yi

a
i

Ai
 

(A.6)

A.2 Centroid of a Composite Area

EXAMPLE A.02Locate the centroid C of the area A shown in Fig. A.10.

A

C

20

Dimensions in mm

60

20
40

20

Fig. A.10
O

A2

A1

Dimensions in mm

60

20

80

40

y1 � 70

y2 � 30

y

x

Fig. A.11

 Selecting the coordinate axes shown in Fig. A.11, we note that the 
centroid C must be located on the y axis, since this axis is an axis of sym-
metry; thus, X 5 0.
 Dividing A into its component parts A1 and A2, we use the second 
of Eqs. (A.6) to determine the ordinate Y of the centroid. The actual 
computation is best carried out in tabular form.

 

Y 5
a

i
 Ai yi

a
i

 Ai

5
184 3 103 mm3

4 3 103 mm2 5 46 mm

 Area, mm2 yi, mm Aiyi, mm3

A1 (20)(80) 5 1600 70 112 3 103

A2 (40)(60) 5 2400 30  72 3 103

 a
i

 Ai 5 4000
  a

i
Aiyi 5 184 3 103
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A6

Referring to the area A of Example A.02, we consider the hori-
zontal x¿ axis through its centroid C. (Such an axis is called a 
centroidal axis.) Denoting by A¿ the portion of A located above 
that axis (Fig. A.12), determine the first moment of A¿ with 
respect to the x¿ axis.

EXAMPLE A.03

 Solution.  We divide the area A¿ into its components A1 and 
A3 (Fig. A.13). Recalling from Example A.02 that C is located 
46 mm above the lower edge of A, we determine the ordinates 
y¿1 and y¿3 of A1 and A3 and express the first moment Q¿x¿ of A¿ with 
respect to x¿ as follows:

 Q¿x¿ 5 A1y¿1 1 A3y¿3
 5 120 3 802 1242 1 114 3 402 172 5 42.3 3 103 mm3

 Alternative Solution.  We first note that since the centroid 
C of A is located on the x¿ axis, the first moment Qx¿ of the entire 
area A with respect to that axis is zero:

Qx¿ 5 Ay¿ 5 A102 5 0

Denoting by A– the portion of A located below the x¿ axis and 
by Q–x¿ its first moment with respect to that axis, we have 
therefore

Qx¿ 5 Q¿x¿ 1 Q–x¿ 5 0   or   Q¿x¿ 5 2Q–x¿

which shows that the first moments of A¿ and A– have the same 
magnitude and opposite signs. Referring to Fig. A.14, we write

Q–x¿ 5 A4 y¿4 5 140 3 462 12232 5 242.3 3 103 mm3

and

Q¿x¿ 5 2Q–x¿ 5 142.3 3 103 mm3

Fig. A.12

C

A'

x'

Y

y

x

Fig. A.13

C

A3

A1

Dimensions in mm

46

14

20

80

40

y'1 � 24

y'

y'3 � 7

x'

Fig. A.14

C

A'' � A4

A' 

Dimensions in mm

46

40

y'4 � 23

x'

y'
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A7A.3  SECOND MOMENT, OR MOMENT OF INERTIA, 
OF AN AREA; RADIUS OF GYRATION

Consider again an area A located in the xy plane (Fig. A.1) and the 
element of area dA of coordinates x and y. The second moment, or 
moment of inertia, of the area A with respect to the x axis, and the 
second moment, or moment of inertia, of A with respect to the y 
axis are defined, respectively, as

 
Ix 5 #

A

 y2 dA  Iy 5 #
A

 x2 dA
 

(A.7)

These integrals are referred to as rectangular moments of inertia, 
since they are computed from the rectangular coordinates of the 
element dA. While each integral is actually a double integral, it is 
possible in many applications to select elements of area dA in the 
shape of thin horizontal or vertical strips, and thus reduce the com-
putations to integrations in a single variable. This is illustrated in 
Example A.04.
 We now define the polar moment of inertia of the area A with 
respect to point O (Fig. A.15) as the integral

 
JO 5 #

A

 r2 dA
 

(A.8)

where r is the distance from O to the element dA. While this integral 
is again a double integral, it is possible in the case of a circular area 
to select elements of area dA in the shape of thin circular rings, and 
thus reduce the computation of JO to a single integration (see Exam-
ple A.05).
 We note from Eqs. (A.7) and (A.8) that the moments of inertia 
of an area are positive quantities. If SI units are used, moments of 
inertia are expressed in m4 or mm4; if U.S. customary units are used, 
they are expressed in ft4 or in4.
 An important relation may be established between the polar 
moment of inertia JO of a given area and the rectangular moments 
of inertia Ix and Iy of the same area. Noting that r2 5 x2 1 y2, we 
write

 
JO 5 #

A

r2 dA 5 #
A

1x2 1 y22 dA 5 #
A

y2 dA 1 #
A

x2 dA

or

 JO 5 Ix 1 Iy (A.9)

 The radius of gyration of an area A with respect to the x axis 
is defined as the quantity rx, that satisfies the relation

 Ix 5 r2
x A (A.10)

A.3 Second Moment, or Moment of 
Inertia, of an Area

A

x dA

x

y

y

O

Fig. A.1 (repeated)

�

x dA

x

y

y

O

Fig. A.15
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A8 Moments of Areas where Ix is the moment of inertia of A with respect to the x axis. 
Solving Eq. (A.10) for rx, we have

 
rx 5 B

Ix

A
 (A.11)

In a similar way, we define the radii of gyration with respect to the 
y axis and the origin O. We write

 
 Iy 5 r2

y A
  

 ry 5 B
Iy

A
 
 

(A.12)

 
 JO 5 r2

O A
  

 rO 5 B
JO

A  
(A.13)

Substituting for JO, Ix, and Iy in terms of the corresponding radii of 
gyration in Eq. (A.9), we observe that

 r 2
O 5 r2

x 1 r2
y (A.14)

For the rectangular area of Fig. A.16, determine (a) the moment of inertia 
Ix of the area with respect to the centroidal x axis, (b) the corresponding 
radius of gyration rx.

 (a) Moment of Inertia Ix. We select as an element of area a 
horizontal strip of length b and thickness dy (Fig. A.17). Since all the 
points within the strip are at the same distance y from the x axis, the 
moment of inertia of the strip with respect to that axis is

dIx 5 y2 dA 5 y21b dy2
Integrating from y 5 2hy2 to y 5 1hy2, we write

 Ix 5 #
A

 
y2 dA 5 #

1hy2

2hy2

 y21b dy2 5 1
3b 3y3 41hy2

2hy2

 5 1
3 
b ah3

8
1

h3

8
b

or

Ix 5 1
12 

bh3

 (b) Radius of Gyration rx. From Eq. (A.10), we have

Ix 5 r 2
x A   1

12 
bh3 5 r 2

x 
1bh2

and, solving for rx 
,

rx 5 hy112

EXAMPLE A.04

Fig. A.16

h

b

x

y

O

Fig. A.17

b

x

� h/2

� h/2

dy

y

y

O

bee80288_app_A1-A30.indd Page A8  11/19/10  6:02:49 PM user-f499bee80288_app_A1-A30.indd Page A8  11/19/10  6:02:49 PM user-f499 /Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/app/Users/user-f499/Desktop/Temp Work/Don't Delete Job/MHDQ251:Beer:201/app



The results obtained in the preceding two examples, and the moments 
of inertia of other common geometric shapes, are listed in a table 
inside the back cover of this book.

A.4 PARALLEL-AXIS THEOREM
Consider the moment of inertia Ix of an area A with respect to an 
arbitrary x axis (Fig. A.20). Denoting by y the distance from an ele-
ment of area dA to that axis, we recall from Sec. A.3 that

Ix 5 #
A

y2 dA

Let us now draw the centroidal x9 axis, i.e., the axis parallel to the 
x axis which passes through the centroid C of the area. Denoting by 
y9 the distance from the element dA to that axis, we write y 5 y9 1 d, 
where d is the distance between the two axes. Substituting for y in 
the integral representing Ix, we write

 Ix 5 #
A

y2 dA 5 #
A

1y¿ 1 d22dA

 
 Ix 5 #

A

y¿2 dA 1 2d #
A

y¿ dA 1 d2 #
A

 dA (A.15)

The first integral in Eq. (A.15) represents the moment of inertia Ix¿ of 
the area with respect to the centroidal x9 axis. The second integral 

EXAMPLE A.05For the circular area of Fig. A.18, determine (a) the polar moment of 
inertia JO, (b) the rectangular moments of inertia Ix and Iy.

 (a) Polar Moment of Inertia.  We select as an element of area a 
ring of radius r and thickness dr (Fig. A.19). Since all the points within 
the ring are at the same distance r from the origin O, the polar moment 
of inertia of the ring is

dJO 5 r2 dA 5 r212pr dr2
Integrating in r from 0 to c, we write

  JO 5 #
A

r2 dA 5 #
c

0

r212pr dr2 5 2p #
c

0

r3 dr

  JO 5 1
2pc4

 (b) Rectangular Moments of Inertia.  Because of the symmetry 
of the circular area, we have Ix 5 Iy. Recalling Eq. (A.9), we write

JO 5 Ix 1 Iy 5 2Ix  1
2pc4 5 2Ix

and, thus,
Ix 5 Iy 5 1

4pc4

Fig. A.18
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Fig. A.19
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Fig. A.20
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A10 Moments of Areas

A10

 rep resents the first moment Qx¿ of the area with respect to the x9 axis 
and is equal to zero, since the centroid C of the area is located on that 
axis. Indeed, we recall from Sec. A.1 that

Qx¿ 5 Ay¿ 5 A102 5 0

Finally, we observe that the last integral in Eq. (A.15) is equal to the 
total area A. We have, therefore,

 Ix 5 Ix¿ 1 Ad2 (A.16)

 This formula expresses that the moment of inertia Ix of an area 
with respect to an arbitrary x axis is equal to the moment of inertia 
Ix¿ of the area with respect to the centroidal x9 axis parallel to the x 
axis, plus the product Ad 2 of the area A and of the square of the 
distance d between the two axes. This result is known as the parallel-
axis theorem. It makes it possible to determine the moment of inertia 
of an area with respect to a given axis, when its moment of inertia 
with respect to a centroidal axis of the same direction is known. 
Conversely, it makes it possible to determine the moment of inertia Ix¿ 
of an area A with respect to a centroidal axis x9, when the moment 
of inertia Ix of A with respect to a parallel axis is known, by subtract-
ing from Ix the product Ad 2. We should note that the parallel-axis 
theorem may be used only if one of the two axes involved is a cen-
troidal axis.
 A similar formula may be derived, which relates the polar 
moment of inertia JO of an area with respect to an arbitrary point O 
and the  polar moment of inertia JC of the same area with respect to 
its centroid C. Denoting by d the distance between O and C, we 
write

 JO 5 JC 1 Ad2 (A.17)

A.5  DETERMINATION OF THE MOMENT OF
INERTIA OF A COMPOSITE AREA

Consider a composite area A made of several component parts A1, 
A2 and so forth. Since the integral representing the moment of iner-
tia of A may be subdivided into integrals extending over A1, A2 and 
so forth, the moment of inertia of A with respect to a given axis will 
be obtained by adding the moments of inertia of the areas A1, A2, 
and so forth, with respect to the same axis. The moment of inertia 
of an area made of several of the common shapes shown in the table 
inside the back cover of this book may thus be obtained from the 
formulas given in that table. Before adding the moments of inertia 
of the component areas, however, the parallel-axis theorem should 
be used to transfer each moment of inertia to the desired axis. This 
is shown in Example A.06.
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A11

EXAMPLE A.06Determine the moment of inertia Ix of the area shown with respect to 
the centroidal x axis (Fig. A.21).

 Location of Centroid.  The centroid C of the area must first be 
located. However, this has already been done in Example A.02 for the 
given area. We recall from that example that C is located 46 mm above 
the lower edge of the area A.

 Computation of Moment of Inertia.  We divide the area A into 
the two rectangular areas A1 and A2 (Fig. A.22), and compute the moment 
of inertia of each area with respect to the x axis.

 Rectangular Area A1.  To obtain the moment of inertia (Ix)1 of 
A1 with respect to the x axis, we first compute the moment of inertia of 
A1 with respect to its own centroidal axis x9. Recalling the formula derived 
in part a of Example A.04 for the centroidal moment of inertia of a rect-
angular area, we have

1Ix¿21 5 1
12bh3 5 1

12 180 mm2 120 mm23 5 53.3 3 103 mm4

Using the parallel-axis theorem, we transfer the moment of inertia of A1 
from its centroidal axis x9 to the parallel axis x:

1Ix21 5 1Ix¿21 1 A1d
2
1 5 53.3 3 103 1 180 3 202 12422
  5 975 3 103 mm4

 Rectangular Area A2.  Computing the moment of inertia of A2 
with respect to its centroidal axis x0, and using the parallel-axis theorem 
to transfer it to the x axis, we have

 1Ix–22 5 1
12bh3 5 1

12 1402 16023 5 720 3 103 mm4

 1Ix22 5 1Ix–22 1 A2 d2
2 5 720 3 103 1 140 3 602 11622

 5 1334 3 103 mm4

 Entire Area A.  Adding the values computed for the moments of 
inertia of A1 and A2 with respect to the x axis, we obtain the moment of 
inertia Ix of the entire area:

 Ix 5 1Ix21 1 1Ix22 5 975 3 103 1 1334 3 103

 Ix 5 2.31 3 106 mm4

A

x

y

C

20

Dimensions in mm

60

20 40 20

Fig. A.21

C

A1

A2

C1

C2

Dimensions in mm

46

14

10

10

80

40

d1 � 24

y

x'

30

d2 � 16
x

x''

Fig. A.22
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 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
 Specific  Compres-    of of of Thermal Percent
 Weight, Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation

Material lb/in3 ksi ksi ksi ksi ksi 106 psi 106 psi 1026/8F in 2 in.

Steel
  Structural (ASTM-A36) 0.284 58   36 21 29 11.2 6.5 21
  High-strength-low-alloy
    ASTM-A709 Grade 50 0.284 65   50  29 11.2 6.5 21
    ASTM-A913 Grade 65 0.284 80   65  29 11.2 6.5 17
    ASTM-A992 Grade 50 0.284 65   50  29 11.2 6.5 21
  Quenched & tempered
    ASTM-A709 Grade 100 0.284 110   100  29 11.2 6.5 18
  Stainless, AISI 302
    Cold-rolled 0.286 125   75  28 10.8 9.6 12
    Annealed 0.286 95   38 22 28 10.8 9.6 50
  Reinforcing Steel
    Medium strength 0.283 70   40  29 11 6.5
    High strength 0.283 90   60  29 11 6.5

Cast Iron
  Gray Cast Iron
    4.5% C, ASTM A-48 0.260 25 95 35   10 4.1 6.7 0.5
  Malleable Cast Iron
    2% C, 1% Si, 
      ASTM A-47 0.264 50 90 48 33  24 9.3 6.7 10

Aluminum
  Alloy 1100-H14 
      (99% Al) 0.098 16  10 14 8 10.1 3.7 13.1 9
  Alloy 2014-T6 0.101 66  40 58 33 10.9 3.9 12.8 13
  Alloy 2024-T4 0.101 68  41 47  10.6  12.9 19
  Alloy 5456-H116 0.095 46  27 33 19 10.4  13.3 16
  Alloy 6061-T6 0.098 38  24 35 20 10.1 3.7 13.1 17
  Alloy 7075-T6 0.101 83  48 73  10.4 4 13.1 11

Copper
  Oxygen-free copper
      (99.9% Cu)
    Annealed 0.322 32  22 10  17 6.4 9.4 45
    Hard-drawn 0.322 57  29 53  17 6.4 9.4 4
  Yellow Brass
      (65% Cu, 35% Zn)
    Cold-rolled 0.306 74  43 60 36 15 5.6 11.6 8
    Annealed 0.306 46  32 15 9 15 5.6 11.6 65
  Red Brass
      (85% Cu, 15% Zn)
    Cold-rolled 0.316 85  46 63  17 6.4 10.4 3
    Annealed 0.316 39  31 10  17 6.4 10.4 48
  Tin bronze 0.318 45   21  14  10 30
    (88 Cu, 8Sn, 4Zn)
  Manganese bronze 0.302 95   48  15  12 20
    (63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)
  Aluminum bronze 0.301 90 130  40  16 6.1 9 6
    (81 Cu, 4 Ni, 4 Fe, 11 Al)

(Table continued on page A13)

APPENDIX B Typical Properties of Selected Materials Used in Engineering1,5

 (U.S. Customary Units)
A12
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A13

 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
   Compres-    of of of Thermal Percent
 Density Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1026/8C in 50 mm

Steel
  Structural (ASTM-A36) 7860 400   250 145 200 77.2 11.7 21
  High-strength-low-alloy
    ASTM-A709 Grade 345 7860 450   345  200 77.2 11.7 21
    ASTM-A913 Grade 450 7860 550   450  200 77.2 11.7 17
    ASTM-A992 Grade 345 7860 450   345  200 77.2 11.7 21
  Quenched & tempered
    ASTM-A709 Grade 690 7860 760   690  200 77.2 11.7 18
  Stainless, AISI 302
    Cold-rolled 7920 860   520  190 75 17.3 12
    Annealed 7920 655   260 150 190 75 17.3 50
  Reinforcing Steel
    Medium strength 7860 480   275  200 77 11.7
    High strength 7860 620   415  200 77 11.7

Cast Iron
  Gray Cast Iron
    4.5% C, ASTM A-48 7200 170 655 240   69 28 12.1 0.5
  Malleable Cast Iron
    2% C, 1% Si, 
    ASTM A-47 7300 345 620 330 230  165 65 12.1 10

Aluminum
  Alloy 1100-H14
     (99% Al) 2710 110  70 95 55 70 26 23.6 9
  Alloy 2014-T6 2800 455  275 400 230 75 27 23.0 13
  Alloy-2024-T4 2800 470  280 325  73  23.2 19
  Alloy-5456-H116 2630 315  185 230 130 72  23.9 16
  Alloy 6061-T6 2710 260  165 240 140 70 26 23.6 17
  Alloy 7075-T6 2800 570  330 500  72 28 23.6 11

Copper
  Oxygen-free copper
      (99.9% Cu)
    Annealed 8910 220  150 70  120 44 16.9 45
    Hard-drawn 8910 390  200 265  120 44 16.9 4
  Yellow-Brass
      (65% Cu, 35% Zn)
    Cold-rolled 8470 510  300 410 250 105 39 20.9 8
    Annealed 8470 320  220 100 60 105 39 20.9 65
  Red Brass 
      (85% Cu, 15% Zn)
    Cold-rolled 8740 585  320 435  120 44 18.7 3
    Annealed 8740 270  210 70  120 44 18.7 48
  Tin bronze 8800 310   145  95  18.0 30
    (88 Cu, 8Sn, 4Zn)
  Manganese bronze 8360 655   330  105  21.6 20
    (63 Cu, 25 Zn, 6 Al, 3 Mn, 3 Fe)
  Aluminum bronze 8330 620 900  275  110 42 16.2 6
    (81 Cu, 4 Ni, 4 Fe, 11 Al)

(Table continued on page A14)

APPENDIX B Typical Properties of Selected Materials Used in Engineering1,5

  (SI Units)
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A14

 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
 Specific  Compres-    of of of Thermal Percent
 Weight, Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation

Material lb/in3 ksi ksi ksi ksi ksi 106 psi 106 psi 1026/8F in 2 in.

Magnesium Alloys
  Alloy AZ80 (Forging) 0.065 50  23 36  6.5 2.4 14 6
  Alloy AZ31 (Extrusion) 0.064 37  19 29  6.5 2.4 14 12

Titanium
  Alloy (6% Al, 4% V) 0.161 130   120  16.5  5.3 10

Monel Alloy 400(Ni-Cu)
  Cold-worked 0.319 98   85 50 26  7.7 22
  Annealed 0.319 80   32 18 26  7.7 46

Cupronickel
    (90% Cu, 10% Ni)
  Annealed 0.323 53   16  20 7.5 9.5 35
  Cold-worked 0.323 85   79  20 7.5 9.5 3

Timber, air dry
  Douglas fir 0.017 15 7.2 1.1   1.9 .1 Varies
  Spruce, Sitka 0.015 8.6 5.6 1.1   1.5 .07 1.7 to 2.5
  Shortleaf pine 0.018  7.3 1.4   1.7
  Western white pine 0.014  5.0 1.0   1.5
  Ponderosa pine 0.015 8.4 5.3 1.1   1.3
  White oak 0.025  7.4 2.0   1.8
  Red oak 0.024  6.8 1.8   1.8
  Western hemlock 0.016 13 7.2 1.3   1.6
  Shagbark hickory 0.026  9.2 2.4   2.2
  Redwood 0.015 9.4 6.1 0.9   1.3

Concrete
  Medium strength 0.084  4.0    3.6  5.5
  High strength 0.084  6.0    4.5  5.5

Plastics
  Nylon, type 6/6,  0.0412 11 14  6.5  0.4  80 50
    (molding compound)
  Polycarbonate 0.0433 9.5 12.5  9  0.35  68 110
  Polyester, PBT 0.0484 8 11  8  0.35  75 150
    (thermoplastic)
  Polyester elastomer 0.0433 6.5  5.5   0.03   500
  Polystyrene 0.0374 8 13  8  0.45  70 2
  Vinyl, rigid PVC 0.0520 6 10  6.5  0.45  75 40
Rubber 0.033 2       90 600
Granite (Avg. values) 0.100 3 35 5   10 4 4
Marble (Avg. values) 0.100 2 18 4   8 3 6
Sandstone (Avg. values) 0.083 1 12 2   6 2 5
Glass, 98% silica 0.079  7    9.6 4.1 44

1Properties of metals vary widely as a result of variations in composition, heat treatment, and mechanical working.
2For ductile metals the compression strength is generally assumed to be equal to the tension strength.
3Offset of 0.2 percent.
4Timber properties are for loading parallel to the grain.
5See also Marks’ Mechanical Engineering Handbook, 10th ed., McGraw-Hill, New York, 1996; Annual Book of ASTM, American Society for Testing Materials, 
Philadelphia, Pa.; Metals Handbook, American Society for Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Washington, DC.

APPENDIX B Typical Properties of Selected Materials Used in Engineering1,5

 (U.S. Customary Units)
Continued from page A13
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A15

 Ultimate Strength Yield Strength3

       Modulus Modulus Coefficient Ductility,
   Compres-    of of of Thermal Percent
 Density Tension, sion,2 Shear, Tension, Shear, Elasticity, Rigidity, Expansion, Elongation
Material kg/m3 MPa MPa MPa MPa MPa GPa GPa 1026/8C in 50 mm

Magnesium Alloys
  Alloy AZ80 (Forging) 1800 345  160 250  45 16 25.2 6
  Alloy AZ31 (Extrusion) 1770 255  130 200  45 16 25.2 12

Titanium
  Alloy (6% Al, 4% V) 4730 900   830  115  9.5 10

Monel Alloy 400(Ni-Cu)
  Cold-worked 8830 675   585 345 180  13.9 22
  Annealed 8830 550   220 125 180  13.9 46

Cupronickel
    (90% Cu, 10% Ni)
  Annealed 8940 365   110  140 52 17.1 35
  Cold-worked 8940 585   545  140 52 17.1 3

Timber, air dry
  Douglas fir 470 100 50 7.6   13 0.7 Varies
  Spruce, Sitka 415 60 39 7.6   10 0.5 3.0 to 4.5
  Shortleaf pine 500  50 9.7   12
  Western white pine 390  34 7.0   10
  Ponderosa pine 415 55 36 7.6   9
  White oak 690  51 13.8   12
  Red oak 660  47 12.4   12
  Western hemlock 440 90 50 10.0   11
  Shagbark hickory 720  63 16.5   15
  Redwood 415 65 42 6.2   9

Concrete
  Medium strength 2320  28    25  9.9
  High strength 2320  40    30  9.9

Plastics
  Nylon, type 6/6,  1140 75 95  45  2.8  144 50
    (molding compound)
  Polycarbonate 1200 65 85  35  2.4  122 110
  Polyester, PBT 1340 55 75  55  2.4  135 150
    (thermoplastic)
  Polyester elastomer 1200 45  40   0.2   500
  Polystyrene 1030 55 90  55  3.1  125 2
  Vinyl, rigid PVC 1440 40 70  45  3.1  135 40
Rubber 910 15       162 600
Granite (Avg. values) 2770 20 240 35   70 4 7.2
Marble (Avg. values) 2770 15 125 28   55 3 10.8
Sandstone (Avg. values) 2300 7 85 14   40 2 9.0
Glass, 98% silica 2190  50    65 4.1 80

1Properties of metals very widely as a result of variations in composition, heat treatment, and mechanical working.
2For ductile metals the compression strength is generally assumed to be equal to the tension strength.
3Offset of 0.2 percent.
4Timber properties are for loading parallel to the grain.
5See also Marks’ Mechanical Engineering Handbook, 10th ed., McGraw-Hill, New York, 1996; Annual Book of ASTM, American Society for Testing Materials, 
Philadelphia, Pa.; Metals Handbook, American Society of Metals, Metals Park, Ohio; and Aluminum Design Manual, The Aluminum Association, Washington, DC.

APPENDIX B Typical Properties of Selected Materials Used in Engineering1,5

 (SI Units)
Continued from page A14
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A16

APPENDIX C Properties of Rolled-Steel Shapes
       (U.S. Customary Units)

W Shapes
(Wide-Flange Shapes)

Y

Y

X
tw

tf

bf

d X

 Flange
 Web
 Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in4 Sx, in3 rx, in. Iy, in4 Sy, in3 ry, in.

 W36 3 302 88.8 37.3 16.7 1.68 0.945 21100 1130 15.4 1300 156 3.82
 135 39.7 35.6 12.0 0.790 0.600 7800 439 14.0 225 37.7 2.38

 W33 3 201 59.2 33.7 15.7 1.15 0.715 11600 686 14.0 749 95.2 3.56
 118 34.7 32.9 11.5 0.740 0.550 5900 359 13.0 187 32.6 2.32

 W30 3 173 51.0 30.4 15.0 1.07 0.655 8230 541 12.7 598 79.8 3.42
 99 29.1 29.7 10.50 0.670 0.520 3990 269 11.7 128 24.5 2.10

 W27 3 146 43.1 27.4 14.0 0.975 0.605 5660 414 11.5 443 63.5 3.20
 84 24.8 26.70 10.0 0.640 0.460 2850 213 10.7 106 21.2 2.07

 W24 3 104 30.6 24.1 12.8 0.750 0.500 3100 258 10.1 259 40.7 2.91
 68 20.1 23.7 8.97 0.585 0.415 1830 154 9.55 70.4 15.7 1.87

 W21 3 101 29.8 21.4 12.3 0.800 0.500 2420 227 9.02 248 40.3 2.89
 62 18.3 21.0 8.24 0.615 0.400 1330 127 8.54 57.5 14.0 1.77
 44 13.0 20.7 6.50 0.450 0.350 843 81.6 8.06 20.7 6.37 1.26

 W18 3 106 31.1 18.7 11.2 0.940 0.590 1910 204 7.84 220 39.4 2.66
 76 22.3 18.2 11.0 0.680 0.425 1330 146 7.73 152 27.6 2.61
 50 14.7 18.0 7.50 0.570 0.355 800 88.9 7.38 40.1 10.7 1.65
 35 10.3 17.7 6.00 0.425 0.300 510 57.6 7.04 15.3 5.12 1.22

 W16 3 77 22.6 16.5 10.3 0.76 0.455 1110 134 7.00 138 26.9 2.47
 57 16.8 16.4 7.12 0.715 0.430 758 92.2 6.72 43.1 12.1 1.60
 40 11.8 16.0 7.00 0.505 0.305 518 64.7 6.63 28.9 8.25 1.57
 31 9.13 15.9 5.53 0.440 0.275 375 47.2 6.41 12.4 4.49 1.17
 26 7.68 15.7 5.50 0.345 0.250 301 38.4 6.26 9.59 3.49 1.12

 W14 3 370 109 17.9 16.5 2.66 1.66 5440 607 7.07 1990 241 4.27
 145 42.7 14.8 15.5 1.09 0.680 1710 232 6.33 677 87.3 3.98
 82 24.0 14.3 10.1 0.855 0.510 881 123 6.05 148 29.3 2.48
 68 20.0 14.0 10.0 0.720 0.415 722 103 6.01 121 24.2 2.46
 53 15.6 13.9 8.06 0.660 0.370 541 77.8 5.89 57.7 14.3 1.92
 43 12.6 13.7 8.00 0.530 0.305 428 62.6 5.82 45.2 11.3 1.89
 38 11.2 14.1 6.77 0.515 0.310 385 54.6 5.87 26.7 7.88 1.55
 30 8.85 13.8 6.73 0.385 0.270 291 42.0 5.73 19.6 5.82 1.49
 26 7.69 13.9 5.03 0.420 0.255 245 35.3 5.65 8.91 3.55 1.08
 22 6.49 13.7 5.00 0.335 0.230 199 29.0 5.54 7.00 2.80 1.04

(Table continued on page A17)

†A wide-flange shape is designated by the letter W followed by the nominal depth in inches and the weight in pounds per foot.
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A17

APPENDIX C Properties of Rolled-Steel Shapes
     (SI Units)

W Shapes
(Wide-Flange Shapes)

 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix  Sx rx Iy Sy ry
Designation† A, mm2 d, mm bf, mm tf, mm tw, mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 W920 3 449 57300 947 424 42.7 24.0 8780 18500 391 541 2560 97.0
 201 25600 904 305 20.1 15.2 3250 7190 356 93.7 618 60.5

 W840 3 299 38200 856 399 29.2 18.2 4830 11200 356 312 1560 90.4
 176 22400 836 292 18.8 14.0 2460 5880 330 77.8 534 58.9

 W760 3 257 32900 772 381 27.2 16.6 3430 8870 323 249 1310 86.9
 147 18800 754 267 17.0 13.2 1660 4410 297 53.3 401 53.3

 W690 3 217 27800 696 356 24.8 15.4 2360 6780 292 184 1040 81.3
 125 16000 678 254 16.3 11.7 1190 3490 272 44.1 347 52.6

 W610 3 155 19700 612 325 19.1 12.7 1290 4230 257 108 667 73.9
 101 13000 602 228 14.9 10.5 762 2520 243 29.3 257 47.5

 W530 3 150 19200 544 312 20.3 12.7 1010 3720 229 103 660 73.4
 92 11800 533 209 15.6 10.2 554 2080 217 23.9 229 45.0
 66 8390 526 165 11.4 8.89 351 1340 205 8.62 104 32.0

 W460 3 158 20100 475 284 23.9 15.0 795 3340 199 91.6 646 67.6
 113 14400 462 279 17.3 10.8 554 2390 196 63.3 452 66.3
 74 9480 457 191 14.5 9.02 333 1460 187 16.7 175 41.9
 52 6650 450 152 10.8 7.62 212 944 179 6.37 83.9 31.0

 W410 3 114 14600 419 262 19.3 11.6 462 2200 178 57.4 441 62.7
 85 10800 417 181 18.2 10.9 316 1510 171 17.9 198 40.6
 60 7610 406 178 12.8 7.75 216 1060 168 12.0 135 39.9
 46.1 5890 404 140 11.2 6.99 156 773 163 5.16 73.6 29.7
 38.8 4950 399 140 8.76 6.35 125 629 159 3.99 57.2 28.4

 W360 3 551 70300 455 419 67.6 42.2 2260 9950 180 828 3950 108
 216 27500 376 394 27.7 17.3 712 3800 161 282 1430 101
 122 15500 363 257 21.7 13.0 367 2020 154 61.6 480 63.0
 101 12900 356 254 18.3 10.5 301 1690 153 50.4 397 62.5
 79 10100 353 205 16.8 9.40 225 1270 150 24.0 234 48.8
 64 8130 348 203 13.5 7.75 178 1030 148 18.8 185 48.0
 57.8 7230 358 172 13.1 7.87 160 895 149 11.1 129 39.4
 44 5710 351 171 9.78 6.86 121 688 146 8.16 95.4 37.8
 39 4960 353 128 10.7 6.48 102 578 144 3.71 58.2 27.4
 32.9 4190 348 127 8.51 5.84 82.8 475 141 2.91 45.9 26.4

(Table continued on page A18)

†A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter.
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A18

APPENDIX C Properties of Rolled-Steel Shapes
       (U.S. Customary Units)

       Continued from page A17
W Shapes
(Wide-Flange Shapes)

 Flange
     Web
    Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in4 Sx, in3 rx, in. Iy, in4 Sy, in3 ry, in.

 W12 3 96 28.2 12.7 12.2 0.900 0.550 833 131 5.44 270 44.4 3.09
 72 21.1 12.3 12.0 0.670 0.430 597 97.4 5.31 195 32.4 3.04
 50 14.6 12.2 8.08 0.640 0.370 391 64.2 5.18 56.3 13.9 1.96
 40 11.7 11.9 8.01 0.515 0.295 307 51.5 5.13 44.1 11.0 1.94
 35 10.3 12.5 6.56 0.520 0.300 285 45.6 5.25 24.5 7.47 1.54
 30 8.79 12.3 6.52 0.440 0.260 238 38.6 5.21 20.3 6.24 1.52
 26 7.65 12.2 6.49 0.380 0.230 204 33.4 5.17 17.3 5.34 1.51
 22 6.48 12.3 4.03 0.425 0.260 156 25.4 4.91 4.66 2.31 0.848
 16 4.71 12.0 3.99 0.265 0.220 103 17.1 4.67 2.82 1.41 0.773

 W10 3 112 32.9 11.4 10.4 1.25 0.755 716 126 4.66 236 45.3 2.68
 68 20.0 10.4 10.1 0.770 0.470 394 75.7 4.44 134 26.4 2.59
 54 15.8 10.1 10.0 0.615 0.370 303 60.0 4.37 103 20.6 2.56
 45 13.3 10.1 8.02 0.620 0.350 248 49.1 4.32 53.4 13.3 2.01
 39 11.5 9.92 7.99 0.530 0.315 209 42.1 4.27 45.0 11.3 1.98
 33 9.71 9.73 7.96 0.435 0.290 171 35.0 4.19 36.6 9.20 1.94
 30 8.84 10.5 5.81 0.510 0.300 170 32.4 4.38 16.7 5.75 1.37
 22 6.49 10.2 5.75 0.360 0.240 118 23.2 4.27 11.4 3.97 1.33
 19 5.62 10.2 4.02 0.395 0.250 96.3 18.8 4.14 4.29 2.14 0.874
 15 4.41 10.0 4.00 0.270 0.230 68.9 13.8 3.95 2.89 1.45 0.810

 W8 3 58 17.1 8.75 8.22 0.810 0.510 228 52.0 3.65 75.1 18.3 2.10
 48 14.1 8.50 8.11 0.685 0.400 184 43.2 3.61 60.9 15.0 2.08
 40 11.7 8.25 8.07 0.560 0.360 146 35.5 3.53 49.1 12.2 2.04
 35 10.3 8.12 8.02 0.495 0.310 127 31.2 3.51 42.6 10.6 2.03
 31 9.12 8.00 8.00 0.435 0.285 110 27.5 3.47 37.1 9.27 2.02
 28 8.24 8.06 6.54 0.465 0.285 98.0 24.3 3.45 21.7 6.63 1.62
 24 7.08 7.93 6.50 0.400 0.245 82.7 20.9 3.42 18.3 5.63 1.61
 21 6.16 8.28 5.27 0.400 0.250 75.3 18.2 3.49 9.77 3.71 1.26
 18 5.26 8.14 5.25 0.330 0.230 61.9 15.2 3.43 7.97 3.04 1.23
 15 4.44 8.11 4.01 0.315 0.245 48.0 11.8 3.29 3.41 1.70 0.876
 13 3.84 7.99 4.00 0.255 0.230 39.6 9.91 3.21 2.73 1.37 0.843

 W6 3 25 7.34 6.38 6.08 0.455 0.320 53.4 16.7 2.70 17.1 5.61 1.52
 20 5.87 6.20 6.02 0.365 0.260 41.4 13.4 2.66 13.3 4.41 1.50
 16 4.74 6.28 4.03 0.405 0.260 32.1 10.2 2.60 4.43 2.20 0.967
 12 3.55 6.03 4.00 0.280 0.230 22.1 7.31 2.49 2.99 1.50 0.918
 9 2.68 5.90 3.94 0.215 0.170 16.4 5.56 2.47 2.20 1.11 0.905

 W5 3 19 5.56 5.15 5.03 0.430 0.270 26.3 10.2 2.17 9.13 3.63 1.28
 16 4.71 5.01 5.00 0.360 0.240 21.4 8.55 2.13 7.51 3.00 1.26

 W4 3 13 3.83 4.16 4.06 0.345 0.280 11.3 5.46 1.72 3.86 1.90 1.00

 

†A wide-flange shape is designated by the letter W followed by the nominal depth in inches and the weight in pounds per foot.
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A19

APPENDIX C Properties of Rolled-Steel Shapes
        (SI Units)

        Continued from page A18
W Shapes
(Wide-Flange Shapes)

 Flange
 Web Axis X-X Axis Y-Y
 Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry
Designation† A, mm2 d, mm bf, mm tf, mm tw, mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 W310 3 143 18200 323 310 22.9 14.0 347 2150 138 112 728 78.5
 107 13600 312 305 17.0 10.9 248 1600 135 81.2 531 77.2
 74 9420 310 205 16.3 9.40 163 1050 132 23.4 228 49.8
 60 7550 302 203 13.1 7.49 128 844 130 18.4 180 49.3
 52 6650 318 167 13.2 7.62 119 747 133 10.2 122 39.1
 44.5 5670 312 166 11.2 6.60 99.1 633 132 8.45 102 38.6
 38.7 4940 310 165 9.65 5.84 84.9 547 131 7.20 87.5 38.4
 32.7 4180 312 102 10.8 6.60 64.9 416 125 1.94 37.9 21.5
 23.8 3040 305 101 6.73 5.59 42.9 280 119 1.17 23.1 19.6

 W250 3 167 21200 290 264 31.8 19.2 298 2060 118 98.2 742 68.1
 101 12900 264 257 19.6 11.9 164 1240 113 55.8 433 65.8
 80 10200 257 254 15.6 9.4 126 983 111 42.9 338 65.0
 67 8580 257 204 15.7 8.89 103 805 110 22.2 218 51.1
 58 7420 252 203 13.5 8.00 87.0 690 108 18.7 185 50.3
 49.1 6260 247 202 11.0 7.37 71.2 574 106 15.2 151 49.3
 44.8 5700 267 148 13.0 7.62 70.8 531 111 6.95 94.2 34.8
 32.7 4190 259 146 9.14 6.10 49.1 380 108 4.75 65.1 33.8
 28.4 3630 259 102 10.0 6.35 40.1 308 105 1.79 35.1 22.2
 22.3 2850 254 102 6.86 5.84 28.7 226 100 1.20 23.8 20.6

 W200 3 86 11000 222 209 20.6 13.0 94.9 852 92.7 31.3 300 53.3
 71 9100 216 206 17.4 10.2 76.6 708 91.7 25.3 246 52.8
 59 7550 210 205 14.2 9.14 60.8 582 89.7 20.4 200 51.8
 52 6650 206 204 12.6 7.87 52.9 511 89.2 17.7 174 51.6
 46.1 5880 203 203 11.0 7.24 45.8 451 88.1 15.4 152 51.3
 41.7 5320 205 166 11.8 7.24 40.8 398 87.6 9.03 109 41.1
 35.9 4570 201 165 10.2 6.22 34.4 342 86.9 7.62 92.3 40.9
 31.3 3970 210 134 10.2 6.35 31.3 298 88.6 4.07 60.8 32.0
 26.6 3390 207 133 8.38 5.84 25.8 249 87.1 3.32 49.8 31.2
 22.5 2860 206 102 8.00 6.22 20.0 193 83.6 1.42 27.9 22.3
 19.3 2480 203 102 6.48 5.84 16.5 162 81.5 1.14 22.5 21.4

 W150 3 37.1 4740 162 154 11.6 8.13 22.2 274 68.6 7.12 91.9 38.6
 29.8 3790 157 153 9.27 6.60 17.2 220 67.6 5.54 72.3 38.1
 24 3060 160 102 10.3 6.60 13.4 167 66.0 1.84 36.1 24.6
 18 2290 153 102 7.11 5.84 9.20 120 63.2 1.24 24.6 23.3
 13.5 1730 150 100 5.46 4.32 6.83 91.1 62.7 0.916 18.2 23.0

 W130 3 28.1 3590 131 128 10.9 6.86 10.9 167 55.1 3.80 59.5 32.5
 23.8 3040 127 127 9.14 6.10 8.91 140 54.1 3.13 49.2 32.0

 W100 3 19.3 2470 106 103 8.76 7.11 4.70 89.5 43.7 1.61 31.1 25.4

 

†A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter.
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APPENDIX C Properties of Rolled-Steel Shapes
    (U.S. Customary Units)

S Shapes
(American Standard Shapes)

Y

Y

X
tw

tf

bf

d X

   Flange
     Web 

    Thick- Thick- Axis X-X Axis Y-Y
 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in4 Sx, in3 rx, in. Iy, in4 Sy, in3 ry, in.

 S24 3 121 35.5 24.5 8.05 1.09 0.800 3160 258 9.43 83.0 20.6 1.53
 106 31.1 24.5 7.87 1.09 0.620 2940 240 9.71 76.8 19.5 1.57
 100 29.3 24.0 7.25 0.870 0.745 2380 199 9.01 47.4 13.1 1.27
 90 26.5 24.0 7.13 0.870 0.625 2250 187 9.21 44.7 12.5 1.30
 80 23.5 24.0 7.00 0.870 0.500 2100 175 9.47 42.0 12.0 1.34

 S20 3 96 28.2 20.3 7.20 0.920 0.800 1670 165 7.71 49.9 13.9 1.33
 86 25.3 20.3 7.06 0.920 0.660 1570 155 7.89 46.6 13.2 1.36
 75 22.0 20.0 6.39 0.795 0.635 1280 128 7.62 29.5 9.25 1.16
 66 19.4 20.0 6.26 0.795 0.505 1190 119 7.83 27.5 8.78 1.19

 S18 3 70 20.5 18.0 6.25 0.691 0.711 923 103 6.70 24.0 7.69 1.08
 54.7 16.0 18.0 6.00 0.691 0.461 801 89.0 7.07 20.7 6.91 1.14

 S15 3 50 14.7 15.0 5.64 0.622 0.550 485 64.7 5.75 15.6 5.53 1.03
 42.9 12.6 15.0 5.50 0.622 0.411 446 59.4 5.95 14.3 5.19 1.06

 S12 3 50 14.6 12.0 5.48 0.659 0.687 303 50.6 4.55 15.6 5.69 1.03
 40.8 11.9 12.0 5.25 0.659 0.462 270 45.1 4.76 13.5 5.13 1.06
 35 10.2 12.0 5.08 0.544 0.428 228 38.1 4.72 9.84 3.88 0.980
 31.8 9.31 12.0 5.00 0.544 0.350 217 36.2 4.83 9.33 3.73 1.00

 S10 3 35 10.3 10.0 4.94 0.491 0.594 147 29.4 3.78 8.30 3.36 0.899
 25.4 7.45 10.0 4.66 0.491 0.311 123 24.6 4.07 6.73 2.89 0.950

 S8 3 23 6.76 8.00 4.17 0.425 0.441 64.7 16.2 3.09 4.27 2.05 0.795
 18.4 5.40 8.00 4.00 0.425 0.271 57.5 14.4 3.26 3.69 1.84 0.827

 S6 3 17.2 5.06 6.00 3.57 0.359 0.465 26.2 8.74 2.28 2.29 1.28 0.673
 12.5 3.66 6.00 3.33 0.359 0.232 22.0 7.34 2.45 1.80 1.08 0.702

 S5 3 10 2.93 5.00 3.00 0.326 0.214 12.3 4.90 2.05 1.19 0.795 0.638

 S4 3 9.5 2.79 4.00 2.80 0.293 0.326 6.76 3.38 1.56 0.887 0.635 0.564
 7.7 2.26 4.00 2.66 0.293 0.193 6.05 3.03 1.64 0.748 0.562 0.576

 S3 3 7.5 2.20 3.00 2.51 0.260 0.349 2.91 1.94 1.15 0.578 0.461 0.513
 5.7 1.66 3.00 2.33 0.260 0.170 2.50 1.67 1.23 0.447 0.383 0.518

†An American Standard Beam is designated by the letter S followed by the nominal depth in inches and the weight in pounds per foot.
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APPENDIX C Properties of Rolled-Steel Shapes
               (SI Units)
S Shapes
(American Standard Shapes)

Y

Y
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 Flange
     Web Axis X-X Axis Y-Y

    Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry

Designation† A, mm2 d, mm bf, mm tf, mm tw, mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm

 S610 3 180 22900 622 204 27.7 20.3 1320 4230 240 34.5 338 38.9
 158 20100 622 200 27.7 15.7 1220 3930 247 32.0 320 39.9
 149 18900 610 184 22.1 18.9 991 3260 229 19.7 215 32.3
 134 17100 610 181 22.1 15.9 937 3060 234 18.6 205 33.0
 119 15200 610 178 22.1 12.7 874 2870 241 17.5 197 34.0

 S510 3 143 18200 516 183 23.4 20.3 695 2700 196 20.8 228 33.8
 128 16300 516 179 23.4 16.8 653 2540 200 19.4 216 34.5
 112 14200 508 162 20.2 16.1 533 2100 194 12.3 152 29.5
 98.2 12500 508 159 20.2 12.8 495 1950 199 11.4 144 30.2

 S460 3 104 13200 457 159 17.6 18.1 384 1690 170 10.0 126 27.4
 81.4 10300 457 152 17.6 11.7 333 1460 180 8.62 113 29.0

 S380 3 74 9480 381 143 15.8 14.0 202 1060 146 6.49 90.6 26.2
 64 8130 381 140 15.8 10.4 186 973 151 5.95 85.0 26.9

 S310 3 74 9420 305 139 16.7 17.4 126 829 116 6.49 93.2 26.2
 60.7 7680 305 133 16.7 11.7 112 739 121 5.62 84.1 26.9
 52 6580 305 129 13.8 10.9 94.9 624 120 4.10 63.6 24.9
 47.3 6010 305 127 13.8 8.89 90.3 593 123 3.88 61.1 25.4

 S250 3 52 6650 254 125 12.5 15.1 61.2 482 96.0 3.45 55.1 22.8
 37.8 4810 254 118 12.5 7.90 51.2 403 103 2.80 47.4 24.1

 S200 3 34 4360 203 106 10.8 11.2 26.9 265 78.5 1.78 33.6 20.2
 27.4 3480 203 102 10.8 6.88 23.9 236 82.8 1.54 30.2 21.0

 S150 3 25.7 3260 152 90.7 9.12 11.8 10.9 143 57.9 0.953 21.0 17.1
 18.6 2360 152 84.6 9.12 5.89 9.16 120 62.2 0.749 17.7 17.8

 S130 3 15 1890 127 76.2 8.28 5.44 5.12 80.3 52.1 0.495 13.0 16.2

 S100 3 14.1 1800 102 71.1 7.44 8.28 2.81 55.4 39.6 0.369 10.4 14.3
 11.5 1460 102 67.6 7.44 4.90 2.52 49.7 41.7 0.311 9.21 14.6

 S75 3 11.2 1420 76.2 63.8 6.60 8.86 1.21 31.8 29.2 0.241 7.55 13.0
 8.5 1070 76.2 59.2 6.60 4.32 1.04 27.4 31.2 0.186 6.28 13.2

†An American Standard Beam is designated by the letter S followed by the nominal depth in millimeters and the mass in kilograms per meter.
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APPENDIX C Properties of Rolled-Steel Shapes
    (U.S. Customary Units)

C Shapes
(American Standard Channels)

X X
tw
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   Flange
     Web
    Thick- Thick- Axis X-X Axis Y-Y

 Area Depth Width ness ness
Designation† A, in2 d, in. bf, in. tf, in. tw, in. Ix, in4 Sx, in3 rx, in. Iy, in4 Sy, in3 ry, in. x, in.

 C15 3 50 14.7 15.0 3.72 0.650 0.716 404 53.8 5.24 11.0 3.77 0.865 0.799
 40 11.8 15.0 3.52 0.650 0.520 348 46.5 5.45 9.17 3.34 0.883 0.778
 33.9 10.0 15.0 3.40 0.650 0.400 315 42.0 5.62 8.07 3.09 0.901 0.788

 C12 3 30 8.81 12.0 3.17 0.501 0.510 162 27.0 4.29 5.12 2.05 0.762 0.674
 25 7.34 12.0 3.05 0.501 0.387 144 24.0 4.43 4.45 1.87 0.779 0.674
 20.7 6.08 12.0 2.94 0.501 0.282 129 21.5 4.61 3.86 1.72 0.797 0.698

 C10 3 30 8.81 10.0 3.03 0.436 0.673 103 20.7 3.42 3.93 1.65 0.668 0.649
 25 7.34 10.0 2.89 0.436 0.526 91.1 18.2 3.52 3.34 1.47 0.675 0.617
 20 5.87 10.0 2.74 0.436 0.379 78.9 15.8 3.66 2.80 1.31 0.690 0.606
 15.3 4.48 10.0 2.60 0.436 0.240 67.3 13.5 3.87 2.27 1.15 0.711 0.634

 C9 3 20 5.87 9.00 2.65 0.413 0.448 60.9 13.5 3.22 2.41 1.17 0.640 0.583
 15 4.41 9.00 2.49 0.413 0.285 51.0 11.3 3.40 1.91 1.01 0.659 0.586
 13.4 3.94 9.00 2.43 0.413 0.233 47.8 10.6 3.49 1.75 0.954 0.666 0.601

 C8 3 18.7 5.51 8.00 2.53 0.390 0.487 43.9 11.0 2.82 1.97 1.01 0.598 0.565
 13.7 4.04 8.00 2.34 0.390 0.303 36.1 9.02 2.99 1.52 0.848 0.613 0.554
 11.5 3.37 8.00 2.26 0.390 0.220 32.5 8.14 3.11 1.31 0.775 0.623 0.572

 C7 3 12.2 3.60 7.00 2.19 0.366 0.314 24.2 6.92 2.60 1.16 0.696 0.568 0.525
 9.8 2.87 7.00 2.09 0.366 0.210 21.2 6.07 2.72 0.957 0.617 0.578 0.541

 C6 3 13 3.81 6.00 2.16 0.343 0.437 17.3 5.78 2.13 1.05 0.638 0.524 0.514
 10.5 3.08 6.00 2.03 0.343 0.314 15.1 5.04 2.22 0.860 0.561 0.529 0.500
 8.2 2.39 6.00 1.92 0.343 0.200 13.1 4.35 2.34 0.687 0.488 0.536 0.512

 C5 3 9 2.64 5.00 1.89 0.320 0.325 8.89 3.56 1.83 0.624 0.444 0.486 0.478
 6.7 1.97 5.00 1.75 0.320 0.190 7.48 2.99 1.95 0.470 0.372 0.489 0.484

 C4 3 7.2 2.13 4.00 1.72 0.296 0.321 4.58 2.29 1.47 0.425 0.337 0.447 0.459
 5.4 1.58 4.00 1.58 0.296 0.184 3.85 1.92 1.56 0.312 0.277 0.444 0.457

 C3 3 6 1.76 3.00 1.60 0.273 0.356 2.07 1.38 1.08 0.300 0.263 0.413 0.455
 5 1.47 3.00 1.50 0.273 0.258 1.85 1.23 1.12 0.241 0.228 0.405 0.439
 4.1 1.20 3.00 1.41 0.273 0.170 1.65 1.10 1.17 0.191 0.196 0.398 0.437

†An American Standard Channel is designated by the letter C followed by the nominal depth in inches and the weight in pounds per foot.
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APPENDIX C Properties of Rolled-Steel Shapes
     (SI Units)

C Shapes
(American Standard Channels)

X X
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 Flange
     Web  Axis X-X Axis Y-Y
    Thick- Thick-
 Area Depth Width ness ness Ix Sx rx Iy Sy ry x

Designation† A, mm2 d, mm bf, mm tf, mm tw, mm 106 mm4 103 mm3 mm 106 mm4 103 mm3 mm mm

 C380 3 74 9480 381 94.5 16.5 18.2 168 882 133 4.58 61.8 22.0 20.3
 60 7610 381 89.4 16.5 13.2 145 762 138 3.82 54.7 22.4 19.8
 50.4 6450 381 86.4 16.5 10.2 131 688 143 3.36 50.6 22.9 20.0

 C310 3 45 5680 305 80.5 12.7 13.0 67.4 442 109 2.13 33.6 19.4 17.1
 37 4740 305 77.5 12.7 9.83 59.9 393 113 1.85 30.6 19.8 17.1
 30.8 3920 305 74.7 12.7 7.16 53.7 352 117 1.61 28.2 20.2 17.7

 C250 3 45 5680 254 77.0 11.1 17.1 42.9 339 86.9 1.64 27.0 17.0 16.5
 37 4740 254 73.4 11.1 13.4 37.9 298 89.4 1.39 24.1 17.1 15.7
 30 3790 254 69.6 11.1 9.63 32.8 259 93.0 1.17 21.5 17.5 15.4
 22.8 2890 254 66.0 11.1 6.10 28.0 221 98.3 0.945 18.8 18.1 16.1

 C230 3 30 3790 229 67.3 10.5 11.4 25.3 221 81.8 1.00 19.2 16.3 14.8
 22 2850 229 63.2 10.5 7.24 21.2 185 86.4 0.795 16.6 16.7 14.9
 19.9 2540 229 61.7 10.5 5.92 19.9 174 88.6 0.728 15.6 16.9 15.3

 C200 3 27.9 3550 203 64.3 9.91 12.4 18.3 180 71.6 0.820 16.6 15.2 14.4
 20.5 2610 203 59.4 9.91 7.70 15.0 148 75.9 0.633 13.9 15.6 14.1
 17.1 2170 203 57.4 9.91 5.59 13.5 133 79.0 0.545 12.7 15.8 14.5

 C180 3 18.2 2320 178 55.6 9.30 7.98 10.1 113 66.0 0.483 11.4 14.4 13.3
 14.6 1850 178 53.1 9.30 5.33 8.82 100 69.1 0.398 10.1 14.7 13.7

 C150 3 19.3 2460 152 54.9 8.71 11.1 7.20 94.7 54.1 0.437 10.5 13.3 13.1
 15.6 1990 152 51.6 8.71 7.98 6.29 82.6 56.4 0.358 9.19 13.4 12.7
 12.2 1540 152 48.8 8.71 5.08 5.45 71.3 59.4 0.286 8.00 13.6 13.0

 C130 3 13 1700 127 48.0 8.13 8.26 3.70 58.3 46.5 0.260 7.28 12.3 12.1
 10.4 1270 127 44.5 8.13 4.83 3.11 49.0 49.5 0.196 6.10 12.4 12.3

 C100 3 10.8 1370 102 43.7 7.52 8.15 1.91 37.5 37.3 0.177 5.52 11.4 11.7
 8 1020 102 40.1 7.52 4.67 1.60 31.5 39.6 0.130 4.54 11.3 11.6

 C75 3 8.9 1140 76.2 40.6 6.93 9.04 0.862 22.6 27.4 0.125 4.31 10.5 11.6
 7.4 948 76.2 38.1 6.93 6.55 0.770 20.2 28.4 0.100 3.74 10.3 11.2
 6.1 774 76.2 35.8 6.93 4.32 0.687 18.0 29.7 0.0795 3.21 10.1 11.1

†An American Standard Channel is designated by the letter C followed by the nominal depth in millimeters and the mass in kilograms per meter.
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APPENDIX C Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
Angles
Equal Legs

XX

x

y

Y

Y

Z

Z

 

 Axis X-X and Axis Y-Y Axis
 Weight per      Z-Z

Size and Thickness, in. Foot, lb/ft Area, in2 I, in4 S, in3 r, in. x or y, in. rz, in.

 L8 3 8 3 1 51.0 15.0 89.1 15.8 2.43 2.36 1.56
 3⁄4 38.9 11.4 69.9 12.2 2.46 2.26 1.57
 1⁄2 26.4 7.75 48.8 8.36 2.49 2.17 1.59

 L6 3 6 3 1 37.4 11.0 35.4 8.55 1.79 1.86 1.17
 3⁄4 28.7 8.46 28.1 6.64 1.82 1.77 1.17
 5⁄8 24.2 7.13 24.1 5.64 1.84 1.72 1.17
 1⁄2 19.6 5.77 19.9 4.59 1.86 1.67 1.18
 3⁄8 14.9 4.38 15.4 3.51 1.87 1.62 1.19

 L5 3 5 3 3⁄4 23.6 6.94 15.7 4.52 1.50 1.52 0.972
 5⁄8 20.0 5.86 13.6 3.85 1.52 1.47 0.975
 1⁄2 16.2 4.75 11.3 3.15 1.53 1.42 0.980
 3⁄8 12.3 3.61 8.76 2.41 1.55 1.37 0.986

 L4 3 4 3 3⁄4 18.5 5.44 7.62 2.79 1.18 1.27 0.774
 5⁄8 15.7 4.61 6.62 2.38 1.20 1.22 0.774
 1⁄2 12.8 3.75 5.52 1.96 1.21 1.18 0.776
 3⁄8 9.80 2.86 4.32 1.50 1.23 1.13 0.779
 1⁄4 6.60 1.94 3.00 1.03 1.25 1.08 0.783

 L31
2 3 31

2 3 1⁄2 11.1 3.25 3.63 1.48 1.05 1.05 0.679
 3⁄8 8.50 2.48 2.86 1.15 1.07 1.00 0.683
 1⁄4 5.80 1.69 2.00 0.787 1.09 0.954 0.688

 L3 3 3 3 1⁄2 9.40 2.75 2.20 1.06 0.895 0.929 0.580
 3⁄8 7.20 2.11 1.75 0.825 0.910 0.884 0.581
 1⁄4 4.90 1.44 1.23 0.569 0.926 0.836 0.585

 L21
2 3 21

2 3 ½ 7.70 2.25 1.22 0.716 0.735 0.803 0.481
 3⁄8 5.90 1.73 0.972 0.558 0.749 0.758 0.481
 1⁄4 4.10 1.19 0.692 0.387 0.764 0.711 0.482
 3⁄16 3.07 0.900 0.535 0.295 0.771 0.687 0.482

 L2 3 2 3 3⁄8 4.70 1.36 0.476 0.348 0.591 0.632 0.386
 1⁄4 3.19 0.938 0.346 0.244 0.605 0.586 0.387
 1⁄8 1.65 0.484 0.189 0.129 0.620 0.534 0.391
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APPENDIX C Properties of Rolled-Steel Shapes
               (SI Units)
Angles
Equal Legs

XX

x

y

Y

Y

Z

Z

 Axis X-X Axis
  Z-Z
 Mass per  I S r x or y rz
Size and Thickness, mm Meter, kg/m Area, mm2 106 mm4 103 mm3 mm mm mm

 L203 3 203 3 25.4 75.9 9680 37.1 259 61.7 59.9 39.6
 19 57.9 7350 29.1 200 62.5 57.4 39.9
 12.7 39.3 5000 20.3 137 63.2 55.1 40.4

 L152 3 152 3 25.4 55.7 7100 14.7 140 45.5 47.2 29.7
 19 42.7 5460 11.7 109 46.2 45.0 29.7
 15.9 36.0 4600 10.0 92.4 46.7 43.7 29.7
 12.7 29.2 3720 8.28 75.2 47.2 42.4 30.0
 9.5 22.2 2830 6.41 57.5 47.5 41.1 30.2

 L127 3 127 3 19 35.1 4480 6.53 74.1 38.1 38.6 24.7
 15.9 29.8 3780 5.66 63.1 38.6 37.3 24.8
 12.7 24.1 3060 4.70 51.6 38.9 36.1 24.9
 9.5 18.3 2330 3.65 39.5 39.4 34.8 25.0

 L102 3 102 3 19 27.5 3510 3.17 45.7 30.0 32.3 19.7
 15.9 23.4 2970 2.76 39.0 30.5 31.0 19.7
 12.7 19.0 2420 2.30 32.1 30.7 30.0 19.7
 9.5 14.6 1850 1.80 24.6 31.2 28.7 19.8
 6.4 9.80 1250 1.25 16.9 31.8 27.4 19.9

 L89 3 89 3 12.7 16.5 2100 1.51 24.3 26.7 26.7 17.2
 9.5 12.6 1600 1.19 18.8 27.2 25.4 17.3
 6.4 8.60 1090 0.832 12.9 27.7 24.2 17.5

 L76 3 76 3 12.7 14.0 1770 0.916 17.4 22.7 23.6 14.7
 9.5 10.7 1360 0.728 13.5 23.1 22.5 14.8
 6.4 7.30 929 0.512 9.32 23.5 21.2 14.9

 L64 3 64 3 12.7 11.4 1450 0.508 11.7 18.7 20.4 12.2
 9.5 8.70 1120 0.405 9.14 19.0 19.3 12.2
 6.4 6.10 768 0.288 6.34 19.4 18.1 12.2
 4.8 4.60 581 0.223 4.83 19.6 17.4 12.2

 L51 3 51 3 9.5 7.00 877 0.198 5.70 15.0 16.1 9.80
 6.4 4.70 605 0.144 4.00 15.4 14.9 9.83
 3.2 2.40 312 0.0787 2.11 15.7 13.6 9.93
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APPENDIX C Properties of Rolled-Steel Shapes
            (U.S. Customary Units)
Angles
Unequal Legs XX

x

y

Y

Y

�

Z

Z

 Axis X-X Axis Y-Y Axis Z-Z
Size and Weight per
Thickness, in. Foot, lb/ft Area, in2 Ix, in4 Sx, in3 rx, in. y, in. Iy, in4 Sy, in3 ry, in. x, in. rz, in. tan a

 L8 3 6 3 1 44.2 13.0 80.9 15.1 2.49 2.65 38.8 8.92 1.72 1.65 1.28 0.542
 3⁄4 33.8 9.94 63.5 11.7 2.52 2.55 30.8 6.92 1.75 1.56 1.29 0.550
 1⁄2 23.0 6.75 44.4 8.01 2.55 2.46 21.7 4.79 1.79 1.46 1.30 0.557

 L6 3 4 3 3⁄4 23.6 6.94 24.5 6.23 1.88 2.07 8.63 2.95 1.12 1.07 0.856 0.428
 1⁄2 16.2 4.75 17.3 4.31 1.91 1.98 6.22 2.06 1.14 0.981 0.864 0.440
 3⁄8 12.3 3.61 13.4 3.30 1.93 1.93 4.86 1.58 1.16 0.933 0.870 0.446

 L5 3 3 3 1⁄2 12.8 3.75 9.43 2.89 1.58 1.74 2.55 1.13 0.824 0.746 0.642 0.357
 3⁄8 9.80 2.86 7.35 2.22 1.60 1.69 2.01 0.874 0.838 0.698 0.646 0.364
 1⁄4 6.60 1.94 5.09 1.51 1.62 1.64 1.41 0.600 0.853 0.648 0.652 0.371

 L4 3 3 3 1⁄2 11.1 3.25 5.02 1.87 1.24 1.32 2.40 1.10 0.858 0.822 0.633 0.542
 3⁄8 8.50 2.48 3.94 1.44 1.26 1.27 1.89 0.851 0.873 0.775 0.636 0.551
 1⁄4 5.80 1.69 2.75 0.988 1.27 1.22 1.33 0.585 0.887 0.725 0.639 0.558

 L31
2 3 21

2 3 1⁄2 9.40 2.75 3.24 1.41 1.08 1.20 1.36 0.756 0.701 0.701 0.532 0.485
 3⁄8 7.20 2.11 2.56 1.09 1.10 1.15 1.09 0.589 0.716 0.655 0.535 0.495
 1⁄4 4.90 1.44 1.81 0.753 1.12 1.10 0.775 0.410 0.731 0.607 0.541 0.504

 L3 3 2 3 1⁄2 7.70 2.25 1.92 1.00 0.922 1.08 0.667 0.470 0.543 0.580 0.425 0.413
 3⁄8 5.90 1.73 1.54 0.779 0.937 1.03 0.539 0.368 0.555 0.535 0.426 0.426
 1⁄4 4.10 1.19 1.09 0.541 0.953 0.980 0.390 0.258 0.569 0.487 0.431 0.437

 L21
2 3 2 3 3⁄8 5.30 1.55 0.914 0.546 0.766 0.826 0.513 0.361 0.574 0.578 0.419 0.612

 1⁄4 3.62 1.06 0.656 0.381 0.782 0.779 0.372 0.253 0.589 0.532 0.423 0.624
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APPENDIX C Properties of Rolled-Steel Shapes
               (SI Units)
Angles
Unequal Legs

XX

x

y

Y

Y

�

Z

Z

 Axis X-X Axis Y-Y Axis Z-Z

 Size and Mass per
 Thickness, Meter Area Ix Sx rx y Iy Sy ry x rz
 mm kg/m mm2 106 mm4 103 mm3 mm mm 106 mm4 103 mm3 mm mm mm tan a

 L203 3 152 3 25.4 65.5 8390 33.7 247 63.2 67.3 16.1 146 43.7 41.9 32.5 0.542
 19 50.1 6410 26.4 192 64.0 64.8 12.8 113 44.5 39.6 32.8 0.550
 12.7 34.1 4350 18.5 131 64.8 62.5 9.03 78.5 45.5 37.1 33.0 0.557

 L152 3 102 3 19 35.0 4480 10.2 102 47.8 52.6 3.59 48.3 28.4 27.2 21.7 0.428
 12.7 24.0 3060 7.20 70.6 48.5 50.3 2.59 33.8 29.0 24.9 21.9 0.440
 9.5 18.2 2330 5.58 54.1 49.0 49.0 2.02 25.9 29.5 23.7 22.1 0.446

 L127 3 76 3 12.7 19.0 2420 3.93 47.4 40.1 44.2 1.06 18.5 20.9 18.9 16.3 0.357
 9.5 14.5 1850 3.06 36.4 40.6 42.9 0.837 14.3 21.3 17.7 16.4 0.364
 6.4 9.80 1250 2.12 24.7 41.1 41.7 0.587 9.83 21.7 16.5 16.6 0.371

 L102 3 76 3 12.7 16.4 2100 2.09 30.6 31.5 33.5 0.999 18.0 21.8 20.9 16.1 0.542
 9.5 12.6 1600 1.64 23.6 32.0 32.3 0.787 13.9 22.2 19.7 16.2 0.551
 6.4 8.60 1090 1.14 16.2 32.3 31.0 0.554 9.59 22.5 18.4 16.2 0.558

 L89 3 64 3 12.7 13.9 1770 1.35 23.1 27.4 30.5 0.566 12.4 17.8 17.8 13.5 0.485
 9.5 10.7 1360 1.07 17.9 27.9 29.2 0.454 9.65 18.2 16.6 13.6 0.495
 6.4 7.30 929 0.753 12.3 28.4 27.9 0.323 6.72 18.6 15.4 13.7 0.504

 L76 3 51 3 12.7 11.5 1450 0.799 16.4 23.4 27.4 0.278 7.70 13.8 14.7 10.8 0.413
 9.5 8.80 1120 0.641 12.8 23.8 26.2 0.224 6.03 14.1 13.6 10.8 0.426
 6.4 6.10 768 0.454 8.87 24.2 24.9 0.162 4.23 14.5 12.4 10.9 0.437

 L64 3 51 3 9.5 7.90 1000 0.380 8.95 19.5 21.0 0.214 5.92 14.6 14.7 10.6 0.612
 6.4 5.40 684 0.273 6.24 19.9 19.8 0.155 4.15 15.0 13.5 10.7 0.624
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APPENDIX D Beam Deflections and Slopes
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 Fundamentals of Engineering 
Examination  

 Appendix E

Engineers are required to be licensed when their work directly 
affects the public health, safety, and welfare. The intent is to ensure 
that engineers have met minimum qualifications, involving compe-
tence, ability, experience, and character. The licensing process 
involves an initial exam, called the Fundamentals of Engineering 
Examination, professional experience, and a second exam, called the 
Principles and Practice of Engineering. Those who successfully com-
plete these requirements are licensed as a Professional Engineer. The 
exams are developed under the auspices of the National Council of 
Examiners for Engineering and Surveying.
 The first exam, the Fundamentals of Engineering Examination,
can be taken just before or after graduation from a four-year accred-
ited engineering program. The exam stresses subject material in a 
typical undergraduate engineering program, including Mechanics of 
Materials. The topics included in the exam cover much of the mate-
rial in this book. The following is a list of the main topic areas, with 
references to the appropriate sections in this book. Also included are 
problems that can be solved to review this material.

Stresses (1.3–1.8; 1.11–1.12)
Problems: 1.1, 1.7, 1.31, 1.37

Strains (2.2–2.3; 2.5–2.6; 2.8–2.11; 2.14–2.15)
Problems: 2.7, 2.19, 2.41, 2.49, 2.63, 2.68

Torsion (3.2–3.6; 3.13)
Problems: 3.6, 3.28, 3.35, 3.51, 3.132, 3.138

Bending (4.2–4.6; 4.12)
Problems: 4.11, 4.23, 4.34, 4.47, 4.104, 4.109
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Shear and Bending-Moment Diagrams (5.2–5.3)
Problems: 5.6, 5.9, 5.42, 5.48

Normal Stresses in Beams (5.1–5.3)
Problems: 5.18, 5.21, 5.55, 5.61

Shear (6.2–6.4; 6.6–6.7)
Problems: 6.2, 6.12, 6.32, 6.36

Transformation of Stresses and Strains (7.2–7.4; 7.7–7.9)
Problems: 7.6, 7.13, 7.33, 7.41, 7.81, 7.87, 7.102, 7.109

Deflection of Beams (9.2–9.4; 9.7)
Problems: 9.6, 9.10, 9.72, 9.75

Columns (10.2–10.4)
Problems: 10.11, 10.21, 10.28

Strain Energy (11.2–11.4)
Problems: 11.10, 11.14, 11.19  

A30 Appendix E
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Index

I1

A
Accuracy, numerical, 17, 44
Actual deformation, 95, 99
Allowable load and allowable stress, 4

factor of safety, 31–32, 44
shearing stresses, 156–158

Allowable-stress method, 235
design of columns under an eccentric load, 675–676, 685–686

Aluminum
design of columns under a centric load, 664–665
properties of, 58, 60, 129, A12–A13
structural tubing, 202

American Forest & Paper Association, 665
American Institute of Steel Construction, 662, 667
American standard beams (S-beams), 231, 388
American standard channel steel (C shapes), properties of, 

A22–A23
American standard shape steel (S shapes), properties of, 

A20–A21
American wide-flange beam (W-beam), 231, 388
Analysis and design of beams for bending, 314–379

computer problems, 378–379
design of prismatic beams for bending, 339–349, 370, 

371–372
introduction, 316–319
nonprismatic beams, 361–369, 373
relations among load, shear, and bending moment, 

329–339, 371
review problems, 374–377
shear and bending-moment diagrams, 319–328, 370–371
summary, 370–373
using singularity functions to determine shear and bending 

moment in a beam, 350–361, 372–373
Analysis and design of simple structures, 14–16

determining bearing stresses, 16
determining normal stress, 14–15
determining shearing stress, 15–16

Angle of twist, 143, 145–147, 189
adding algebraically, 161
in elastic range, 159–163, 165, 211

Angle steel
equal legs, A24–A25
properties of, A24–A27
unequal legs, A26–A27

Anisotropic materials, 63, 130
Anticlastic curvature, 234, 306

Areas. See Moments of areas
Average value, of stresses, 9, 42
Axes

centroidal, A6, A9–A10
of symmetry, A3

Axial loading
bearing stress in connections, 13, 43
centric, 42
deformations under, 67–71, 101–103
eccentric, 42, 284–293, 308
normal stress, 9–11, 42
shearing stress, 11–13, 43
slowly increasing, 694
stress and strain distribution under, 52–139
stress and strain in, 138–139

Axisymmetry, of circular shafts, 146, 197

B
Bauschinger effect, 65
Beam deflections and slopes, 585, 720–721, 725, A28
Beam elements

of arbitrary curved surface, longitudinal shear on, 428
of arbitrary shape, longitudinal shear on, 399–400
shear on the horizontal face of, 384–386, 427

Beams. See also Analysis and design of beams for bending
of constant strength, 373
nonprismatic, 318, 361–369, 373
overhanging, 554
simply-supported, 554
statically indeterminate, 561–571, 620
of variable cross section, 551

Bearing stresses, 4, 13, 16, 18, 43
in connections, 13, 43
determination of, 16

Bearing surfaces, 13, 43
Bend and twist, 415, 420
Bending. See also Pure bending

analysis and design of beams for, 314–379
of curved members, 294–304, 308
of members made of several materials, 242–245, 306
stresses due to, 419, 531, 679

Bending moment, 225, 235, 263
relation to shear, 330–335

Bending-moment diagrams, 318–328, 333–335, 370–371
by parts, 551, 597–604, 623
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Boundary conditions, 554, 564–565, 574–576, 619
Breaking strength, 59
Brittle materials, 54, 58–61, 129

under plane stress, fracture criteria for, 469–477, 505
sudden failure of, 32, 151

Bulk modulus, 55, 96–98, 132

C
C shapes. See Standard shape steel channels
Cantilever beams, 554, 595, 623

and beams with symmetric loadings, 595–596, 623
Cast iron, properties of, A12–A13
Castigliano, Alberto, 735
Castigliano’s theorem, 694, 734–735, 753

deflections by, 736–739
Center of symmetry, 421, A3
Centric loading, 10, 223, 270

axial, 42
design of columns under, 660–674, 686

Centroid, 236
of an area, A2–A4
of a composite area, A4–A6

Centroidal axis, A6, A9–A10
Centroidal moment of inertia, 236, 400, 407, 515
Circular shafts

as axisymmetric, 146, 197
deformations in, 144–148, 184–186, 210, 212
made of an elastoplastic material, 186–189, 212–213

Clebsch, A., 354
Coefficients

influence, 732
of thermal expansion, 82, 131

Columns, 630–691
computer problems, 690–691
critical load, 684
design of under a centric load, 660–674, 686
design of under an eccentric load, 675–683, 685–686
eccentric loading, 649–660, 685–686
effective length, 632, 685
Euler’s formula for pin-ended columns, 635–638, 

684–685
extension of Euler’s formula to columns with other end 

conditions, 638–649
introduction, 632
review problems, 687–689
the secant formula, 632, 649–660, 685–686
slenderness ratio, 685
stability of structures, 632–635
summary, 684–686

Combined loadings, stresses under, 527–539, 613
Combined stresses, 419
Components of stress, 4, 27–30
Composite materials, 224

fiber-reinforced, stress-strain relationships 
for, 103–107, 134

Compression, 227
modulus of, 97

Computations, 17
errors in, 17

Computer problems
analysis and design of beams for bending, 378–379
applying singularity functions to determine shear and 

bending moment in a beam, 355
axial loading, 138–139
columns, 690–691
concept of stress, 49–51
deflection of beams, 627–629
energy methods, 757–758
principal stresses under a given loading, 545–547
pure bending, 312–313
shearing stresses in beams and thin-walled members, 

434–435
torsion, 218–219
transformations of stress and strain, 510–511

Concentrated loads, 316
single, 720

Concentric stress, 679
Concept of stress, 2–51

computer problems, 49–51
Concrete

maximum stress in, 249
properties of, 129, A14–A15
renforced beams of, 245
stress-strain diagram for, 61

Constant strength, 319, 362, 373
Constants of integration, determination of, 558
Copper, properties of, A12–A13
Coulomb, Charles Augustin de, 469–470
Coulomb’s criterion, 469
Creep, 64
Critical load, 634

on columns, 684
Critical stress, 636
Cupronickel, properties of, A14–A15
Curvature, 232

anticlastic, 234, 306
radius of, 224, 235, 263

Curved members, bending of, 294–304, 308
Cylindrical thin-walled pressure vessels, stresses in, 505

D
Dead load, 33
Deflection of beams, 70, 86–87, 548–629

applying cantilever beams and beams with symmetric 
loadings, 595–596, 623

applying moment-area theorems to beams with unsymmetric 
loadings, 605–606, 625–626

applying superposition to statically indeterminate beams, 
582–592, 621

bending-moment diagrams by parts, 597–604, 623
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I3

Deflection of beams—Cont.
 boundary conditions, 619
by Castigliano’s theorem, 736–739, 753
computer problems, 627–629
direct determination of the elastic curve from the load 

distribution, 559–560
equation of the elastic curve, 553–558, 619
introduction, 550–552
maximum, 607–608, 624, 694, 722, 725, A28
method of superposition, 580–582, 585–587, 621
moment-area theorems, 592–595, 621–622
review problems, 625–626
under a single load, 722–732
statically indeterminate beams, 561–571, 620
summary, 618–624
under transverse loading, 552–553, 618
using moment-area theorems with statically indeterminate 

beams, 609–617, 624
using singularity functions to determine, 571–580, 

620–621
by the work-energy method, 722–732

Deformations, 54, 86–87, 113, 167, 225, 561, 610. See also 
Elastic deformations; Plastic deformations

actual, 95, 99
under axial loading, 67–71, 101–103
of a beam under transverse loading, 552–553, 618
in a circular shaft, 144–148, 210
computing, 17
maximum, 716
permanent, 224
in a symmetric member in pure bending, 226–228
in a transverse cross section, 233–241, 306

Design considerations, 30–35. See also Analysis and design
allowable load and allowable stress, 31–32, 44
determination of the ultimate strength of a material, 

30–31
factor of safety, 44
for impact loads, 718–719
load and resistance factors, 33, 44, 341–343
for loads, 31
of prismatic beams for bending, 339–349, 370–372
selection of an appropriate factor of safety, 31–33
specifications of, 33
of transmission shafts, 143, 176–178, 518–527, 541

*Design considerations, of transmission shafts, 211
Design of columns

allowable-stress method, 662–664, 675–676, 686
aluminum, 664–665
under a centric load, 660–674, 686
under an eccentric load, 675–683, 686
for greatest efficiency, 643
interaction method, 676–677, 686
with load and resistance factor design, 667–669
structural steel, 662–664, 667–669
wood, 665–667

Deterioration, 32

Determination
of the bearing stresses, 16
of constants of integration, 558
of elastic curve, 559–560
of first moment, A4–A6
of forces, 113, 441
of the moment of inertia of a composite area, A10–A11
of the normal stress, 14–15
of the shearing stress, 15–16
of the shearing stresses in a beam, 386–387, 428
of the ultimate strength of a material, 30–31, 44

Deviation, tangential, 594
Diagonal stays, 52–53
Diagrams

free-body, 4, 17–18, 34–35, 42, 70–71
loading, 357
of shear, 319–328, 333–335, 342–343, 370–371
of shear and bending-moment, 319–328, 370–371, 

597–604, 623
of stress-strain relationships, 54, 56–61, 129, 186, 716

Dilatation, 97, 132
bulk modulus, 96–98, 132

Dimensionless quantities, 56
Discontinuity, 350
Displacement, relative, 69
Distributed loading, 316, 613
Distribution of stresses

in a narrow rectangular beam, 390–399, 428
over the section, 418–419
statically indeterminate, 10

Double shear, 13
Ductile materials, 54, 58–60, 129, 151

under plane stress, yield criteria for, 467–469, 504

E
Eccentric axial loading, 42, 224

general case of, 284–293, 308
in a plane of symmetry, 270–278, 307

Eccentric loading, 223, 270
columns under, 649–660, 686
design of columns under, 675–683, 686

Effective length, of columns, 632, 685
Efficient design, for columns, 643
Elastic action, 123
Elastic core, radius of, 189
Elastic curve

direct determination from the load distribution, 559–560
equation of, 553–558, 563–565, 574–576, 619, A28

Elastic deformations, 229–232, 305
under axial loading, 130

Elastic flexure formula, 230, 305
Elastic limit, 63–64, 130
Elastic range, 229

angle of twist in, 159–163, 211
shearing stresses within, 210
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Elastic section modulus, 230, 259, 306
Elastic strain energy

under axial loading, 699–700, 751
in bending, 700–701, 751
for normal stresses, 698
for shearing stresses, 701–703, 751
in torsion, 701–702, 751
under transverse loading, 703

Elastic torque
formulas for, 149
maximum, 187, 213

Elastic torsion, formulas for, 210
Elastic unloading, 193, 265
Elastic versus plastic behavior of a material, 64–65, 130
Elasticity, modulus of, 54, 62–64, 130
Elastoplastic materials, 117, 134, 224, 256–257, 307

circular shafts made of, 186–189, 212–213
members made of, 256–260

Elementary work, 695
Elongation

maximum, 119
percent, 61

Endurance limit, 66, 130
Energy methods, 692–758

Castigliano’s theorem, 734–735, 753
computer problems, 757–758
deflection under a single load by the work-energy method, 

722–732
deflections by Castigliano’s theorem, 736–739, 753
design for impact loads, 718–719
elastic strain energy for normal stresses, 698
elastic strain energy for shearing stresses, 701–703, 751
equivalent static load, 752
impact loading, 716–718, 752
introduction, 694
modulus of resilience, 751
modulus of toughness, 750–751
review problems, 754–756
statically indeterminate structures, 740–749, 753
strain energy, 694–696, 750
strain-energy density, 696–698, 750
strain energy for a general state of stress, 704–715, 752
summary, 750–753
work and energy under a single load, 719–722, 752–753
work and energy under several loads, 732–734

Engineering strain, 62
Engineering stress, 61
Equal-leg angle steel, A24–A25
Equations

of the elastic curve, 553–558, 563–565, 574–576, 619, A28
equilibrium, 43
of statics, 152

Equilibrium equations, 43
Equivalent force-couple system, at shear center, 419
Equivalent open-ended loadings, 373
Equivalent static load, 721–722, 752

Euler, Leonhard, 636
Euler’s formula, 632, 636, 654

extension to columns with other end conditions, 638–649
for pin-ended columns, 635–638, 684–685

Experimental materials, 93

F
Factor of safety, 44, 707

selection of appropriate, 31–33
Failure, of shaft, 185
Fatigue

limit of, 67
from repeated loadings, 32, 54, 66–67, 130

Fiber-reinforced composite materials, 63–64
stress-strain relationships for, 103–107, 130, 133

First moment, 385, A2–A6
determination of, A4–A6

First moment-area theorem, 551, 593, 598–601, 606, 621–622
Flexural rigidity, 554, 596, 619
Flexural stress, 230
Force-couple system, at shear center, equivalent, 419
Forces

determination of, 113, 441
unknown, 43

Formulas
elastic flexure, 230, 305
elastic torsion, 149, 210
Euler’s, 632, 635–649, 654
interaction, 676–677
secant, 632, 649–660, 685–686

Fracture criteria for brittle materials under plane stress, 439, 
469–477, 505

maximum-normal-stress criterion, 469–470
Mohr’s criterion, 470–471

Free-body diagrams, 4, 17–18, 34–35, 42, 70–71
Fundamentals of Engineering Examination, A29–A30

G
Gages

length, 57
pressure, 478, 496
strain, 440

Gyration, radius of, A7–A9

H
Hardening, strain, 64
Hertz (Hz), 177, 212
Homogeneous materials, 93
Hooke, Robert, 62
Hooke’s law, 107, 117, 133, 148, 184, 186

generalized, 93–96, 100, 104, 132
modulus of elasticity, 62–64, 67, 130

Hoop stress, 478
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Horizontal shear, 385
Horsepower (hp), 212
Hydrostatic pressure, 97
Hz. See Hertz

I
IF/THEN/ELSE statements, 355
Impact loading, 694, 716–718, 752
Inertia. See Moments of inertia
Influence coefficients, 732
Integration

constants of, 558
methods of, 628

Interaction formula, 676–677
Interaction method, design of columns under an eccentric load, 

676–677, 686
Internal torques, 150, 163
Iron. See Cast iron
Isotropic materials, 63, 93, 113, 130

J
Joule (J), 695

K
Kinetic energy, 716

L
Lamina, 63
Laminates, 105
Lateral strain, 93, 132
Line of action, of loading, 113
Load and Resistance Factor Design (LRFD), 33, 44, 341–343. 

See also Allowable load and allowable stress
Load distribution, direct determination of the elastic curve 

from, 559–560
Loading diagram, modified, 357
Loadings. See also Unloading

axial, 9–13, 42–43, 52–139, 284–293, 308
centric, 10, 42, 223, 270, 660–674, 686
combined, 527–539, 613
concentrated, 316
dead, 33
distributed, 316, 613
eccentric, 223, 270–278, 284–293, 307–308, 649–660, 

675–683, 686
general conditions of, 27–30, 44, 541
impact, 694, 716–718, 752
line of action of, 113
multiaxial, 94–96, 132
open-ended, 373
redundant reaction, 584, 613
relation to shear, 329–330

Loadings—Cont.
repeated, 66–67, 130
statically equivalent, 114
symmetric, 595–596, 623
torsional, 519
transverse, 223, 316, 552–553, 618
ultimate, 31, 33, 667
unknown, 79–80
unsymmetric, 414–426, 429, 605–606, 625–626
visualizing, 234

Longitudinal normal strain, 228
Longitudinal shear

on a beam element of arbitrary curved surface, 428
on a beam element of arbitrary shape, 399–400

Longitudinal stress, 478–479
Lower yield point, 60
LRFD. See Load and resistance factor design

M
Macaulay, W.H., 354
Macaulay’s brackets, 354
Macroscopic cracks or cavities, detected in a structural 

component, 471
Magnesium alloys, properties of, A14–A15
Margin of safety, 31
Materials. See also Anisotropic materials; Brittle materials; 

Composite materials; Ductile materials; Elastoplastic 
materials; Experimental materials; Homogeneous 
materials; Isotropic materials; Orthotropic materials

bending of members made of several, 242–245, 306
determining ultimate strength of, 30–31
elastic versus plastic behavior of, 64–65, 130

Materials used in engineering, A12–A15
aluminum, A12–A13
cast iron, A12–A13
concrete, A14–A15
copper, A12–A13
cupronickel, A14–A15
magnesium alloys, A14–A15
Monel alloy 400, A14–A15
plastics, A14–A15
steel, A12–A13
timber, A14–A15
titanium, A14–A15

Matrix, 63, 104
Maximum absolute strain, 228
Maximum absolute stress, 229
Maximum deflection, 552–553, 607–608, 624, 694, 725, A28
Maximum deformation, 716
Maximum-distortion-energy criterion, 439, 468–469, 694
Maximum elastic moment, 224
Maximum elastic torque, 187, 213
Maximum elongation, 119
Maximum-normal-stress criterion, 440, 469–470
Maximum shearing strain, 491, 494
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Maximum-shearing-stress criterion, 439, 445, 455–456, 
467–469, 505

Maximum stress, 716, 722, 725
Maxwell, James Clerk, 734
Maxwell’s reciprocal theorem, 734
Measurements of strain, strain rosette, 494–501, 506
Members

curved, 294–304, 308
made of an elastoplastic material, 256–260
noncircular, 197–200, 214
with a single plane of symmetry, 260–261
stability of, 8
symmetric, 224–225
thin-walled, 414–426, 429
two-force, 4–6

Membrane analogy, 199–200
Methods

of integration, 628
of problem solution, 16–17, 43
of statics, review of, 4–6
of superposition, 551, 580–582, 585–587, 621

Microscopic cracks or cavities, detected in a structural 
component, 471

Minimum shearing stresses, 150, 152
Mistakes, errors in, 17
Modulus

bulk, 55, 96–98, 132
of compression, 97
elastic section, 230, 259, 306
of elasticity, 54, 62–64, 130
plastic section, 259
of resilience, 694, 697–698, 751
of rigidity, 55, 100, 105, 133
of rupture, 185, 212, 256
of toughness, 694, 697, 750–751

Mohr, Otto, 452, 470
Mohr’s circle

application to the three-dimensional analysis of stress, 464–466
creating, 454, 457–458, 480, 493
for plane strain, 440, 506
for plane stress, 440, 452–462, 489–491, 503, 506

Mohr’s criterion, 440, 470–472, 505
Moment-area theorems, 592–595, 610, 618, 621–622

application to beams with unsymmetric loadings, 605–606, 
625–626

using with statically indeterminate beams, 609–617, 624
Moments of areas, A2–A11

centroid of a composite area, A4–A6
centroid of an area, A2–A4
determination of the first moment, A4–A6
determination of the moment of inertia of a composite area, 

A10–A11
first moment of an area, A2–A4
parallel-axis theorem, A9–A10
radius of gyration, A7–A9
second moment or moment of inertia of an area, A7–A9

Moments of inertia, 235. See also Bending moment
centroidal, 236, 400, 407, 515
of a composite area, determining, A10–A11
polar, 165, A7

Monel alloy 400, properties of, A14–A15
Multiaxial loading, 104

generalized Hooke’s law, 94–96, 132

N
National Council of Examiners for Engineering and 

Surveying, A29
National Design Specification for Wood Construction, 666
Necking, 58–59
Neutral surface, 227–229, 295, 305
Noncircular sections, 200
Nonprismatic beams, 318, 361–369, 373

beams of constant strength, 373
Normal strains, 487

under axial loading, 55–57, 129
longitudinal, 228

Normal stresses, 4, 9–11, 18, 20, 26, 42, 224, 317, 462, 528–530, 
532, 694, 723–724, 751. See also Maximum-normal-
stress criterion

determination of, 14–15
elastic strain energy for, 698

Numerical accuracy, 17, 44

O
Oblique parallelepipeds, 98–99
Oblique plane, stresses on, 4, 44
Offset method, for determination of yield strength, 60
Open-ended loadings, equivalent, 373
Orthotropic materials, 55, 105
Overhanging beams, 554

P
Pa. See Pascals
Parallel-axis theorem, A9–A10
Parallelepipeds

oblique, 98–99
rectangular, 94

Pascals (Pa), 7
Percent elongation, a measure of ductility, 60
Percent reduction in area, a measure of ductility, 60
Permanent deformations, 224
Permanent set, 64, 119, 130
Permanent twist, 190–191, 193
Plane of symmetry, plastic deformations of members with a 

single, 260–261
Plane strain, 109
Plane stress, 110, 706

transformation of, 438, 486–488, 506
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Plastic deformations, 54–55, 64, 117–123, 130, 134, 224, 
255–256, 307, 404–414, 429

in circular shafts, 144, 184–186, 192, 212
of members with a single plane of symmetry, 260–261
modulus of rupture, 212

Plastic hinge, 405
Plastic moment, 224, 264, 307
Plastic section modulus, 259
Plastic torque, 187, 213
Plastic versus elastic behavior of a material, 64–65, 130
Plastics, properties of, A14–A15
Poisson, Siméon Denis, 93
Poisson’s ratio, 54–55, 93–94, 101, 132, 233
Polar moments of inertia, 165, A7
Power, 176
Principal stresses, 439, 463, 503

in a beam, 515–517, 540
under combined loadings, 527–539
computer problems, 545–547
design of transmission shafts, 518–527, 541
under general loading conditions, 541
under a given loading, 512–547
introduction, 514
maximum shearing stress, 443–451, 503
review problems, 542–544
summary, 540–541

Principles and Practice of Engineering, A29
Problem solution, method of, 16–17, 43
Professional Engineer, licensing as, A29
Properties

of rolled-steel shapes, 520–521, A16–A27
of selected materials used in engineering, A12–A15

Proportional limit, 62, 130
Pure bending, 220–313

computer problems, 312–313
of curved members, 294–304, 308
deformations in a symmetric member, 226–228
deformations in a transverse cross section, 233–241, 306
eccentric axial loading in a plane of symmetry, 270–278, 307
general case of eccentric axial loading, 284–293, 308
introduction, 222–224
members made of an elastoplastic material, 256–260
of members made of several materials, 242–245, 306
plastic deformations, 255–256, 260, 307
residual stresses, 261–269
review problems, 309–311
stress concentrations, 246–254, 306
stresses and deformations in the elastic range, 229–232, 305
summary, 305–308
symmetric member in, 224–225
unsymmetric, 279–283, 308

R
Radius of curvature, 224, 235, 263

permanent, 265–266

Radius of gyration, A7–A9
Rectangular beams, narrow, distribution of stresses in, 

390–399, 428
Rectangular cross section bars, torsion of, 198–199, 214
Rectangular parallelepipeds, 94
Redundant reaction loading, 584, 613
Redundant reactions, 79
Reference tangent, 595, 600–601, 605–606, 611–612, 623
Relative displacement, 69
Repeated loadings, fatigue from, 66–67, 130
Residual stresses, 55, 121–123, 134, 224, 261–269

in circular shafts, 144, 189–193, 212, 214
Resilience, modulus of, 694, 697–698, 751
Resistance factor, 667. See also Load and resistance 

factor design
Review problems

analysis and design of beams for bending, 374–377
axial loading, 135–137
columns, 687–689
concept of stress, 45–48
deflection of beams, 625–626
energy methods, 754–756
principal stresses under a given loading, 542–544
pure bending, 309–311
shearing stresses in beams and thin-walled members, 

427–433
torsion, 215–217
transformations of stress and strain, 507–509

Rigid-body rotation, 99
Rigidity

flexural, 554, 596, 619
modulus of, 55, 100, 105, 133

Rolled-steel shapes, A16–A27
American standard channels, A22–A23
American standard shapes, A20–A21
angles, A24–A27
wide-flange shapes, A16–A19

Rotation
rigid-body, 99
speed of, 176

Rupture, modulus of, 185, 212, 256

S
Safety factor. See Factor of safety; Margin of safety
Saint-Venant, Adhémar Barré de, 114
Saint-Venant’s principle, 113–115, 134, 147–148, 234, 284, 391, 

517, 528, 552
Secant formula, 632, 649–660, 685–686
Second moment, of areas, A7–A9
Second moment-area theorem, 551, 594, 598–601, 622
Shafts

axis of, 148
on failure, 185
statically indeterminate, 163–167, 211

Shape factor, 259
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Shear
double, 13
horizontal, 385
relation to bending moment, 330–335
relation to load, 329–330
single, 13, 43

Shear center, 384, 404, 414–426, 429
equivalent force-couple system at, 419

Shear diagrams, 319–328, 333–335, 342–343, 370–371
Shear flow, 201, 383, 385, 403, 428
Shearing strains, 98–101, 133, 487

distribution of, 143–144, 147–148
Shearing stresses, 4, 11–13, 18, 29–30, 43, 317, 392–393, 418, 

724. See also Maximum-shearing-stress criterion
allowable, 156–158, 167
average, 18, 43, 386, 428
in beams, 386–389, 428
in a circular shaft, 148–149
components of, 29
computer problems, 434–435
determination of, 15–16, 386–387, 428
within the elastic range, 210
elastic strain energy for, 701–703, 751
in flanges, 418
on the horizontal face of a beam element, 384–386, 427
introduction, 382–384
longitudinal

on a beam element of arbitrary curved surface, 428
on a beam element of arbitrary shape, 399–400

minimum, 150, 152
in a narrow rectangular beam, 390–399, 428
plastic deformations, 404–414, 429
review problems, 427–433
summary, 427–429
in thin-walled members, 401–404, 429
unsymmetric loading of thin-walled members, 414–426, 429
in webs, 418

Shearing stresses in beams and thin-walled members, 380–435
Simple structures, analysis and design of, 14–16
Single shear, 13, 43
Singularity functions, 318, 551

application to computer programming, 355
equivalent open-ended loadings, 373
step function, 372
using to determine shear and bending moment in a beam, 

350–361, 372–373
using to determine the slope and deflection of a beam, 

571–580, 620–621
Slenderness ratio, 637, 667, 685
Slip, 64
Speed of rotation, 176
Spherical thin-walled pressure vessels, stresses in, 505
Stability of members, 8
Stability of structures, in columns, 632–635
Standard beam (S-beam), 231, 388
Standard shape steel beams (S shapes), properties of, A20–A21

Standard shape steel channels (C shapes), properties of, 
A22–A23

Statically determinate problems, 317, 370, 554
Statically equivalent loadings, 114
Statically indeterminate problems, 54, 78–81, 131, 225, 317, 

550–552
beams, 561–571, 620
distribution of stresses, 10
to the first degree, 562, 610, 620–621
to the second degree, 562, 610, 620
shafts, 143–144, 163–167, 210–211
superposition method, 79–81
use of moment-area theorems with, 609–617, 624

Statically indeterminate structures, energy methods for, 
740–749, 753

Statics, 86–87
equations of, 152
review of methods, 4–6

Steel. See also Rolled-steel shapes; Structural steel
properties of, 58, 129, A12–A13
stresses in, 63, 248–249

Step function (STP), 352, 372
Strain energy, 708, 716, 720, 726

under axial loading, 699–700, 751
in bending, 700–701, 751
and energy methods, 694–696, 750
for a general state of stress, 704–715, 752
in torsion, 701–702, 751
under transverse loading, 703

Strain-energy density, 694, 696–698, 707
energy methods, 696–698, 750

Strain gages, 440
Strain hardening, 64
Strain rosette, 440, 494–501, 506
Strains. See also Stress and strain distribution under axial 

loading; Stress-strain relationships; True stress and 
true strain

analysis of, 113
distribution of, 187
engineering, 62
lateral, 93, 132
normal, under axial loading, 55–57, 129
plane, 109
thermal, 82, 131
three-dimensional analysis of, 491–494

Strength. See also Ultimate strength of a material
breaking, 59
constant, 319, 362, 373
yield, 707

Stress and strain distribution under axial loading, 52–139
deformations under, 67–71, 101–103, 130
dilatation, 132
elastic versus plastic behavior of a material, 64–65, 130
Hooke’s law, 62–64, 67, 130
introduction, 54–55
modulus of rigidity, 133
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Stress and strain distribution under axial loading—Cont.
multiaxial loading, 94–96, 132
normal strain under, 55–57, 129
plastic deformations, 117–121, 134
Poisson’s ratio, 93–94, 101, 132
problems involving temperature changes, 82–87, 131
repeated loadings, fatigue, 66–67, 130
residual stresses, 121–123, 134
review problems, 135–137
under Saint-Venant’s principle, 113–115, 134
shearing strain, 98–101, 133
statically indeterminate problems, 78–81, 131
summary, 129–134
true stress and true strain, 61–62

Stress concentration factor, 115–116
Stress concentrations, 55, 134, 224, 246–254, 306

in circular shafts, 179–180, 212
Stress-strain relationships, 184–185. See also True stress and 

true strain
diagrams of, 54, 56–61, 129, 186, 716
for fiber-reinforced composite materials, 103–107, 133
nonlinear, diagrams of, 185, 189

Stress trajectories, 517
Stresses. See also Allowable load and allowable stress; 

Distribution of stresses; Principal stresses; Shearing 
stresses

analysis and design, 8
application to the analysis and design of simple 

structures, 14–16
average value of, 9, 42
bearing, 4, 13, 16, 43
under combined loadings, 527–539
computing, 17
concept of, 2–51
critical, 636
design considerations, 30–35
determination of, 113
due to bending, 419
due to twisting, 419
in the elastic range, 148–153, 210–211
engineering, 61
flexural, 230
under general loading conditions, 44, 541
general state of, 462–463, 504, 694
hoop, 478
introduction, 4
longitudinal, 478–479
maximum, 716, 722, 725
in the members of a structure, 7
method of problem solution, 16–17, 43
normal, 4, 9–11, 18, 20, 26, 42, 317, 462, 528–530, 532, 694, 

723–724, 751
numerical accuracy, 17, 44
on an oblique plane under axial loading, 26–27, 44
plane, 110, 438, 486–488, 506, 706
residual, 121–123, 134, 189–193, 214, 261–269

Stresses—Cont.
review of methods of statics, 4–6
review problems, 45–48
in a shaft, 144–145
in steel, 248–249
summary, 42–44
in thin-walled pressure vessels, 478–485
uniaxial, 227

Stresses and deformations in the elastic range, 229–232, 305
elastic flexure formula, 305

Structural steel
allowable stress design, for columns under a centric load, 

662–664
load and resistance factor design, for columns under a centric 

load, 667–669
Superposition

application to statically indeterminate beams, 
582–592, 621

method of, 79–81, 273, 300, 422, 551, 621
principle of, 95

Symmetric loadings, cantilever beams and beams with, 
595–596, 623

Symmetric members, in pure bending of, 224–228, 305
Symmetry

axis of, A3
center of, 421, A3

T
Tangential deviation, 594
Temperature changes, problems involving, 82–87, 131
Tensile test, 57
Tension, 227
Thermal expansion, coefficient of, 82, 131
Thermal strain, 82, 131
Thin-walled hollow shafts, 200–203, 214
Thin-walled pressure vessels, 440, 505
Three-dimensional analysis of strain, 491–494
Three-dimensional state of stress, 439
Timber, properties of, A14–A15
Titanium, properties of, A14–A15
Torques, 142. See also Elastic torque; Plastic torque

internal, 150, 163
largest permissible, 150
maximum permissible, 166

Torsion, 140–219
of bars of rectangular cross section, 214
computer problems, 218–219
introduction, 142–144
modulus of rupture in, 185
of noncircular members, 197–200, 214
plastic deformations in circular shafts, 184–186, 212
review problems, 215–217
summary, 210–214

Torsion testing machine, 159
Torsional loading, 519
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Total work, 695
Toughness, modulus of, 694, 697, 750–751
Transformations of stress and strain, 436–511

application of Mohr’s circle to the three-dimensional analysis 
of stress, 464–466

computer problems, 510–511
fracture criteria for brittle materials under plane stress, 

469–477, 505
general state of stress, 462–463, 504
introduction, 438–440
maximum shearing stress, 443–451, 503
measurements of strain, 494–501, 506
Mohr’s circle for plane stress, 452–462, 489–491, 

503, 506
of plane stress, 440–442, 486–488, 502, 506
principal stresses, 503
review problems, 507–509
stresses in thin-walled pressure vessels, 478–485
summary, 502–506
three-dimensional analysis of strain, 491–494
yield criteria for ductile materials under plane stress, 

467–469, 504
Transformed sections, drawing, 224
Transmission shafts, 142

design considerations of, 211
design of, 143

Transverse cross section, deformations in, 233–241, 306
Transverse loading, 223, 316

deformations of a beam under, 43, 552–553, 618
Tresca, Henri Edouard, 468
Tresca’s hexagon, 468
True stress and true strain, 61–62
Twisting. See also Angle of twist; Permanent twist

stresses due to, 419, 531
Two-force members, 4–6

U
Ultimate loads, 31, 33, 667
Ultimate strength of a material, 4, 59

determination of, 30–31, 44
Unequal-leg angle steel, A26–A27
Uniaxial stress, 227
Unknown forces, 43
Unknown loads, 79–80
Unloading, 123

elastic, 193
Unsymmetric bending, 224, 279–283, 308

Unsymmetric loadings
combined stresses, 419
distribution of stresses over the section, 418–419
equivalent force-couple system at shear center, 419
shear center, 414–426, 429
shearing stresses in flanges, 418
shearing stresses in webs, 418
stresses due to bending, 419
stresses due to twisting, 419
of thin-walled members, 414–426

Upper yield point, 60

V
von Mises, Richard, 468
von Mises criterion, 468

W
Watts (W), 212
Wide-flange beam (W-beam), 231, 388
Wide-flange shaped steel (W shapes), properties of, A16–A19
Winkler, E., 294
Wood. See also Timber

design of columns under a centric load, 665–667
maximum stress in, 248

Work
elementary, 695
total, 695

Work and energy
principle of, 725–726
under several loads, 732–734
under a single load, 719–722, 752–753

Working load, 31

Y
Yield criteria for ductile materials under plane stress, 439, 

467–469, 504
maximum-distortion-energy criterion, 468–469
maximum-shearing-stress criterion, 467–469

Yield points, upper and lower, 60
Yield strength, 58–60, 129, 707

determination by offset method, 60
Yielding, 32
Young, Thomas, 62
Young’s modulus, 62
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Answers to Problems

AN1

Answers to problems with a number set in straight type are given on this and the following pages. Answers to problems 
with a number set in italic are not listed.

CHAPTER 1
 1.1 dl 5 22.6 mm; d2 5 15.96 mm.
 1.2 (a) 35.7 MPa. (b) 42.4 MPa.
 1.3 28.2 kips.
 1.4 (a) 12.73 ksi. (b) 22.83 ksi.
 1.7 (a) 101.6 MPa. (b) 221.7 MPa.
 1.8 (a) 2640 psi. (b) 2320 psi.
 1.9 10.64 ksi.
 1.10 285 mm2.
 1.13 24.97 MPa.
 1.14 (a) 17.86 kN. (b) 241.4 MPa.
 1.15 5.93 MPa.
 1.16 12.33 in.
 1.18 60.2 mm.
 1.19 63.3 mm.
 1.21 10.82 in.
 1.22 (a) 3.33 MPa. (b) 525 mm.
 1.23 (a) 444 psi. (b) 7.50 in. (c) 2400 psi.
 1.26 (a) 25.9 mm. (b) 271 MPa.
 1.27 (a) 80.8 MPa. (b) 127.0 MPa. (c) 203 MPa.
 1.28 (a) 10.84 ksi. (b) 5.11 ksi.
 1.29 s 5 70.0 psi; t 5 40.4 psi.
 1.30 (a) 1.500 kips. (b) 43.3 psi.
 1.31 s 5 489 kPa; t 5 489 kPa.
 1.32 (a) 13.95 kN. (b) 620 kPa.
 1.35 (a) 0 (tension) at u 5 908; 

54.1 MPa (compression) at u 5 08.
  (b) 27.0 MPa at u 5 458.
 1.36 (a) 706 kN. (b) u 5 458. (c) 18.00 MPa.
  (d) 36.0 MPa (compression).
 1.37 3.60
 1.39 (a) 1.141 in. (b) 1.549 in.
 1.40 (a) 3.35. (b) 1.358 in.
 1.41 168.1 mm2.
 1.43 5.75 in.
 1.44 1.800.
 1.45 10.25 kN.
 1.48 2.50.
 1.49 (a) 1.550 in. (b) 8.05 in.
 1.51 1.683 kN.
 1.52 2.06 kN.
 1.53 3.02.
 1.55 3.72 kN.
 1.56 3.97 kN.
 1.57 (a) 629 lb. (b) 1.689.
 1.58 (a) 362 kg. (b) 1.718.
 1.59 14.93 mm.
 1.61 (a) 8.92 ksi. (b) 22.4 ksi. (c) 11.21 ksi.
 1.63 2.25 kips.
 1.65 3.45.
 1.67 (a) 5.57 mm. (b) 38.9 MPa. (c) 35.0 MPa.

 1.68 sall dy4 tall.
 1.69 21.38 < u < 32.38.
 1.70 (a) 27.58. (b) 3.31.
 1.C2 (c) 16 mm # d # 22 mm. (d ) 18 mm # d # 22 mm.
 1.C3 (c) 0.70 in. # d # 1.10 in. (d) 0.85 in. # d # 1.25 in.
 1.C4 (b)  For b 5 38.668, tan b 5 0.8; BD is perpendicular to BC.
  (c)  F.S. 5 3.58 for a 5 26.68; P is perpendicular to line AC.
 1.C5 (b)  Member of Fig. P 1.29, for a 5 608: 

(1) 70.0 psi; (2) 40.4 psi; (3) 2.14; (4) 5.30; (5) 2.14.
Member of Fig. P 1.31, for a 5 458:
(1) 489 kPa; (2) 489 kPa; (3) 2.58; (4) 3.07; (5) 2.58.

 1.C6 (d) Pall 5 5.79 kN; stress in links is critical.

CHAPTER 2
 2.1 (a) 2.45 kN. (b) 50.0 mm.
 2.2 (a) 0.381 in. (b) 17.58 ksi.
 2.3 (a) 9.09 ksi. (b) 1.760.
 2.4 (a) 9.82 kN. (b) 500 MPa.
 2.6 (a) 0.546 mm. (b) 36.3 MPa.
 2.7 73.7 GPa.
 2.9 dmin 5 0.1701 in.; Lmin 5 36.7 in.
 2.11 9.21 mm.
 2.13 1.988 kN.
 2.14 1.219 in.
 2.15 0.1812 in.
 2.18 (a) 9.53 kips. (b) 1.254 3 1023 in.
 2.19 (a) 32.8 kN. (b) 0.0728 mmw.
 2.20 (a) 0.01819 mmx. (b) 0.0919 mmw.
 2.21 (a) 0.1767 in. (b) 0.1304 in.
 2.22 50.4 kN.
 2.23 dAB 5 22.11 mm; dAC 5 2.03 mm.
 2.25 4.71 3 1023 in.w.
 2.27 14.74 kN.
 2.28 (a) 80.4 mmx. (b) 209 mmw. (c) 390 mmw.
 2.29 PhypEabw.
 2.30 (a) rgL2y2E. (b) Wy2
 2.35 (steel) 215.80 ksi; (concrete) 21.962 ksi.
 2.36 (a) 257.1 MPa. (b) 285.7 MPa.
 2.37 20.306 mm.
 2.38 (a) (steel) 218.01 ksi; (aluminum) 26.27 ksi.
  (b) 26.21 3 1023 in.
 2.39 177.4 lb.
 2.41 (a) 68.2 kN m at A; 37.2 kN m at E. (b) 46.3 mm n.
 2.42 (a) 45.5 kN m at A; 54.5 kN m at E. (b) 48.8 mm n.
 2.43 TA 5 Py10; TB 5 Py5; TC 5 3Py10; TD 5 2Py5.
 2.45 (a) 9.73 kN. (b) 2.02 mm m.
 2.46 (a) (BC) 1000 lb; (DE) 2400 lb. 

(b) 2.21 3 1023 in. n.
 2.47 (steel) 21.448 ksi; (concrete) 54.2 psi.
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 2.49 28.15 MPa.
 2.50 256.2 MPa.
 2.51 142.6 kN.
 2.52 (a) 298.3 MPa. (b) 238.3 MPa.
 2.53 (a) (AB) 25.25 ksi; (BC) 211.82 ksi. 

(b) 6.57 3 1023 in. n.
 2.56 (a) 21.48C. (b) 3.68 MPa.
 2.57 5.70 kN.
 2.58 (a) 201.68C. (b) 18.0107 in.
 2.59 (a) 52.3 kips. (b) 9.91 3 1023 in.
 2.61 (a) 1.324 3 1023 in. (b) 299.3 3 1026 in.
  (c) 212.41 3 1026 in. (d) 212.41 3 1026 in2.
 2.63 E 5 205 MPa; G 5 70.3 MPa; n 5 0.455.
 2.64 94.9 kips.
 2.66 1.99551.
 2.67 (a) 263.0 MPa. (b) 213.50 mm2. (c) 2540 mm3

 2.68 (a) 10.20 mm. (b) 2.40 mm. (c) 8.91 mm.
 2.69 (a) 5.13 3 1023 in. (b) 20.570 3 1023 in.
 2.70 (a) 7630 lb. (compression). (b) 4580 lb (compression).
 2.75 16.67 MPa.
 2.76 19.00 3 103 kNym.
 2.77 0.0187 in.
 2.78 a 5 0.818 in.; b 5 2.42 in.
 2.81 a 5 42.9 mm; b 5 160.7 mm.
 2.82 75.0 kN; 40.0 mm.
 2.84 (a) 16.55 3 1026 in3. (b) 16.54 3 1026 in3.
 2.85 (a) 588 3 1026 in. (b) 33.2 3 1023 in3. (c) 0.0294%.
 2.86 (a) 20.0746 mm; 2143.91 mm3. 

(b) 20.0306 mm; 2521 mm3.
 2.88 3.00.
 2.91 (a) 0.0303 mm. (b) sx 5 40.6 MPa; sy 5 sz 5 5.48 MPa.
 2.92 (a) sx 5 44.6 MPa; sy 5 0; sz 5 3.45 MPa. (b) 20.0129 mm.
 2.93 (a) 13.31 ksi. (b) 18.72 ksi.
 2.94 5.56 kips.
 2.95 (a) 11.4 mm. (b) 28.8 kN.
 2.96 36.7 mm.
 2.97 (a) 92.3 kN; 0.791 mm. (b) 180.0 kN; 1.714 mm.
 2.98 189.6 MPa.
 2.101 176.7 kN; 3.84 mm.
 2.102 176.7 kN; 3.16 mm.
 2.105 2.65 kips; 0.1117 in.
 2.106 3.68 kips; 0.1552 in.
 2.109 (a) 0.292 mm. (b) (AC) 250 MPa; (CB) 2307 MPa. 

(c) 0.0272 mm.
 2.110 (a) 990 kN. (b) (AC) 250 MPa; (CB) 2316 MPa. 

(c) 0.0313 mm.
 2.111 (a) 112.1 kips. (b) 50 ksi in low strength steel; 

82.9 ksi in high strength steal. (c) 0.00906 in.
 2.112 (a) 0.0309 in. (b) 64 ksi. (c) 0.00387 in.
 2.113 (a) (AD) 250 MPa; (BE) 124.3 MPa. (b) 0.622 mmw.
 2.114 (a) (AD) 233 MPa; (BE) 250 MPa. (b) 1.322 mmw.
 2.115 (a) (AD) 24.70 MPa; (BE) 19.34 MPa. (b) 0.0967 mmw.
 2.116 (a) 236 ksi. (b) 15.84 ksi.
 2.117 (a) (AC) 2150 MPa; (CB) 2250 MPa. (b) 0.1069 mm n.
 2.118 (a) (AC) 56.5 MPa; (CB) 9.41 MPa. (b) 0.0424 mm n.
 2.121 (a) 9158F. (b) 17598F.
 2.122 (a) 0.1042 mm. (b) (AC) and (CB) 265.2 MPa.
 2.123 (a) 0.00788 mm. (b) (AC) and (CB) 26.06 MPa.
 2.124 0.429 in.
 2.128 4.678C.
 2.129 30.0 kips.
 2.130 (steel) 67.1 MPa; (concrete) 8.38 MPa.

 2.131 137.88F.
 2.133 (a) 262 mm. (b) 21.4 mm.
 2.135 (a) AsYymg. (b) EAyL.
 2.C1 Prob. 2.126: (a) 11.90 3 1023 in. w. (b) 5.66 3 1023 in. x.
 2.C3 Prob. 2.60: (a) 2116.2 MPa. (b) 0.363 mm.
 2.C5 r 5 0.25 in.: 3.89 kips

r 5 0.75 in.: 2.78 kips
 2.C6 (a) 20.40083. (b) 20.10100. (c) 20.00405

CHAPTER 3
 3.1 (a) 53.4 MPa. (b) 53.9 MPa.
 3.2 (a) 5.17 kN ? m. (b) 87.2 MPa.
 3.3 4.12 kip ? in.
 3.5 (a) 70.7 MPa. (b) 35.4 MPa. (c) 6.25%.
 3.6 (a) 125.7 N ? m. (b) 181.4 N ? m.
 3.8 (a) 19.21 kip ? in. (b) 2.01 in.
 3.10 39.8 mm.
 3.11 (a) CD. (b) 85.8 MPa.
 3.13 (a) 2.85 ksi. (b) 4.46 ksi. (c) 5.37 ksi.
 3.14 (a) 3.19 ksi. (b) 4.75 ksi. (c) 5.58 ksi.
 3.15 9.16 kip ? in.
 3.16 (a) 1.503 in. (b) 1.853 in.
 3.19 3.18 kN ? m.
 3.20 3.37 kN ? m.
 3.21 (a) 72.5 MPa. (b) 68.7 MPa.
 3.22 (a) 59.6 mm. (b) 43.9 mm.
 3.24 1.189 in.
 3.26 4.30 kip ? in.
 3.27 (a) 55.0 MPa. (b) 45.3 MPa. (c) 47.7 MPa.
 3.28 (a) 20.1 mm. (b) 26.9 mm. (c) 36.6 mm.
 3.29 (a) (C1

2 1 C2
2) tally2rgc2. (b)(Tyw)0 [1 1 (c1yc2)

2].
 3.30 1.000; 1.025; 1.120; 1.200; 1.000.
 3.31 (a) 4.218. (b) 5.258.
 3.33 0.491 in.
 3.34 7.68 ksi.
 3.35 (a) 1.3848. (b) 3.228.
 3.37 (a) 14.438. (b) 46.98.
 3.38 6.028.
 3.39 1.1408.
 3.41 3.778.
 3.42 12.228.
 3.43 (TAlyGJ) (1yn4 1 1yn2 1 1).
 3.45 62.9 mm.
 3.46 42.1 mm.
 3.47 (a) 82.1 mm. (b) 109.4 mm.
 3.48 22.5 mm.
 3.49 1.285 in.
 3.50 1.483 in.
 3.51 (a) 73.6 MPa. (b) 34.4 MPa. (c) 5.078.
 3.52 4.138.
 3.55 (AB) 9.95 ksi; (CD) 1.849 ksi.
 3.56 (AB) 1.086 ksi; (CD) 6.98 ksi.
 3.59 12.24 MPa.
 3.62 0.241 in.
 3.63 (a) Ty2ptr1

2.
 3.64 (a) 46.9 MPa. (b) 23.5 MPa.
 3.66 6.69 mm.
 3.68 2.64 mm.
 3.69 40.1 hp.
 3.70 (a) 51.7 kW. (b) 6.178.
 3.73 0.3125 in.
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 3.74 (a) 0.799 in. (b) 0.947 in.
 3.75 (a) 4.08 ksi. (b) 6.79 ksi.
 3.76 (AB) 15.00 mm; (CD) 20.4 mm; (EF) 27.6 mm.
 3.77 7.11 kW.
 3.78 4.90 Hz.
 3.80 d 5 2.82 in.
 3.81 (a) 16.02 Hz. (b) 27.2 Hz.
 3.83 33.5 Hz or 2010 rpm.
 3.84 (a) 5.36 ksi. (b) 5.02 ksi.
 3.86 10.8 mm.
 3.87 42.6 Hz.
 3.88 63.5 kW.
 3.90 (a) 2.61 ksi. (b) 2.01 ksi.
 3.91 (a) 203 N ? m. (b) 165.8 N ? m.
 3.92 21.2 N ? m.
 3.93 (a) 144.7 kip ? in. (b) 148.1 kip ? in.
 3.94 (a) 9.64 kN ? m. (b) 9.91 kN ? m.
 3.95 (a) 18.86 ksi; 1.500 in. (b) 21.0 ksi; 0.916 in.
 3.98 (a) 2.478. (b) 4.348.
 3.99 (a) 6.728. (b) 18.718.
 3.100 (a) 52.1 kip ? in. (b) 80.8 kip ? in.
 3.101 (a) 977 N ? m. (b) 8.61 mm.
 3.104 145 MPa; 19.758.
 3.105 (a) 1.126 fY. (b) 1.587 fY. (c) 2.15 fY.
 3.106 (a) 5.96 kN ? m; 17.948. (b) 7. 31 kN ? m; 26.98.
 3.107 (a) 43.08. (b) 7.61 kN ? m.
 3.110 671 lb ? in.
 3.111 (a) 1.826 kip ? in. (b) 22.98.
 3.112 2.32 kN ? m.
 3.113 2.26 kN ? m.
 3.114 5.63 ksi.
 3.115 14.628.
 3.118 68.0 MPa at inner surface.
 3.119 20.28.
 3.120 (a) c0 5 0.75 c. (b) 0.221 tYc3.
 3.121 (a) 13.54 kip ? in; 3.088. (b) 17.03 kip ? in; 2.268.
 3.122 (a) 11.08 ksi; 2.848. (b) 8.81 ksi; 1.6618.
 3.123 (a) 40.1 MPa; 0.6538. (b) 50.9 MPa; 0.9178.
 3.124 (a) 2.25 kN ? m; 0.8158. (b) 1.770 kN ? m; 0.9018.
 3.127 59.2 MPa.
 3.128 5.07 MPa.
 3.129 0.944.
 3.131 1.356.
 3.132 1.198.
 3.134 (a) 4.57 kip ? in. (b) 4.31 kip ? in. (c) 5.77 kip ? in.
 3.135 (a) 7.52 ksi. (b) 4.618.
 3.136 (a) 70.8 N ? m. (b) 8.778.
 3.137 (a) 4.57 ksi. (b) 2.96 ksi. (c) 5.088.
 3.138 (a) 1009 N ? m. (b) 9.078.
 3.141 4.73 MPa at a; 9.46 MPa at b.
 3.142 44.2 MPa at a; 27.6 MPa at b.
 3.143 16.85 N ? m.
 3.144 88.1 kip ? in or 7.34 kip ? ft.
 3.146 1.735 in.
 3.148 (a) 12.76 MPa. (b) 5.40 kN ? m.
 3.149 (b) 0.25%; 1.00%; 4.00%.
 3.150 (a) 3cyt. (b) 3c2yt2.
 3.151 9.38 ksi.
 3.153 6.37 kip ? in.
 3.155 (a) 1105 N ? m at A; 295 N ? m at C. 

(b) 45.0 MPa. (c) 27.4 MPa.
 3.156 127.8 lb ? in.

 3.157 (a) 24.58. (b) 19.378.
 3.158 36.1 mm.
 3.160 8.47 MPa.
 3.162 1.221.
 3.C2 Prob. 3.44: 2.218.
 3.C5 (a) 23.282%. (b) 20.853%. (c) 20.138%. (d) 20.00554%.
 3.C6 (a) 21.883%. (b) 20.484%. (c) 20.078%. (d) 20.00313%.

 CHAPTER 4
 4.1 (a) 22.38 ksi. (b) 20.650 ksi.
 4.2 (a) 261.6 MPa. (b) 91.7 MPa.
 4.3 (a) 1.405 kip ? in. (b) 3.19 kip ? in.
 4.4 2.38 kN ? m.
 4.5 5.28 kN ? m
 4.6 4.51 kN ? m.
 4.9 67.8 MPa; 281.8 MPa.
 4.11 15.40 ksi; 210.38 ksi.
 4.12 58.8 kN.
 4.14 (a) 8.24 kips. (b) 1.332 kips.
 4.15 106.1 N ? m.
 4.17 20.4 kip ? in.
 4.18 4.11 kip ? in.
 4.19 177.8 kN ? m.
 4.21 65.1 ksi.
 4.23 (a) 0.602 mm. (b) 0.203 N ? m.
 4.24 (a) 75.0 MPa; 26.7 m. (b) 125.0 MPa; 9.60 m.
 4.25 8.49 Mya3; 12.00 MyEa4.
 4.27 (a) 0.889 h0. (b) 0.949.
 4.28 (a) 1.414. (b) 1.732.
 4.29 (a) 334 ft. (b) 0.04648.
 4.30 (a) 1007 in. (b) 3470 in. (c) 0.013208.
 4.31 (a) 139.6 m. (b) 481 m.
 4.32 (a) (sx)max (y

2 2 c2)y2rc.
 4.33 1.092 kN ? m.
 4.34 887 N ? m.
 4.37 335 kip ? in.
 4.38 689 kip ? in.
 4.39 (a) 66.2 MPa. (b) 2112.4 MPa.
 4.40 (a) 256.9 MPa. (b) 111.9 MPa.
 4.42 (a) 22.02 ksi. (b) 14.65 ksi.
 4.43 39.8 m.
 4.44 43.7 m.
 4.46 625 ft.
 4.47 (a) 212 MPa. (b) 215.59 MPa.
 4.48 (a) 210 MPa. (b) 214.08 MPa
 4.49 11.73 kN ? m.
 4.50 9.50 kn ? m.
 4.51 33.9 kip ? ft.
 4.55 (a) (aluminum) 62.3 MPa; (brass) 62.3 MPa; 

(steel) 62.3 MPa. (b) 33.7 m.
 4.57 (a) 222.5 ksi. (b) 17.78 ksi.
 4.59 (a) 6.15 MPa. (b) 28.69 MPa.
 4.63 (a) 128 N ? m. (b) 142 N ? m
 4.64 (a) 219 MPa. (b) 176 MPa.
 4.65 (a) 22.8 kip ? in. (b) 27.7 kip ? in.
 4.66 (a) 12.2 ksi. (b) 9.9 ksi.
 4.67 (a) 38.4 N ? m (b) 52.8 N ? m.
 4.68 (a) 57.6 N ? m (b) 83.2 N ? m.
 4.69 (a) 0.521 in. (b) 17.50 ft.
 4.71 (a) 2.40 kN ? m. (b) 3.41 kN ? m.
 4.72 (a) 1.778 kN ? m. (b) 2.60 kN ? m.
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 4.75 (a) 3339 kip ? in. (b) 4725 kip ? in.
 4.77 (a) 29.2 kN ? m. (b) 1.500.
 4.78 (a) 27.5 kN ? m. (b) 1.443.
 4.79 (a) 4820 kip ? in. (b) 1.443.
 4.80 (a) 2840 kip ? in. (b) 1.611.
 4.81 1.866 kN ? m.
 4.83 911 N ? m.
 4.85 20.7 kip ? in.
 4.86 212 kip ? in.
 4.87 120.0 MPa.
 4.88 106.4 MPa.
 4.91 (a) 106.7 MPa. (b) y 5 231.2 mm, 0, 31.2 mm. 

(c) 24.1 m.
 4.92 (a) 13.36 ksi. (b) y 5 21.517 in., 0, 1.517 in. (c) 168.8 ft.
 4.94 (a) 0.707 rY. (b) 6.09 rY.

 4.96 7.29 kN ? m.
 4.99 (a) 2212 psi. (b) 2637 psi. (c) 21061 psi.
 4.100 (a) 4.87 ksi. (b) 5.17 ksi.
 4.102 (a) 112.7 MPa. (b) 296.0 MPa.
 4.104 (a) (A and B) 28.33 MPa. 

(b) (A) 215.97 MPa; (B) 4.86 MPa.
 4.105 623 lb.
 4.106 (a) 288 lb. (b) 209 lb.
 4.107 (a) 2139.3 MPa. (b) 2152.5 MPa.
 4.108 14.40 kN.
 4.109 16.04 mm.
 4.111 0.500 d.
 4.113 (a) 2.54 kN. (b) 17.01 mm to the right of loads.
 4.114 7.86 kipsw; 9.15 kipsx.
 4.116 (a) 1125 kN. (b) 817 kN.
 4.118 2.485 in. , y , 4.56 in.
 4.119 (a) 47.6 MPa. (b) 249.4 MPa. 

(c) 9.80 mm below top of section.
 4.121 9.00 kN.
 4.122 (a) 30.0 mm. (b) 94.5 kN.
 4.124 P 5 75.7 kipsw; Q 5 87.2 kipsw.
 4.125 P 5 5.98 kipsw; Q 5 49.0 kipsw.
 4.127 (a) 22.80 MPa. (b) 0.452 MPa. (c) 2.80 MPa.
 4.128 (a) 23.37 MPa. (b) 218.60 MPa. (c) 3.37 MPa.
 4.129 (a) 1.149 ksi. (b) 0.1479 ksi. (c) 21.149 ksi.
 4.130 (a) 0.321 ksi. (b) 20.107 ksi. (c) 0.427 ksi.
 4.131 (a) 229.3 MPa. (b) 2144.8 MPa. (c) 2125.9 MPa.
 4.134 (a) 57.8 MPa. (b) 256.8 MPa. (c) 25.9 MPa.
 4.135 (a) 9.598. (b) 77.5 MPa.
 4.137 (a) 27.58. (b) 5.07 ksi.
 4.138 (a) 10.038. (b) 54.2 MPa.
 4.139 (a) 11.38. (b) 15.06 ksi.
 4.141 22.32 ksi.
 4.143 113.0 MPa.
 4.144 (a) (A) 31.5 MPa; (B) 210.39 MPa. 

(b) 94.0 mm above point A.
 4.145 (a) (A) 22.9 MPa; (B) 8.96 MPa. 

(b) 56.0 mm to the right of point B.
 4.148 0.1638 in.
 4.149 53.9 kips.
 4.150 733 N ? m.
 4.151 1.323 kN ? m.
 4.152 29.1 kip ? in.
 4.153 29.1 kip ? in.
 4.161 (a) 12.19 ksi. (b) 11.15 ksi.
 4.162 (A) 10.77 ksi; (B) 23.22 ksi.
 4.163 60.9 mm.

 4.164 2148.6 MPa.
 4.167 (a) 2154.4 MPa. (b) 75.2 MPa.
 4.168 73.2 mm.
 4.170 1128 lb.
 4.171 (a) 2172.4 MPa. (b) 53.2 MPa.
 4.172 (a) 2131.5 MPa. (b) 34.7 MPa.
 4.174 (a) 3.06 ksi. (b) 22.81 ksi. (c) 0.529 ksi.
 4.175 (a) 245.2 MPa. (b) 17.40 MPa.
 4.176 (a) 243.3 MPa. (b) 14.43 MPa.
 4.177 107.8 N ? m.
 4.178 (a) 6.74 ksi. (b) 23.45 ksi.
 4.179 1.584 in.
 4.180 (a) 232.5 MPa. (b) 34.2 MPa.
 4.183 (a) 69.3 MPa. (b) 258.6 MPa.
 4.185 (a) 25.96 ksi. (b) 3.61 ksi.
 4.186 (a) 26.71 ksi. (b) 3.24 ksi.
 4.192 8.82 ksi; 214.71 ksi.
 4.194 4.63 kip ? in.
 4.195 (a) 46.9 MPa. (b) 18.94 MPa. (c) 55.4 m.
 4.197 (a) 282.4 MPa. (b) 36.6 MPa.
 4.199 (a) 9.33 ksi. (b) 8.00 ksi.
 4.200 (a) 2Py2at. (b) 22Pyat. (c) 2Py2at.
 4.202 (a) 2500 psi. (b) 2822 psi. (c) 2667 psi. 

(d) 21280 psi. (e) 21000 psi.
 4.203 (a) (A) 20.5 s1; (B) s1; (C) 2s1; (D) 0.5 s1. (b) 4.333 r1.
 4.C1 a 5 4 mm: sa 5 50.6 MPa, ss 5 107.9 MPa; 

a 5 14 mm: sa 5 89.7 MPa, ss 5 71.8 MPa.
  (a) 111.6 MPa. (b) 6.61 mm.
 4.C2 yY 5 65 mm, M 5 52.6 kN ? m, r 5 43.3; yY 5 45 mm, 

M 5 55.6 kN ? m, r 5 30.0 m.
 4.C3 b 5 308: sA 5 –7.83 ksi, sB 5 –5.27 ksi, 

sC 5 7.19 ksi, sD 5 5.91 ksi;
  b 5 1208: sA 5 1.557 ksi, sB 5 6.01 ksi, 

sC 5 22.67 ksi, sD 5 24.89 ksi.
 4.C4 r1/h 5 0.529 for 50% increase in smax.
 4.C5 Prob. 4.10: 2102.4 MPa; 73.2 MPa.
 4.C6 yY 5 0.8 in.: 76.9 kip ? in., 552 in.; 

yY 5 0.2 in.: 95.5 kip ? in., 138.1 in.
 4.C7 a 5 0.2 in.: 27.27 ksi, a 5 0.8 in.: 26.61 ksi. 

For a 5 0.625 in., s 5 26.51 ksi.

CHAPTER 5
 5.1 (b) A to B: V 5 PbyL; M 5 PbxyL.
  B to C: V 5 2PayL; M 5 Pa(L 2 x)yL.
 5.2 (b) V 5 w(x 2 2L)y2; M 5 wx(L 2 x)y2.
 5.3 (b) A to B: V 5 2wx; M 5 2wx2y2.
  B to C: V 5 2wa; M 5 2wa(x 2 ay2).
 5.4 (b) V 5 2w0x2y2L; M 5 2w0x3y6L.
 5.5 (b) A to B: V 5 w(a 2 x); M 5 w(ax 2 x2y2).
  B to C: V 5 0; M 5 wa2y2.
  C to D: V 5 w(L 2 x 2 a); M 5 w[a(L 2 x) 2 (L 2 x)2y2].
 5.6 (b) A to B: V 5 w(L 2 2a)y2; M 5 wx(L 2 2a)y2.
  B to C: V 5 w(Ly2 2 x); M 5 w[(L 2 2a)x2 2 (x 2 a)2]y2.
  C to D: V 5 2 w(L 2 2a)y2; M 5 w(L 2 2a)(L 2 x)y2.
 5.7 (a) 430 lb. (b) 1200 lb ? in.
 5.8 (a) 300 N. (b) 67.5 N ? m.
 5.9 (a) 40.0 kN. (b) 40.0 kN ? m
 5.11 (a) 120.0 kips. (b) 120.0 kip ? ft.
 5.12 (a) 85.0 N. (b) 21.25 N ? m.
 5.14 (a) 900 N. (b) 112.5 N ? m.
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 5.15 7.13 MPa.
 5.16 1.013 ksi.
 5.18 139.2 MPa.
 5.19 9.90 ksi.
 5.21 14.17 ksi.
 5.22 116.2 MPa.
 5.25 10.34 ksi.
 5.26 |V|max 5 6.00 kN; |M|max 5 4.00 kN ? m; 

smax 5 14.29 MPa.
 5.27 (a) 10.67 kN. (b) 9.52 MPa.
 5.28 (a) 3.09 ft. (b) 12.95 ksi.
 5.30 (a) 866 mm. (b) 99.2 MPa.
 5.31 (a) 819 mm. (b) 89.5 MPa.
 5.32 (a) 33.3 mm. (b) 6.66 mm.
 5.33 1.021 in.
 5.34 See 5.1.
 5.35 See 5.2.
 5.36 See 5.3.
 5.37 See 5.4.
 5.38 See 5.5.
 5.39 See 5.6.
 5.40 See 5.7.
 5.41 See 5.8.
 5.42 See 5.9.
 5.43 See 5.10.
 5.46 See 5.15.
 5.47 See 5.16.
 5.48 See 5.18.
 5.49 See 5.19.
 5.51 (a) V 5 w0(L

2 2 3x2)y6L; M 5 w0(Lx 2 x3yL)y6. 
(b) 0.0642 w0L2.

 5.52 (a) V 5 (w0Lyp)cos(pxyL); M 5 (w0L2yp2) sin(pxyL); 
(b) w0L2yp2.

 5.54 |V|max 5 8.00 kips; |M|max 5 16.00 kip ? ft; 6.98 ksi.
 5.55 |V|max 5 6.5 kN; |M|max 5 5.04 kN ? m; 30.3 MPa.
 5.57 |V|max 5 200 kN; |M|max 5 300 kN ? m; 136.4 MPa.
 5.58 |V|max 5 76 kN; |M|max 5 67.3 kN ? m; 68.5 MPa.
 5.61 |V|max 5 48 kN; |M|max 5 12.0 kN ? m; 62.2 MPa.
 5.62 |V|max 5 24.5 kips; |M|max 5 36.3 kip ? ft; 15.82 ksi.
 5.63 |V|max 5 1150 N; |M|max 5 221 N ? m; P 5 500 N; 

Q 5 250 N.
 5.65 173.2 mm.
 5.67 h . 14.27 in.
 5.69 h . 203 mm.
 5.70 b . 48.0 mm.
 5.71 W27 3 84.
 5.72 W27 3 84.
 5.73 W530 3 66.
 5.74 W530 3 92.
 5.76 S510 3 98.2.
 5.77 S15 3 42.9.
 5.79 12.7 mm.
 5.80 C9 3 15.
 5.81 11.74 in.
 5.82 9 mm.
 5.83 W24 3 68.
 5.84 W610 3 101.
 5.87 176.8 kN ? m.
 5.88 108.8 kN ? m.
 5.89 (a) 6.49 ft. (b) W16 3 31.
 5.91 (a) S15 3 42.9. (b) W27 3 84.
 5.92 (a) 1.485 kNym. (b) 1.935 m.

 5.94 W27 3 84.
 5.95 123.2%.
 5.96 383 mm.
 5.97 336 mm.
 5.98 (a) V 5 2w0x 1 w0x2y2a 2 (w0y2a) Kx 2 aL2; M 5 2w0x2y2 

1 w0x3y6a 2 (w0y6a) Kx 2 aL3; (b) 25w0a2y6.
 5.99 (a) V 5 2w0x 1 w0 Kx 2 aL1; 

M 5 2w0x2y2 1 (w0y2) Kx 2 aL2.
  (b) 23w0a2y2.
 5.101 (a) V 5 2w0 Kx 2 aL1 2 3w0ay4 1(15w0ay4) Kx 2 2aL0;
  M 5 2(w0y2) Kx 2 aL2 2 3w0axy4 1 (15 w0ay4) Kx 22aL1.
  (b) 2w0a2y2.
 5.102 (a) V 5 1.25P 2 P Kx 2 aL0 2 P Kx 2 2aL0; 

M 5 1.25Px 2 P Kx 2aL1 2 P Kx 2 2aL1.
  (b) 0.750Pa.
 5.104 (a) V 5 2P Kx 2 aL0; M 5 2P Kx 2 aL1 2 Pa Kx 2 aL0.
  (b) 2Pa.
 5.105 (a) V 5 2P 2 P Kx 2 2Ly3L0; 

M 5 2Px 1 PLy3 2 P Kx 2 2Ly3L1 2 (PLy3) Kx 2 2Ly3L0.
  (b) 24PLy3.
 5.106 (a) V 5 21.5x 1 3 Kx 2 0.8L0 1 3 Kx 23.2L0 kN; 

M 5 20.75x2 1 3 Kx 2 0.8L1 1 3 Kx 2 3.2L1 kN ? m.
  (b) 600 N ? m.
 5.107 (a) V 5 40 2 48 Kx 2 1.5L0 2 60 Kx 2 3.0L0 1 60 Kx 2 3.6L0 kN; 

M 5 40x 2 48 Kx 2 1.5L1 2 60 Kx 2 3.0L1 1 60 Kx 2 3.6L1 kN ? m.
  (b) 60.0 kN ? m.
 5.108 (a) V 5 13 2 3x 1 3 Kx 2 3L1 2 8 Kx 2 7L0 2 3 Kx 2 11L1 kips; 

M 5 13x 2 1.5x2 1 1.5 Kx 2 3L2 2 8 Kx 2 7L1 
2 1.5 Kx 2 11L2 kip ? ft.

  (b) 41.5 kip ? ft at point D.
 5.109 (a) V 5 23 1 9.75 Kx 2 3L0 2 6 Kx 2 7L0 2 6 Kx 2 11L0 kips; 

M 5 23x 1 9.75 Kx 2 3L1 2 6 Kx 2 7L1 2 6 Kx 2 11L1 kip ? ft.
  (b) 21.0 kip ? ft at point E.
 5.111 (a) V 5 30 2 24 Kx 2 0.75L0 224 Kx 2 1.5L0 2 24 Kx 2 2.25L0 

1 66 Kx 2 3L0 kN; M 5 30x 2 24 Kx 2 0.75L1 
2 24 Kx 2 1.5L1 2 24 Kx 2 2.25L1 1 66 Kx 2 3L1 kN ? m.

  (b) 87.7 MPa.
 5.114 (a) 80.0 kip ? ft at C. (b) W14 3 30.
 5.115 (a) 121.5 kip ? ft at x 5 6.00 ft. (b) W16 3 40.
 5.117 (a) 0.776 kN ? m at x 5 1.766 m. (b) 120 mm.
 5.119 |V|max 5 15.30 kips; |M|max 5 38.0 kip ? ft.
 5.120 |V|max 5 89.0 kN; |M|max 5 178.0 kN ? m.
 5.121 |V|max 5 35.6 kN; |M|max 5 25.0 kN ? m.
 5.122 (a) |V|max 5 13.80 kN; |M|max 5 16.14 kN ? m. (b) 83.8 MPa.
 5.123 (a) |V|max 5 40.0 kN; |M|max 5 30.0 kN ? m. (b) 40.0 MPa.
 5.124 (a) |V|max 5 3.84 kips; |M|max 5 3.80 kip ? ft (b) 0.951 ksi.
 5.126 (a) h 5 h0 22xyL. (b) 60.0 kN.
 5.128 (a) h 5 h0 (xyL)1y2. (b) 20.0 kips.
 5.129 (a) h 5 h0 [(xyL)(1 2 xyL)]1y2. (b) 4.44 kipyin.
 5.130 (a) h 5 h0 (xyL)3y2. (b) 167.7 mm.
 5.132 1.800 m.
 5.133 1.900 m.
 5.134 l1 56.00 ft; l2 5 4.00 ft.
 5.137 d 5 d0 (2xyL)1y3 for 0 ¯ x ¯ Ly2.

d 5 d0 [2(L 2 x)yL]1y3 for Ly2 ¯ x ¯ L.
 5.138 (a) b0 (1 2 xyL)2. (b) 160.0 lbyin.
 5.139 (a) b0 (1 2 xyL). (b) 20.8 mm.
 5.140 (a) 155.2 MPa. (b) 143.3 MPa.
 5.141 193.8 kN.
 5.143 (a) 11.16 ft. (b) 14.31 in.
 5.144 (a) 152.6 MPa. (b) 133.6 MPa.
 5.145 (a) 4.49 m. (b) 211 mm.
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 5.146 (a) 25.0 ksi. (b) 18.03 ksi.
 5.149 (a) 240 mm. (b) 150.0 MPa.
 5.150 (a) 15.00 in. (b) 320 lbyin.
 5.151 (a) 30.0 in. (b) 12.80 kips.
 5.152 (a) 2000 lb. (b) 19200 lb ? in.
 5.153 |V|max 5 342 N; |M|max 5 51.6 N ? m; s 5 17.19 MPa.
 5.156 73.5 MPa.
 5.157 |V|max 5 30.0 lb; |M|max 5 24.0 lb ? ft; |s|max 5 6.95 ksi.
 5.158 6.20 in.
 5.159 W250 3 28.4.
 5.160 7.01 kips.
 5.C4 For x 5 13.5 ft: M1 5 131.25 kip ? ft; 

M2 5 156.25 kip ? ft; MC 5 150.0 kip ? ft.
 5.C6 Prob. 5.112: VA 5 29.5 kN, Mmax 5 28.3 kN ? m, 

at 1.938 m from A.

CHAPTER 6
 6.1 92.6 lb.
 6.2 326 lb.
 6.3 738 N.
 6.4 747 N.
 6.5 193.5 kN.
 6.6 217 kN.
 6.9 (a) 7.40 ksi (b) 6.70 ksi.
 6.10 (a) 920 kPa. (b) 765 kPa.
 6.12 (a) 3.17 ksi. (a) 2.40 ksi.
 6.13 120.3 kN.
 6.15 14.05 in.
 6.16 88.9 mm.
 6.18 (b) h 5 320 mm; b 5 97.7 mm.
 6.19 143.3 kips.
 6.21 (a) 31.0 MPa. (b) 23.2 MPa.
 6.22 (a) 1.313 ksi. (b) 2.25 ksi.
 6.23 32.7 MPa.
 6.24 3.00 ksi.
 6.26 (a) Line at mid-height. (b) 1.500.
 6.28 (a) hy4 from neutral axis. (b) 1.125.
 6.29 4.28 kN.
 6.30 4.63 kN.
 6.32 189.6 lb.
 6.34 (a) 1.583 ksi. (b) 7.59 ksi.
 6.35 (a) 101.6 MPa. (b) 79.6 MPa.
 6.36 (a) 41.4 MPa. (b) 41.4 MPa.
 6.37 (a) 33.7 MPa. (b) 75.0 MPa. (c) 43.5 MPa.
 6.38 (a) 1.167 ksi. (b) 0.513 ksi. (c) 4.03 ksi. (d) 8.40 ksi.
 6.40 (a) 18.23 MPa. (b) 14.59 MPa. (c) 46.2 MPa.
 6.41 (a) 0. (b) 1.26 ksi. (c) 3.30 ksi. (d) 6.84 ksi. (e) 7.86 ksi.
 6.43 53.9 kips.
 6.44 20.6 MPa.
 6.45 9.05 mm.
 6.46 0.371 in.
 6.48 (a) 23.2 MPa. (b) 35.2 MPa.
 6.49 (a) 10.76 MPa. (b) 0. (c) 11.21 MPa. (d) 22.0 MPa. 

(e) 9.35 MPa.
 6.51 1.422 in.
 6.52 (a) 2.08. (b) 2.10.
 6.53 (a) 2.25. (b) 2.12.
 6.54 (a) V sin uyprmt.
 6.57 (a) 1.323 ksi. (b) 1.329 ksi.
 6.59 (a) 6.73 MPa. (b) 1.515 MPa.
 6.61 e 5 0.714a.

 6.62 e 5 0.345a.
 6.63 (a) e 5 29.4mm. (b) 0 at A, 39.0 MPa at B in AB; 

78.0 MPa at B in BD; 104.1 MPa at C.
 6.64 (a) e 5 19.06 mm. (b) 0 at A; 50.5 MPa at B in AB; 

25.3 MPa at B in BD; 59.0 MPa at C.
 6.67 (a) e 5 10.22 mm. (b) At B, E, G, and J: t 5 0;
  At A and H: 41.1 MPa;
  Just above D and just below F: 68.5 MPa;
  Just to the right of D or F: 13.71 MPa;
  Just below D and just above F: 77.7 MPa;
  At K: 81.1 MPa.
 6.68 (a) e 5 9.12 mm. (b) At B, E, G, and J: t 5 0;
  Just to the right of A or H: 50.6 MPa;
  Just below A and just above H: 33.8 MPa;
  Just above D and just below F: 67.5 MPa;
  Just to the right of D or E: 16.88 MPa;
  Just below D and just above F: 84.4 MPa;
  At K: 88.6 MPa.
 6.69 e 5 1.265 in.
 6.70 e 5 20.2 mm.
 6.71 e 5 6.14 mm.
 6.72 e 5 0.482 in.
 6.75 e 5 2.37 in.
 6.76 e 5 2.21 in.
 6.77 0 and 40.0 mm.
 6.78 40.0 mm.
 6.81 65.9 MPa.
 6.82 106.6 MPa.
 6.83 (a) 500 lb; 398 lb ? in. (b) 2980 psi.
 6.84 (a) 500 lb; 398 lb ? in. (b) 6090 psi.
 6.87 (maximum) Pyat.
 6.88 (maximum) 1.333 Pyat.
 6.89 (a) 155.8 N. (b) 329 kPa.
 6.90 12.01 ksi.
 6.92 87.3 mm.
 6.93 (a) 1.745 ksi. (b) 2.82 ksi.
 6.95 (a) 146.1 kNym. (b) 19.99 MPa.
 6.96 (a) 50.9 MPa. (b) 62.4 MPa.
 6.98 e 5 3(b2 2 a2)y(6a 1 6b 1 h).
 6.99 e 5 0.433 in.
 6.C1 (a) h 5 173.2 mm. (b) h 5 379 mm.
 6.C2 (a) L 5 37.5 in.; b 5 1.250 in.
  (b) L 5 70.3 in.; b 5 1.172 in.
  (c) L 5 59.8 in.; b 5 1.396 in.
 6.C4 (a) tmax 5 2.03 ksi; tB 5 1.800 ksi. (b) 194 psi.
 6.C5 Prob. 6.66: (a) 2.67 in. (b) tB 5 0.917 ksi; 

tD 5 3.36 ksi; tmax 5 4.28 ksi.

CHAPTER 7
 7.1 s 5 5.49 ksi; t 5 11.83 ksi.
 7.2 s 5 20.521 MPa; t 5 56.4 MPa.
 7.3 s 5 0.1699 ksi; t 5 5.10 ksi.
 7.4 s 5 249.2 MPa; t 5 2.41 MPa.
 7.5 (a) 237.08, 53.08. (b) 213.60 MPa, 286.4 MPa.
 7.6 (a) 18.48, 108.48. (b) 55.0 ksi, 5.00 ksi.
 7.9 (a) 8.08, 98.08. (b) 36.4 MPa. (c) 250.0 MPa.
 7.10 (a) 226.68, 63.48. (b) 25.0 MPa. (c) 30.0 MPa.
 7.11 (a) 14.08, 104.08. (b) 17.00 ksi. (c) 24.00 ksi.
 7.12 (a) 31.78, 121.78. (b) 11.18 ksi. (c) 2.00 ksi.
 7.13 (a) sx9 5 22.40 ksi; tx9y9 5 0.15 ksi, sy9 5 10.40 ksi.
  (b) sx9 5 1.95 ksi; tx9y9 5 6.07 ksi, sy9 5 6.05 ksi.
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 7.15 (a) sx9 5 9.02 ksi; tx9y9 5 3.80 ksi, sy9 5 213.02 ksi.
(b) sx9 5 5.34 ksi; tx9y9 5 29.06 ksi, sy9 5 29.34 ksi. 

 7.17 (a) 20.600 MPa. (b) 23.84 MPa.
 7.18 (a) 346 psi. (b) 2200 psi.
 7.19 s 5 24.76 ksi; t 5 20.467 ksi.
 7.21 (a) 47.9 MPa; 102.7 MPa.
 7.23 25.1 ksi, 20.661 ksi; 12.88 ksi.
 7.24 5.12 ksi, 21.640 ksi; 3.38 ksi.
 7.25 12.18 MPa, 248.7 MPa; 30.5 MPa.
 7.26 (a) 18.98, 108.98; 18.67 MPa, 2158.5 MPa. (b) 88.6 MPa.
 7.28 205 MPa.
 7.30 (a) 22.89 MPa. (b) 12.77 MPa, 1.226 MPa.
 7.31 (a) 237.08, 53.08. (b) 286.4 MPa, 213.6 MPa.
  (a9) 8.08, 98.08; 36.4 MPa. (b9) 250.0 MPa.
 7.32 (a) 231.08, 59.08. (b) 13.00 ksi, 221.0 ksi.
  (a9) 14.08, 104.08; 17.00 ksi. (b9) 24.00 ksi.
 7.33 (a) 226.68, 63.48. (b) 25.0 MPa. (c) 30.0 MPa.
 7.34 (a) 121.78; 31.78. (b) 11.18 ksi. (c) 2.00 ksi.
 7.35 (a) sx9 5 22.40 ksi; tx9y9 5 0.15 ksi, sy9 5 10.40 ksi.
  (b) sx9 5 1.95 ksi; tx9y9 5 6.07 ksi, sy9 5 6.05 ksi.
 7.37 (a) sx9 5 9.02 ksi; tx9y9 5 3.80 ksi, sy9 5 213.02 ksi.
  (b) sx9 5 5.34 ksi; tx9y9 5 29.06 ksi, sy9 5 29.34 ksi. 
 7.39 (a) 20.600 MPa. (b) 23.84 MPa.
 7.40 (a) 346 psi. (b) 2200 psi.
 7.41 s 5 24.76 ksi; t 5 20.467 ksi.
 7.43 (a) 47.9 MPa. (b) 102.7 MPa.
 7.45 25.1 ksi, 20.661 ksi; 12.88 ksi.
 7.46 5.12 ksi, 21.640 ksi; 3.38 ksi.
 7.47 12.18 MPa, 248.7 MPa; 30.5 MPa.
 7.48 (a) 18.98, 108.98; 2158.5 MPa, 18.67 MPa. (b) 88.6 MPa.
 7.50 205 MPa.
 7.52 (a) 22.89 MPa. (b) 12.77 MPa, 1.23 MPa.
 7.53 (a) 28.66 MPa. (b) 17.00 MPa, 23.00 MPa.
 7.55 24.68, 114.68; 72.9 MPa, 27.1 MPa.
 7.56 uy2, (u 1 p)y2; s0 1 s0 cos u, s0 2 s0 cos u.
 7.57 2308, 608; 213 t0, 13 t0.
 7.59 16.58 # u # 110.18.
 7.60 25.18 # u # 132.08.
 7.61 2120.0 MPa # txy # 120.0 MPa.
 7.62 2141.4 MPa # txy # 141.4 MPa.
 7.63 (a) 33.78, 123.78. (b) 18.00 ksi. (c) 6.50 ksi.
 7.65 (b) |txy| 5 1sx sy 2 smax smin.
 7.66 (a) 11.00 ksi. (b) 10.00 ksi.
 7.68 (a) 94.3 MPa. (b) 105.3 MPa.
 7.69 (a) 100.0 MPa. (b) 110.0 MPa.
 7.71 (a) 6.50 ksi. (b) 9.00 ksi. (c) 7.00 ksi.
 7.72 (a) 85.0 MPa. (b) 85.0 MPa. (c) 95.0 MPa.
 7.73 (a) 97.5 MPa. (b) 85.0 MPa. (c) 120.0 MPa.
 7.74 2.00 ksi; 9.33 ksi.
 7.76 (a) 8.00 ksi. (b) 4.50 ksi.
 7.77 (a) 40.0 MPa. (b) 72.0 MPa.
 7.78 240.0 MPa; 130.0 MPa.
 7.80 (a) 45.7 MPa. (b) 92.9 MPa.
 7.81 (a) 1.228. (b) 1.098 (c) Yielding occurs.
 7.82 (a) 1.083. (b) Yielding occurs. (c) Yielding occurs.
 7.83 (a) 1.287. (b) 1.018. (c) Yielding occurs.
 7.84 (a) 1.119. (b) Yielding occurs. (c) Yielding occurs.
 7.87 52.9 kips.
 7.88 63.0 kips.
 7.89 Rupture will occur.
 7.90 Rupture will occur.
 7.91 No rupture.

 7.92 Rupture will occur.
 7.94 68.49 MPa.
 7.95 196.9 N ? M.
 7.96 50.0 MPa.
 7.98 smax 5 72.7 MPa; tmax 5 36.4 MPa.
 7.100 166.5 psi.
 7.102 (a) 202 psi. (b) 0.0353 in.
 7.103 (a) 95.7 MPa. (b) 1.699 mm.
 7.104 smax 5 89.0 MPa; tmax 5 44.5 MPa.
 7.105 12.55 mm.
 7.106 smax 5 136.0 MPa; tmax 5 68.0 MPa.
 7.108 smax 5 78.5 MPa; tmax 5 39.3 MPa.
 7.109 43.3 ft.
 7.110 smax 5 16.62 ksi; tmax 5 8.31 ksi.
 7.112 (a) 33.2 MPa. (b) 9.55 MPa.
 7.113 2.17 MPa.
 7.114 22208 # b # 27.08 and 63.08 # b # 117.08.
 7.115 (a) 44.2 MPa. (b) 15.39 MPa.
 7.116 56.88.
 7.118 474 psi.
 7.120 smax 5 45.1 MPa; tmax (in-plane) 5 9.40 MPa.
 7.121 smax 5 45.1 MPa; tmax (in-plane) 5 7.49 MPa.
 7.124 (a) 3.15 ksi. (b) 1.993 ksi.
 7.125 (a) 1.486 ksi. (b) 3.16 ksi.
 7.126 (a) 5.64 ksi. (b) 282 psi.
 7.127 (a) 2.28 ksi. (b) 228 psi.
 7.128 Px9 5 2450 m; Py9 5 199.8 m; gx9y9 5 375 m.
 7.129 Px9 5 115.0 m; Py9 5 285 m; gx9y9 5 25.72 m.
 7.131 Px9 5 36.7 m; Py9 5 283 m; gx9y9 5 227 m.
 7.132 Px9 5 2450 m; Py9 5 199.8 m; gx9y9 5 375 m.
 7.133 Px9 5 115.0 m; Py9 5 285 m; gx9y9 5 25.72 m.
 7.135 Px9 5 36.7 m; Py9 5 283 m; gx9y9 5 227 m.
 7.136 (a) 233.78, 56.38; 2420 m, 100 m, 160 m (b) 520 m. (c) 580 m.
 7.137 (a) 230.18, 59.98; 2 702 m, 2 298 m, 500 m. 

(b) 403 m. (c) 1202 m.
 7.139 (a) 226.68, 64.48; 2150 m, 750 m, 2300 m. 

(b) 900 m. (c) 1050 m.
 7.140 (a) 7.88, 97.88; 56.6 m, 243 m, 0. (b) 186.8 m. (c) 243 m.
 7.141 (a) 31.08, 121.08; 513 m, 87.5 m, 0. (b) 425 m. (c) 513 m.
 7.143 (a) 37.98, 127.98; 257.5 m, 2383 m, 0. (b) 325 m. (c) 383 m.
 7.146 (a) 2300 3 1026 inyin. (b) 435 3 1026 inyin, 2315 3 1026 inyin; 

750 3 1026 in/in.
 7.147 (a) 30.08, 120.08; 560 3 1026 inyin, 2140 3 1026 inyin. 

(b) 700 3 1026 inyin.
 7.152 1.421 MPa.
 7.153 1.761 MPa.
 7.154 222.58, 67.58; 426 m, 2952 m, 2224 m.
 7.155 229.8 MPa; 270.9 MPa.
 7.156 P 5 69.6 kips; Q 5 30.3 kips.
 7.157 P 5 34.8 kips; Q 5 38.4 kips.
 7.158 16.58 kN.
 7.160 (a) 18.48. (b) 16.67 ksi.
 7.161 08, 908; s0, 2s0.
 7.162 (a) 39.0 MPa. (b) 45.0 MPa. (c) 39.0 MPa.
 7.164 (a) 1.286. (b) 1.018. (c) Yielding occurs.
 7.165 smax 5 68.6 MPa; tmax 5 34.3 MPa.
 7.167 3.43 ksi (compression).
 7.169 415 3 1026 inyin.
 7.C1 Prob. 7.14:  (a) 256.2 MPa, 86.2 MPa, 238.2 MPa.

(b) 245.2 MPa, 75.2 MPa, 53.8 MPa.
  Prob. 7.16:  (a) 24.0 MPa, 2104.0 MPa, 21.50 MPa.

(b) 219.51 MPa, 260.5 MPa, 260.7 MPa.
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 7.C4 Prob. 7.93: Rupture occurs at t0 5 3.67 ksi.
 7.C6 Prob. 7.138: (a) 221.68, 68.48; 279m, 2599m, 160.0m. 

(b) 877m. (c) 877m.
 7.C7 Prob. 7.142: (a) 11.38, 101.38; 310m, 50.0m, 0.

(b) 260m. (b) 310m.
 7.C8 Prob. 7.144:  Px 5 253m; Py 5 307; gxy 5 2893.

Pa 5 727m; Pb 5 2167.2; gmax 5 2894.
  Prob. 7.145:  Px 5 725m; Py 5 275.0; gxy 5 173.2.

Pa 5 734m; Pb 5 284.3; gmax 5 819.

 CHAPTER 8
 8.1 (a) 10.69 ksi. (b) 19.18 ksi. (c) not acceptable.
 8.2 (a) 10.69 ksi. (b) 13.08 ksi. (c) acceptable.
 8.3 (a) 94.6 MPa. (b) 93.9 MPa. (c) acceptable.
 8.4 (a) 91.9 MPa. (b) 95.1 MPa. (c) acceptable.
 8.7 (a) W690 3 125. (b) 118.2 MPa, 34.7 MPa. (c) 122.3 MPa.
 8.8 (a) W310 3 38.7 (b) 147.5 MPa, 18.18 MPa. (c) 140.2 MPa.
 8.9 (a) 134.3 MPa. (b) 132.4 MPa.
 8.11 (a) 19.39 ksi. (b) 20.7 ksi.
 8.12 (a) 17.90 ksi. (b) 17.08 ksi.
 8.14 (a) 126.0 MPa. (b) 115.9 MPa at midspan, 

105.1 MPa at B and C.
 8.15 873 lb.
 8.16 1.578 in.
 8.17 1.698 in.
 8.19 BC: 21.7 mm; CD: 33.4 mm.
 8.22 (a) H: 6880 psi, K: 6760 psi. (b) H: 7420 psi, K: 7010 psi.
 8.25 41.3 mm.
 8.26 44.8 mm.
 8.27 37.0 mm.
 8.28 43.9 mm.
 8.29 1.822 in.
 8.30 1.792 in.
 8.31 (a) 211.07 ksi; 0. (b) 2.05 ksi; 2.15 ksi. (c) 15.17 ksi; 0.
 8.32 (a) 11.87 ksi; 0. (b) 2.05 ksi, 2.15 ksi. (c) 27.78 ksi; 0.
 8.34 (a) 232.5 MPa; 14.06 MPa. (b) 2126.2 Mpa; 0.
 8.35 (a) 237.9 MPa; 14.06 MPa. (b) 2131.6 MPa; 0.
 8.37 (a) 4.79 ksi; 3.07 ksi. (b) 22.57 ksi; 3.07 ksi.
 8.38 214.98 MPa; 17.29 MPa.
 8.39 23.96 ksi; 0.938 ksi.
 8.40 (a) 79.6 MPa; 7.96 MPa. (b) 0; 13.26 MPa.
 8.42 (a) 4.3 MPa, 293.4 MPa; 12.18, 102.18. (b) 48.9 MPa.
 8.43 (a) 30.0 MPa, 230.0 MPa; 30.0 MPa. (b) 7.02 MPa, 

296.0 MPa; 51.5 MPa.
 8.46 (a) 3.47 ksi; 1.042 ksi. (b) 7.81 ksi; 0.781 ksi. (c) 12.15 ksi; 0.
 8.47 (a) 18.39 MPa; 0.391 MPa. (b) 21.3 MPa; 0.293 MPa. 

(c) 24.1 MPa; 0.
 8.48 (a) 27.98 MPa; 0.391 MPa. (b) 25.11 MPa; 0.293 MPa. 

(c) 22.25 MPa; 0.
 8.49 30.1 MPa, 20.62 MPa; 28.28, 81.88; 15.37 MPa.
 8.50 0.12 MPa, 251.4 MPa; 2.88, 92.88; 25.8 MPa.
 8.51 1506 psi, 24150 psi; 31.18, 121.18; 2830 psi.
 8.53 (a) 86.5 MPa; 0. (b) 57.0 MPa; 9.47 MPa.
 8.55 5.59 ksi, 212.24 ksi; 8.91 ksi.
 8.56 5.55 ksi, 216.48 ksi; 11.02 ksi.
 8.57 12.94 MPa, 21.33 MPa; 7.13 MPa.
 8.59 (a) 51.0 kN. (b) 39.4 kN.
 8.61 12.2 MPa, 212.2 MPa; 12.2 MPa.
 8.62 (a) 12.90 ksi, 20.32 ksi; 28.98, 81.18; 6.61 ksi. (b) 6.43 ksi 

26.43 ksi; 6458; 6.43 ksi.

 8.64 0.48 ksi, 44.7 ksi; 22.6 ksi.
 8.65 W10 3 15. (b) 23.5 ksi; 4.89 ksi. (c) 23.2 ksi.
 8.68 46.5 mm.
 8.69 (a) 11.06 ksi; 0. (b) 20.537 ksi; 1.610 ksi. (c) 212.13 ksi; 0.
 8.71 P(2R 1 4ry3)ypr3.
 8.72 (a) 3.79 ksi, 28.50 ksi; 33.78, 123.78. (b) 6.15 ksi.
 8.74 25.2 MPa; 20.87 MPa; 13.06 MPa.
 8.76 (a) 7.50 MPa. (b) 11.25 MPa. (c) 56.38; 13.52 MPa.
 8.C3 Prob. 8.18: 37.3 mm.
 8.C5 Prob. 8.45: s 5 6.00 ksi; t 5 0.781 ksi.

CHAPTER 9
 9.1 (a) y 5 2(w0yEIL) (L3x2y6 2 Lx4y12 1 x5y120). 

(b) 11 w0L4y120EIw. (c) w0L3y8EI c.
 9.2 (a) y 5 2(wy24EI) (x4 2 4L3x 1 3L4). (b) wL4y8EIw. 

(c) wL3y6EI a.
 9.3 (a) y 5 2(Px2y6EI)(3L 2 x). (b) PL3y3EIw. (c) PL2y2EI c.
 9.4 (a) y 5 (M0y2EI)(L 2 x)2. (b) M0L2y2EIx. (c) M0LyEI c.
 9.6 (a) y 5 (wy72EI)(3x4 2 16ax3). (b) 10wa4y9EIw. 

(c) 4wa3y3EI c.
 9.8 (a) y 5 (w0yEIL)(L2x3y48 2 x5y120 2 L4xy80). 

(b) w0L4y256EIw. (c) w0L3y120EI a.
 9.9 (a) 2.79 3 1023 rad c. (b) 1.859 mmw.
 9.10 (a) 3.92 3 1023 rad c, (b) 0.1806 in.w.
 9.11 (a) 0.06415M0L2yEI at x 5 0.423L. (b) 45.3 kN ? m.
 9.12 (a) 0.00652w0L4yEI at x 5 0.519L. (b) 0.229 in.w.
 9.13 0.398 in.w.
 9.16 (a) (PyEI)(ax2y2 2 aLxy2 1 a3y6). (b) 1.976 mmw.
 9.17 (a) y 5 w0 (x

6 2 15L2x4 1 25L3x3 2 11L5x)y360EIL2. 
(b) 11w0L3y360EI c. (c) 0.00916 w0L4yEIw.

 9.18 (a) y 5 (w0yEIL2)(x6y90 2 Lx5y30 1 L3x3y18 2 L5xy30). 
(b) w0L3y30EI c. (c) 61w0L4y5760EIw.

 9.19 3M0y2Lx.
 9.20 3wLy8x.
 9.23 9.75 kNx.
 9.24 4.00 kipsx.
 9.25 RB 5 9M0y8Lx; MA 5 M0y8, 

MC2 5 27M0y16, MC1 5 9M0y16.
 9.26 RB 5 5Py16x; MA 5 23PLy16, MC 5 5PLy32, MB 5 0.
 9.27 RA 5 7wLy128x; MC 5 0.02734wL2, MB 5 20.07031wL2, 

M 5 0.02884wL2 at x 5 0.555 L.
 9.28 RA 5 21w0Ly160x, RB 5 19w0Ly160x; MB 5 20.0354w0L

2, 
MC 5 0.0240w0L2, M 5 0.0317w0L2 at x 5 0.362L.

 9.29 RB 5 17wLy64x; yC 5 wL4y1024EI.
 9.31 RB 5 5M0y6Lw; yD 5 7M0L2y486EIx.
 9.33 RA 5 w0Ly4x, MA 5 20.0521w0L2, MC 5 0.03125w0L2.
 9.34 MA 5 PLy8 l, MB 5 PLy8 i MC 5 PLy8.
 9.35 (a) y 5 (M0y6EIL) {x3 2 3L Kx 2 aL2 1 (3b2 2 L2) x}. 

(b) M0 (3b2 2 L2)y6EIL c. (c) M0ab (b 2 a)y3 EILx.
 9.36 (a) y 5 (Py6EIL) {bx3 2 L Kx 2 aL 2 b(L2 2 b2)x}. 

(b) Pb (L2 2 b2)y6EIL c. (c) Pa2b2y3 EILw.
 9.37 (a) (PyEI) {x3y3 2 Kx 2 aL3y6 2 3ax2y2}. 

(b) 5Pa2y2EI c. (c) 7Pa3y2EIw.
 9.38 (a) y 5 (PyEI) {2x3y6 2 Kx 2 aL3y6 1 5a2xy2 2 7a3y2} 

(b) 5Pa2y2EI a. (c) 7Pa3y2EIw.
 9.41 (a) y 5 (wyEI) {ax3y6 2 x4y24 1 Kx 2 aL4y24 

2 Kx 2 3aL4y24 2 5wa3xy6}. (b) 23wa4y24EIw.
 9.42 (a) y 5 (wy24EI) {2x4 1 Kx 2 Ly2L4 2 Kx 2 LL4 

1 Lx3 1 3L Kx 2 LL3 2 L3xy16}. (b) wL4y768 EIx. 
(c) 5wL4y256EIw.
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 9.44 (a) y 5 w0 [16x5 2 32 Kx 2 Ly2L5 2 40 Lx4 1 40 L2x3 
2 15L4x]y960 EIL. (b) 3w0L4y640EIw.

 9.45 (a) 2.49 3 1023 rad c. (b) 1.078 mmw.
 9.47 (a) 5.40 3 1023 rad c. (b) 3.06 mmw.
 9.48 (a) 14.00 3 1023 rad c. (b) 0.340 in.w.
 9.49 (a) 9M0y8Lx. (b) M0L2y128 EIw.
 9.50 (a) 5Py16x. (b) 7PL3y168 EIw.
 9.52 (a) 2Py3x. (b) 5PL3y486 EI.
 9.53 (a) 11.54 kNx. (b) 4.18 mmw.
 9.54 (a) 5.58 kipsx. (b) 0.1065 in.w.
 9.56 (a) 41.25 kNx. (b) 0.705 mmw.
 9.57 (a) 20 Py27x; 4PLy27l. (b) 5PL3y1296 EIw.
 9.58 (a) 3 wLy32x; 5 wL2y192 l. (b) wL4y768 EIw.
 9.59 1.401 mmw at x 5 0.857 m.
 9.60 0.281 in.w at x 5 8.40 ft.
 9.61 3.07 mmw at x 5 0.942 m.
 9.62 0.341 in.w at x 5 3.34 ft.
 9.65 PL2yEI a; 17PL3y24EIw.
 9.66 5PL2y8EI c; 7PL3y16EIw.
 9.67 PL2y24EI c; PL3y48EIw.
 9.68 wL3y48EI a; wL4y384EIx.
 9.70 5PL3y162EIw; (b) PL2y9EI c.
 9.72 (a) wL4y384EIw; (b) 0.
 9.73 6.32 3 1023 rad c; 5.55 mmw.
 9.75 7.91 3 1023 rad a; 0.340 in.w.
 9.76 6.98 3 1023 rad a; 0.1571 in.w.
 9.77 (a) 0.601 3 1023 rad c; (b) 3.67 mmw.
 9.79 RA 5 M0y2Lx; RB 5 5M0y2Lx; RC 5 3M0yLw.
 9.81 (a) 41wLy128x. (b) 23wLy128x; 7wL2y128 i.
 9.82 (a) 3M0(L

2 2 a2)y2L3
x. (b) 3M0(L

2 2 a2)y2L3
w; 

M0(L
2 2 3a2)y2L2 l.

 9.84 3M0y2Lw; M0y4 l.
 9.85 121.5 Nym.
 9.86 (a) 5.06 3 1023 rad c. (b) 0.0477 in.w.
 9.87 0.210 in.w.
 9.88 (a) 10.54 mmw. (b) 23.4 mmw.
 9.90 43.9 kN.
 9.91 5.63 kNw.
 9.93 0.278 in.w.
 9.94 9.31 mmw.
 9.95 (a) PL2y2EI a. (b) PL3y3EIw.
 9.96 (a) M0LyEI c. (b) M0L2y2EIw.
 9.97 (a) w0L3y24EI a. (b) w0L4y30EIw.
 9.98 (a) wL3y6EI a. (b) wL4y8EIw.
 9.101 (a) 5.84 3 1023 rad c. (b) 0.300 in.w.
 9.102 (a) 7.15 3 1023 rad a. (b) 17.67 mmw.
 9.103 (a) 16.56 3 1023 rad c (b) 0.379 in.w.
 9.104 (a) 2.55 3 1023 rad c (b) 6.25 mmw.
 9.105 (a) 11PL2y24EI c. (b) 11PL3y36EIw.
 9.108 (a) 3.43 3 1023 rad a (b) 6.66 mmw.
 9.109 (a) PL2y16EI c. (b) PL2y48EIw.
 9.110 (a) 5PL2y32EI c. (b) 19PL3y384EIw.
 9.111 (a) wa2(3L 2 2a)y12EI c. (b) wa2(3L2 2 2a2)y48EIw.
 9.113 (a) M0(L 2 2a)y2EI c. (b) M0(L

2 2 4a2)y8EIw.
 9.114 (a) PL2y32EI c. (b) PL3y128EIw.
 9.115 (a) 5Pa2y8EI c. (b) 3Pa3y4EIw.
 9.117 (a) 5.21 3 1023 rad c. (b) 21.2 mmw.
 9.118 (a) 4.71 3 1023 rad c. (b) 5.84 mmw.
 9.119 (a) 4.50 3 1023 rad c (b) 8.26 mmw.
 9.121 3.84 kNym.
 9.123 0.211 L.
 9.124 0.223 L.

 9.125 (a) 5PL3y768EIw. (b) 3PL2y128EI c.
 9.127 (a) 5w0L4y768EIw. (b) 7w0L3y360EI c.
 9.128 (a) 5wL4y768EIw. (b) 3wL3y128EI c.
 9.129 (a) 8.74 3 1023 rad c. (b) 15.10 mmw.
 9.130 (a) 7.48 3 1023 rad c. (b) 5.35 mmw.
 9.131 (a) 5.31 3 1023 rad c. (b) 0.204 in.w.
 9.134 (a) M0(L 1 3a)y3EI c. (b) M0a(2L 1 3a)y6EIw.
 9.135 (a) 2.34 3 1023 rad c. (b) 0.1763 in.w.
 9.137 (a) 5.33 3 1023 rad a. (b) 0.01421 in.w.
 9.138 (a) 3.61 3 1023 rad c. (b) 0.960 mmx.
 9.139 (a) 17PL3y972EIw. (b) 19PL3y972EIw.
 9.140 (a) 9wL3y256EI c. (b) 7wL3y256EI a. 

(c) 5wL4y512EIw.
 9.142 0.00652w0L4yEI at x 5 0.519L.
 9.144 0.212 in.w at x 5 5.15 ft.
 9.145 1.841 mm.
 9.146 0.1049 in.
 9.148 5Py16x.
 9.149 7wLy128x.
 9.150 9 M0y8Lx.
 9.151 RA 5 3Py32w; RB 5 13Py32x; RC 5 11Py16x.
 9.153 65.2 kNx; MA 5 0; MD 5 58.7 kN ? m; MB 5 282.8 kN ? m.
 9.154 10.18 kipsx; MA 5 287.9 kip ? ft; MD 5 46.3 kip ? ft; MB 5 0.
 9.155 48EIy7L3.
 9.156 144EIyL3.
 9.157 (a) y 5 w0 (2x5 2 5Lx4 1 10L4x 2 7L5)y120EIL. 

(b) 7w0L4y120EIx. (c) w0L3y12EI c.
 9.158 (a) 0.01604 M0L2yEI at x 5 0.211L. (b) 21.5 ft.
 9.160 wLy2x, wL2y12 l; M 5 w[6x (L 2 x) 2 L2]y12.
 9.162 (a) 0.712 3 1023 rad a. (b) 1.068 mmx.
 9.163 (a) 10.86 kNx; 1.942 kN ? m l. (b) 1.144 kNx; 0.286 kN ? m i.
 9.165 (a) 5.20 3 1023 rad a. (b) 10.85 mmw.
 9.166 (a) 4.27 3 1023 rad c. (b) 0.1080 in.x. (c) 0.206 in.w.
 9.168 (a) 6.87 mmx. (b) 46.3 kNx.
 9.C1 Prob. 9.74: 5.56 3 1023 rad c; 2.50 mmw.
 9.C2 a 5 6 ft: (a) 3.14 3 1023 rad c, 0.292 in.w; 

(b) 0.397 in. w at 11.27 ft to the right of A.
 9.C3 x 5 1.6 m: (a) 7.90 3 1023 rad c, 8.16 mmw;
  (b) 6.05 3 1023 rad c, 5.79 mmw;
  (c) 1.021 3 1023 rad c, 0.314 mmw.
 9.C5 (a) a 5 3 ft: 1.586 3 1023 rad c; 0.1369 in.w;
  (b) a 5 1.0 m: 0.293 3 1023 rad c, 0.479 mmw.
 9.C7 x 5 2.5 m: 5.31 mmw; x 5 5.0 m: 12.28 mmw.

CHAPTER 10
 10.1 kL.
 10.2 KyL.
 10.3 KyL.
 10.4 2kLy9.
 10.6 k . 4.91 kNym.
 10.8 8KyL.
 10.9 (a) 6.65 lb. (b) 21.0 lb.
 10.10 305 kN.
 10.11 (a) 6.25%. (b) 12.04 kips.
 10.13 1.421.
 10.15 164.0 kN.
 10.17 69.6 kips.
 10.18 335 kips.
 10.19 2.44.
 10.21 (1) 319 kg; (2) 79.8 kg; (3) 319 kg; (4) 653 kg.
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 10.22 (a) 2.55. (b) (2):28.3 mm; (3): 14.14 mm; (4):16.72 mm; 
(5): 20.0 mm.

 10.23 (a) BC: 4.20 ft; CD: 1.05 ft. (b) 4.21 kips.
 10.26 29.5 kips.
 10.27 657 mm.
 10.28 (a) 1y2.00. (b) d 5 28.3 mm; b 5 14.15 mm.
 10.29 (a) 1.658 mm. (b) 78.9 MPa.
 10.30 (a) 4.32 mm. (b) 44.4 MPa.
 10.31 (a) 0.410 in. (b) 14.43 ksi.
 10.33 (a) 0.0399 in. (b) 19.89 ksi.
 10.35 (a) 13.29 kips. (b) 15.50 ksi.
 10.36 (a) 370 kN. (b) 104.6 MPa.
 10.37 (a) 224 kN. (b) 63.3 MPa.
 10.39 (a) 235 kN. (b) 149.6 MPa.
 10.40 (a) 151.6 kN. (b) 109.5 MPa.
 10.41 58.98F
 10.43 (a) 38.6 kips. (b) 0.628.
 10.45 (a) 189 kN. (b) 229 kN.
 10.46 (a) 147 kN. (b) 174 kN.
 10.47 2.16 m.
 10.48 1.302 m.
 10.49 (a) 13.68 ft. (b) 7.83 ft.
 10.51 2.125 in.
 10.52 2.625 in.
 10.53 W200 3 26.6.
 10.56 3.09.
 10.57 (a) 220 kN. (b) 841 kN.
 10.58 (a) 86.6 kips. (b) 88.1 kips.
 10.59 (a) 59.6 kips. (b) 31.9 kips.
 10.60 (a) 1530 kN. (b) 638 kN.
 10.62 (a) 231 mm. (b) 376 mm. (c) 714 mm.
 10.64 35.9 kN.
 10.65 76.3 kips.
 10.68 144.1 kips.
 10.69 39.9 kips.
 10.70 107.7 kN.
 10.71 1.615 in.
 10.72 9 mm.
 10.74 123.1 mm.
 10.75 6.53 in.
 10.77 W250 3 67.
 10.78 W200 3 46.1.
 10.79 W14 3 82.
 10.80 3y8 in.
 10.82 (a) 30.1 mm. (b) 33.5 mm.
 10.84 L89 3 64 3 12.7.
 10.85 (a) (dead) 433 kN; (live) 321 kN. 

(b) (dead) 896 kN; (live) 664 kN.
 1086 56.1 kips.
 10.87 W310 3 74.
 10.88 5y16 in.
 10.89 76.7 kN.
 10.91 (a) 329 kN. (b) 280 kN.
 10.93 (a) 18.26 kips. (b) 14.20 kips.
 10.94 (a) 21.1 kips. (b) 18.01 kips.
 10.95 (a) 0.0987 in. (b) 0.787 in.
 10.97 (a) 11.89 mm. (b) 6.56 mm.
 10.98 7.78 mm.
 10.99 45.6 in.
 10.101 5.48 m.
 10.102 4.81 m.
 10.105 12 mm.

 10.106 15 mm.
 10.107 48.2 mm.
 10.108 44.3 mm.
 10.109 1y4 in.
 10.110 3y16 in.
 10.113 W14 3 145.
 10.114 W14 3 68.
 10.115 W250 3 58.
 10.116 W200 3 59.
 10.117 ka2y2l.
 10.118 0.384 in.
 10.120 DT 5 p2b2y12L2a.
 10.121 2.77 kN.
 10.123 95.5 kips.
 10.125 (a) 4.84 mm. (b) 135.7 Mpa.
 10.126 W10 3 54.
 10.128 W8 3 40.
 10.C1 r 5 8 mm: 9.07 kN. r 5 16 mm: 70.4 kN.
 10.C2 b 5 1.0 in.: 3.85 kips. b 5 1.375 in.: 6.07 kips.
 10.C3 h 5 5.0 m: 9819 kg. h 5 7.0 m: 13,255 kg.
 10.C4 P 5 35 kips: (a) 0.086 in.; (b) 4.69 ksi.
  P 5 55 kips: (a) 0.146 in.; (b) 7.65 ksi.
 10.C6 Prob. 10.113: Pall 5 282.6 kips.
  Prob. 10.114: Pall 5 139.9 kips.

CHAPTER 11
 11.1 (a) 177.9 kJym3. (b) 712 kJym3. (c) 160.3 kJym3.
 11.2 (a) 436 in ? lbyin3. (b) 64.7 in ? lbyin3. (c) 6.40 in ? lbyin3.
 11.4 (a) 21.6 kJym3. (b) 336 kJym3. (c) 163.0kJym3.
 11.5 (a) 1296 kJym3. (b) 90 MJym3.
 11.6 (a) 58.0 in ? lbyin3. (b) 20 in ? kipyin3.
 11.8 (a) 150 KJym3. (b) 63 MJym3.
 11.9 (a) 176.2 in ? lb (b) AB: 11.72 in ? lbyin3; BC: 5.65 in ? lbyin3.
 11.10 (a) 12.18 J. (b) AB: 15.83 KJym3; BC 38.6 KJym3.
 11.11 (a) 168. 8 in ? lb. (b) CD: 0. 882 in ? lbyin3; EF: 5.65 in ? lbyin3.
 11.14 13.73 mm.
 11.15 (a) 3.28. (b) 4.25.
 11.16 102.7 in ? lb.
 11.18 1.500 P2lyEA.
 11.19 1.398 P2lyEA.
 11.22 1.767 kip ? in.
 11.23 59.8 J.
 11.24 w2L5y40EI.
 11.25 w2L5y240EI.
 11.26 M0

2 (a3 1 b3)y6EIL2.
 11.28 1048 J.
 11.29 670 J.
 11.30 388 J.
 11.32 15 UyV.
 11.34 14.70 J.
 11.36 (a) 2.33. (b) 2.02.
 11.38 22.65 MPa , sz , 122.65 MPa.
 11.40 U 5 (2M0

2LyEbd3)(1 1 3Ed2y10GL2)
 11.41 U 5 (Q2y4pGL) ln (R2yR1).
 11.42 9.12 lb.
 11.43 25.5 ftys.
 11.44 4.76 kg.
 11.45 5.63 kg.
 11.48 (a) 21.0 kN. (b) 172. 1 MPa. (c) 8.61 mm.
 11.49 (a) 7.66 kN. (b) 316 MPa. (c) 23.5 mm.
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 11.50 11.09 ftys.
 11.52 (a) 15.63 mm. (b) 83.8 N ? m. (c) 208 MPa.
 11.53 (a) 23.6 mm. (b) 64.4 N ? m. (c) 157.6 MPa.
 11.54 (a) 0.1061 in. (b) 20.2 ksi.
 11.56 (b) 7.12.
 11.58 Pa2(a 1 L)y3EIw.
 11.59 Pa2b2y 3EIw.
 11.61 M0(a

3 1 b3)y 3EIL2 c.
 11.62 3Pa3y4EIw.
 11.63 3PL3y16EIw.
 11.65 M0Ly16EI c.
 11.66 32.4 in.
 11.68 386 mm.
 11.69 2.558.
 11.71 3.375 PlyEAw.
 11.73 0.0650 in.w.
 11.74 0.366 in.w.
 11.76 1.111 mmw.
 11.77 (a) and (b) P2L3y6EI 1 PM0L2y2EI 1 M0

2Ly2EI.
 11.78 (a) and (b) P2L3y48EI 1 PM0L2y8EI 1 M0

2Ly2EI.
 11.80 (a) and (b) P2L3y48EI.
 11.82 (a) and (b) 5M0

2Ly4EI.
 11.83 5PL3y48EIw.
 11.85 3PL2y8EI a.
 11.86 7wL3y48EI a.
 11.88 PL3y96EIx.
 11.89 wL3y192EI a.
 11.90 PL2y48EI a.
 11.91 7.07 3 1023 rad c.
 11.93 0.317 in.w.
 11.94 3.80 mmw.
 11.95 7.25 mmw.
 11.96 5.12 mmw.
 11.98 2.07 3 1023 rad a.
 11.99 Ply2EA z; 3.80 PlyEAw.
 11.100 0 y ; 2.80PlyEAx.

 11.103 0.233 in.w.
 11.104 0.1504 in. y.
 11.105 (a) 2Pl3y3EI y. (b) Pl2y6EI a.
 11.106 (a) 5Pl3y3EI y. (b) 2PL2yEI l.
 11.107 (a) Pl3yEIx. (b) 3Pl2yEI a.
 11.109 (a) PR3y2EI y. (b) pPR3y4EIw.
 11.111 3M0y2Lx; M 5 M0 (3xy2 2 1).
 11.112 5Py16x; MA 5 23PLy16, MC 55PLy32, MB 5 0.
 11.113 41wLy128x; MA 5 0; M 5 0.0513wL2 at x 548Ly128; 

MB 5 27wL2y128.
 11.114 3M0b (L 1 a)y2L3 

x; 
M 5 3M0b (L 1 a) xy2L3 2 M0 KL 2 aL0.

 11.117 Py(1 1 2 cos3 u).
 11.118 3Py4.
 11.119 7Py8.
 11.120 0.652P.
 11.125 24.7 mm.
 11.128 11.57 mmw.
 11.129 3.128.
 11.130 0.0447 in.w.
 11.132 PL2y6EI l.
 11.134 A: wLy6w; B: 3wLy4x; C: 5wLy12x.
 11.C2 (a)  a 5 15 in.: sD 5 17.19 ksi, sC 5 21.0 ksi;

a 5 45 in.: sD 5 36.2 ksi, sC 5 14.74 ksi.
  (b) a 5 18.34 in., s 5 20.67 ksi.
 11.C3 (a)  L 5 200 mm: h 5 2.27 mm;

L 5 800 mm: h 5 1.076 mm.
  (b) L 5 440 mm: h 5 3.23 mm.
 11.C4 a 5 300 mm: 1.795 mm, 179.46 MPa;
  a 5 600 mm: 2.87 mm, 179.59 MPa.
 11.C5 a 5 2 m: (a) 30.0 J; (b) 7.57 mm, 60.8 J.
  a 5 4 m: (a) 21.9 J; (b) 8.87 mm, 83.4 J.
 11.C6 a 5 20 in: (a) 13.26 in.; (b) 99.5 kip ? in.; 
  (c) 803 lb.
  a 5 50 in: (a) 9.46 in.; (b) 93.7 kip ? in.; 
  (c) 996 lb.
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